ME451: Control Systems

Lecture 1
Introduction

Dr. Jongeun Choi
Department of Mechanical Engineering
Michigan State University

Instructor

- Class Instructor: Dr. Jongeun Choi,
 - Website: http://www.egr.msu.edu/~jchoi/
 - Assistant Professor at ME department,
 - 2459 Engineering Building,
 - Email: jchoi@egr.msu.edu

- Office Hours
 - 2459 EB, MWF 10:10-11:00am, Extra hours by appointment

- Laboratory Instructor: Dr. Ranjan Mukherjee,
 - 2430 Engineering Building
 - Email: mukherjee@egr.msu.edu

Course information

- Lecture:
 - When: MWF: 11:30pm-12:20pm
 - Where: 226 Erickson Hall
 - Class and Laboratory website: http://www.egr.msu.edu/classes/me451/jchoi/Fall2011/

- Required Textbook:
Course information

- Lecture:
 - When: MWF: 12:40pm-1:30pm
 - Where: 2243 Engineering Building
 - Class and Laboratory website: http://www.egr.msu.edu/classes/me451/jchoi/2012/
- Required Textbook:

Main components of the course

- Lectures (about 40 lectures)
- Old Math Quiz
- Midterm1, Midterm2
- Final (Final exam period)
- Laboratory work
- Grading:
 - Homework plus Math Quiz (10%), Exam 1 (20%), Exam 2 (20%), Final Exam (comprehensive) (25%), Laboratory work (25%)
 - Homework will be due in one week from the day it is assigned

Tips to pass this course

- Come to the lectures as many times as you can.
- Print out and bring lecture slides to the lecture.
- Do “Exercises” given at the end of each lecture.
- Do homework every week.
- Read the textbook and the slides.
- Make use of instructor’s office hours.
- If you want to get a very good grade…
 - Read the textbook thoroughly.
 - Read optional references too.
 - Do more than given “Exercises”.
 - Use and be familiar with Matlab.

What is “Control”?

- Make some object (called *system, or plant*) behave as we desire.
- Imagine “control” around you!
 - Room temperature control
 - Car/bicycle driving
 - Voice volume control
 - “Control” (move) the position of the pointer
 - Cruise control or speed control
 - Process control
 - etc.
What is “Control Systems”?
- Why do we need control systems?
 - Convenient (room temperature control, laundry machine)
 - Dangerous (hot/cold places, space, bomb removal)
 - Impossible for human (nanometer scale precision positioning, work inside the small space that human cannot enter)
 - They exist in nature. (human body temperature control)
 - Lower cost, high efficiency (factory automation), etc.
- Many examples of control systems around us

Open-Loop Control
- Open-loop Control System
 - Toaster, microwave oven, shooting a basketball

Example: Toaster
- A toaster toasts bread, by setting timer.
- Objective: make bread golden browned and crisp.
- A toaster does not measure the color of bread during the toasting process.
- For a fixed setting, in winter, the toast can be white and in summer, the toast can be black (Calibration!)
- A toaster would be more expensive with sensors to measure the color and actuators to adjust the timer based on the measured color.

Example: Laundry machine
- A laundry machine washes clothes, by setting a program.
- A laundry machine does not measure how clean the clothes become.
- Control without measuring devices (sensors) are called open-loop control.
Closed-Loop (Feedback) Control

- Compare actual behavior with desired behavior
- Make corrections based on the error
- The sensor and the actuator are key elements of a feedback loop
- Design control algorithm

\[y_d \rightarrow e \rightarrow \text{Controller} \rightarrow \text{Actuator} \rightarrow \text{Plant} \rightarrow y \]

Ex: Automobile direction control

- Attempts to change the direction of the automobile.
- Manual closed-loop (feedback) control.
- Although the controlled system is “Automobile”, the **input** and the **output** of the system can be different, depending on **control objectives**!

\[\text{Brain} \rightarrow \text{Hand} \rightarrow \text{Auto} \rightarrow \text{Direction} \]

Ex: Automobile cruise control

- Attempts to maintain the speed of the automobile.
- Cruise control can be both manual and automatic.
- Note the similarity of the diagram above to the diagram in the previous slide!

\[\text{Controller} \rightarrow \text{Actuator} \rightarrow \text{Auto} \rightarrow \text{Speed} \]

Basic elements in feedback control systems

- Control system design objective:
 To design a controller s.t. the output follows the reference in a “satisfactory” manner even in the face of disturbances.
Systematic controller design process

1. Modeling
 - Modeling as a transfer function and a block diagram
 - Laplace transform (Mathematics!)
 - Mechanical, electrical, electromechanical systems

2. Analysis
 - Step response, frequency response
 - Stability: Routh-Hurwitz criterion, (Nyquist criterion)

3. Design
 - Root locus technique, frequency response technique, PID control, lead/lag compensator

4. Implementation

Goals of this course

To learn basics of feedback control systems

- **Modeling** as a transfer function and a block diagram
 - Laplace transform (Mathematics!)
 - Mechanical, electrical, electromechanical systems

- **Analysis**
 - Step response, frequency response
 - Stability: Routh-Hurwitz criterion, (Nyquist criterion)

- **Design**
 - Root locus technique, frequency response technique, PID control, lead/lag compensator
 - Theory, (simulation with Matlab), practice in laboratories

Course roadmap

Modeling
- Laplace transform
- Transfer function
- Models for systems
 - Mechanical
 - Electrical
 - Electromechanical
- Linearization

Analysis
- Time response
 - Transient
 - Steady state
- Frequency response
 - Bode plot
- Stability
 - Routh-Hurwitz
 - Nyquist

Design
- Design specs
- Root locus
- Frequency domain
- PID & Lead-lag
- Design examples

(Matlab simulations & laboratories)

Summary & Exercises

- **Introduction**
 - Examples of control systems
 - Open loop and closed loop (feedback) control
 - Automatic control is a lot of fun!

- **Next**
 - Laplace transform

- **Exercises**
 - Buy the course textbook at the Bookstore.
 - Read Chapter 1 and 2.