Compact DC/AC Power Inverter

Design Day - Fall 2014

Philip Beard
Jacob Brettrager
Jack Grundemann
Stanley Karas
Travis Meade
● Introduction to Power Inverters
● Motivation and Goals
● Design Specifications
 ○ *Little Box Challenge*
 ○ Chosen Parameters
● Final Design
 ○ Self Assessment
● Future Suggestions
● Demonstration and Questions
Introduction to Power Inverters

- Convert DC to AC
 - Power devices
 - Supplement grid

- Variety of sizes & applications
 - Solar, portable power, etc.

- Design constraints:
 - Size, efficiency, power density

http://en.wikipedia.org/wiki/Power_inverter
Motivation and Goals

- Opportunities from Industry

- What could a new design mean?
 - Better stand alone systems
 - Greater efficiencies
 - Solar power generation
Motivation and Goals (cont.)

- Falling panel prices, stagnant inverter prices
- Easy to find room for tissue box sized device
- Modified sine waves are “sloppy”

Motivation and Goals (cont.)

- New technologies provide more design choices
 - Silicon Carbide
 - Gallium Nitride

- Inexpensive, open-source availability
 - Free Libraries
 - Extensive Support

Chosen MOSFET

http://www.cree.com/power/littleboxchallenge

http://arduino.cc/en/Trademark/CommunityLogo
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement (Nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Load</td>
<td>2 kVA</td>
</tr>
<tr>
<td>Power Density</td>
<td>> 50 W/in³</td>
</tr>
<tr>
<td>Volume</td>
<td>< 40 in³</td>
</tr>
<tr>
<td>Voltage Input</td>
<td>450 V DC</td>
</tr>
<tr>
<td>Voltage Output</td>
<td>240 V RMS AC</td>
</tr>
<tr>
<td>Frequency Output</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Maximum Outer Temperature</td>
<td>< 60 °C</td>
</tr>
<tr>
<td>Electromagnetic Compliance</td>
<td>FCC Part 15 B</td>
</tr>
</tbody>
</table>

Team 7 - Compact DC/AC Power Inverter • 12-05-14
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement (Nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Load</td>
<td>1 kVA</td>
</tr>
<tr>
<td>Power Density</td>
<td>> 25 W/in3</td>
</tr>
<tr>
<td>Volume</td>
<td>< 40 in3</td>
</tr>
<tr>
<td>Voltage Input</td>
<td>200 V DC</td>
</tr>
<tr>
<td>Voltage Output</td>
<td>120 V RMS AC</td>
</tr>
<tr>
<td>Frequency Output</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Maximum Outer Temperature</td>
<td>< 60 °C</td>
</tr>
<tr>
<td>Electromagnetic Compliance</td>
<td>FCC Part 15 B</td>
</tr>
</tbody>
</table>
DC-DC Conversion
Pulse Width Modulation
Final Design (cont.)

Team 7 - Compact DC/AC Power Inverter • 12-05-14

H Bridge
Final Printed Circuit Board Layout
3” x 3.3”

- Board Size
- Trace widths
- Vias
Initial Enclosure Layout

- Two of Four MOSFETS
- One of Two Gate Drivers
- Arduino
- Capacitor Bank
- Inductor
- PCB Cutout
- Central and Reverse Portions not Shown

Team 7 - Compact DC/AC Power Inverter • 12-05-14
Inductor Enclosure

Final Layout
<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Quantity</th>
<th>Total</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2M0025120D</td>
<td>$71.99</td>
<td>4</td>
<td>$287.96</td>
<td>Silicon Carbide MOSFETs</td>
</tr>
<tr>
<td>FAN7382</td>
<td>$3.75</td>
<td>2</td>
<td>$7.50</td>
<td>600 Volt Gate Driver</td>
</tr>
<tr>
<td>DC-DC Converters</td>
<td>$2.02</td>
<td>2</td>
<td>$4.04</td>
<td>Supply Rail for Micro Controller</td>
</tr>
<tr>
<td>LM2940</td>
<td>$1.65</td>
<td>1</td>
<td>$1.65</td>
<td>5V Regulator</td>
</tr>
<tr>
<td>Enclosure</td>
<td>$24.37</td>
<td>1</td>
<td>$24.37</td>
<td>Aluminum Enclosure</td>
</tr>
<tr>
<td>ATMega328</td>
<td>$4.95</td>
<td>1</td>
<td>$4.95</td>
<td>Arduino Microcontroller</td>
</tr>
<tr>
<td>PCB</td>
<td>$0.00</td>
<td>1</td>
<td>$0.00</td>
<td>Printed Circuit Board from ECE Shop</td>
</tr>
</tbody>
</table>

TOTAL: $330.47
Future Suggestions - Heat Design

- Better materials
 - Heat sinks
 - Plating

- Milled Enclosure
 - PCB Guides
 - Dissipation fins
Future Suggestions - Printed Circuit Board

- Contain H Bridge, filter, processor, and DC/DC converter on same PCB

- Use surface mount over DIP components
 - Smaller, contain multiple parts

- Port placement
 - Transistor closer to edge
Future Suggestions - Filtering

- Current filter designed for smaller loads (~ 400W)
- 1 capacitor over capacitor bank
 - High voltage
- Increase inductor wire diameter
- Isolation transformer
● Education
 ○ The process
 ○ Technical integration

● Self Assessment
 ○ Shortcomings
 ○ Successes

● Thank you
Now, time for a video demonstration...
Questions?