Problem 1.
For the op-amp in Figure P2.2 (b) of Text (see figure on next page), derive the transfer function between input voltage v_i and output voltage v_0.

Problem 2.
For the electric motor in P2.25 of Text (see figure on next page), derive the transfer function between input variable θ_m and output variable θ_i.

Problem 3.
For the system shown below, find the transfer function for r_1 as input and θ_3 as output.

Problem 4.
The dynamics of a car is described by the following equation

$$F - F_d - F_f = m\ddot{v}$$

where F is the driving force generated by the engine, F_d is the force due to wind drag, F_f is the friction force acting on the tires, and v is the velocity of the car. The drag force and the friction force can be modeled as

$$F_d = K_d\dot{v}^2, \quad F_f = K_f v$$

where $K_d \approx 1.1 \text{ N s}^2/\text{m}^2$ and $K_f \approx 0.095 \text{ N s/m}$. If the mass of the car is 1050 kg, find the transfer function for F as input and v as output at the operating velocity of $v = v_0 = 40 \text{ m/s}$.
FIGURE P2.2

FIGURE P2.25