Problem 1. (25 pts.) In the system of fig. 1, \(x(t) \) is the input displacement and \(y(t) \) is the output displacement. The initial conditions are \(x(0) = -1 \) and \(y(0) = 0 \).

a) Find the transfer function between \(Y(s) \) and \(X(s) \).
b) From the Transfer function, obtain the response \(y(t) \) when \(x(t) \) is a unit step input.

![Figure 1: Mechanical System](image-url)
Problem 2. (25 pts.) When the system shown in Fig. 2(a) is subjected to a unit-step input, the system output responds as shown in Fig. 2(b).

a) Show that the closed loop transfer function is given by

\[\frac{C(s)}{R(s)} = \frac{K}{Ts^2 + s + K} \]

b) Determine the values of K and T from the response curve.

Figure 2: a) Closed loop system b) Unit step response curve
Problem 3. (25 pts.) Given the non-linear differential equation for cutter displacement

\[\dot{x} = 1.5u^2 - 3.5 - 3x - x^2 \]

where \(x = x(t) \) is the cutter displacement in centimeters and \(u = u(t) \) is the drive voltage,
a) Find an appropriate operating value \(u = u_0 \) to linearize the above differential equation for the cutter at the operating point \(x(t) = x_0 = 2 \text{cm} \).
b) Linearize the non-linear differential equation at the \(x(t) = x_0 = 2 \text{ cm} \) operating point.
Problem 4. (25 pts) Write short answers to the following

(a) (12 pts.) If the Laplace transform of a system is \(X(s) = \frac{3}{s(s+1)(s-3)(s+2)^2+4} \), predict the final value for \(x(\infty) = \lim_{t \to \infty} x(t) \) if it exists. If not why not?

(b) (13 pts.) Find the inverse Laplace Transform of

\[
Y(s) = 2 + \frac{2s + 5}{s(s + 1)}
\]