E8.2 The transfer function is

\[G(s) = \frac{5000}{(s + 70)(s + 500)} \, . \]

The frequency response plot is shown in Figure E8.2. The phase angle is computed from

\[\phi = -\tan^{-1} \frac{\omega}{70} - \tan^{-1} \frac{\omega}{500} \, . \]

The phase angles for \(\omega = 10, 100 \) and 700 are summarized in Table E8.2.

<table>
<thead>
<tr>
<th>(\omega)</th>
<th>10</th>
<th>200</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>G(j\omega)</td>
<td>)</td>
<td>-16.99</td>
</tr>
<tr>
<td>(\phi) (deg)</td>
<td>-9.28</td>
<td>-92.51</td>
<td>-138.75</td>
</tr>
</tbody>
</table>

TABLE E8.2 Magnitude and phase for \(G(s) = \frac{5000}{(s + 70)(s + 500)} \).

FIGURE E8.2
Frequency response for \(G(s) = \frac{5000}{(s + 70)(s + 500)} \).
E8.3 The loop transfer function is

\[L(s) = \frac{300(s + 100)}{s(s + 10)(s + 40)}. \]

The phase angle is computed via

\[\phi(\omega) = -90^\circ - \tan^{-1} \frac{\omega}{10} - \tan^{-1} \frac{\omega}{40} + \tan^{-1} \frac{\omega}{100}. \]

At \(\omega = 28.3 \), we determine that

\[\phi = -90^\circ - 70.5^\circ - 35.3^\circ + 15.8^\circ = 180^\circ. \]

Computing the magnitude yields

\[|L(j\omega)| = \frac{300(100)(1 + (\frac{\omega}{100})^2)^{\frac{1}{2}}}{\omega 10(1 + (\frac{\omega}{10})^2)^{\frac{1}{2}} 40(1 + (\frac{\omega}{40})^2)^{\frac{1}{2}}} = 0.75, \]

when \(\omega = 28.3 \). We can also rewrite \(L(s) \) as

\[L(s) = \frac{75(\frac{s}{100} + 1)}{s(\frac{s}{10} + 1)(\frac{s}{40} + 1)}. \]

Then, the magnitude in dB is

\[20 \log_{10} |L| = 20 \log_{10}(75) + 10 \log_{10}(1 + (\frac{\omega}{100})^2) - 10 \log_{10}(1 + (\frac{\omega}{10})^2) \]
\[- 10 \log_{10}(1 + (\frac{\omega}{40})^2) - 20 \log_{10} \omega = -2.5 \text{ dB}, \]

at \(\omega = 28.3 \).
E8.4 The transfer function is

\[G(s) = \frac{Ks}{(s + a)(s + 10)^2}. \]

Note that \(\phi = 0^\circ \) at \(\omega = 3 \), and that

\[\phi = +90^\circ - \tan^{-1} \frac{\omega}{a} - 2 \tan^{-1} \frac{\omega}{10}. \]

Substituting \(\omega = 3 \) and solving for \(a \) yields

\[a = 2. \]

Similarly, from the magnitude relationship we determine that

\[K = 400. \]

E9.6 The Bode plot of the closed-loop transfer function is shown in Figure E9.6. The value of \(M_{p,\omega} = 3 \) dB. The phase margin is \(P.M. = 40^\circ \) when \(K = 50 \).

![Figure E9.6](image)

Figure E9.6
Closed-loop Bode Diagram for \(T(s) = \frac{50(s+100)}{s^3+50s^2+450s+5000} \).
(a) When $K = 4$, the $G.M. = 3.5$ dB. This is illustrated in Figure E9.8.

Figure E9.8
Bode Diagram for $G_c(s)G(s) = \frac{K}{s(s+1)(s+2)}$, where $K = 4$.

(b) The new gain should be $K = 1$ for a gain margin $G.M. = 16$ dB.