Periodic 1. (Do not hand in)

The mass-spring-dashpot below has mass \(m = 2 \) kg, stiffness \(k = 20000 \) N/m, and damping coefficient \(c = 40 \) Ns/m. Write the response of the system below excited by the periodic force given below, for which \(F_0 = 4\pi \) N and \(T = \pi/25 \) seconds. Is there a resonance? Compare the amplitudes of the first three Fourier terms in the response solution.

Periodic 2 (Hand in)

The mass-spring-dashpot below has mass \(m = 4 \) kg, stiffness \(k = 10000 \) N/m, and damping coefficient \(c = 20 \) Ns/m. What are the three most dangerous resonances (values of \(\omega \))? The base excitation response can be written in terms of an absolute coordinate \(x \) and a relative coordinate \(z = x - y \). Write and compare the first three Fourier amplitudes \(X_i \) for the \(x \) coordinate and \(Z_i \) for the \(z \) coordinate, for each of the three resonance cases.