Memory Basics

- **RAM**: Random Access Memory
 - historically defined as memory array with individual bit access
 - refers to memory with both Read and Write capabilities
- **ROM**: Read Only Memory
 - no capabilities for “online” memory Write operations
 - Write typically requires high voltages or erasing by UV light
- **Volatility of Memory**
 - volatile memory loses data over time or when power is removed
 - RAM is volatile
 - non-volatile memory stores data even when power is removed
 - ROM is non-volatile
- **Static vs. Dynamic Memory**
 - Static: holds data as long as power is applied (SRAM)
 - Dynamic: will lose data unless refreshed periodically (DRAM)

SRAM/DRAM Basics

- **SRAM**: Static Random Access Memory
 - Static: holds data as long as power is applied
 - Volatile: can not hold data if power is removed
 - 3 Operation States: hold, write, read
 - Basic 6T (6 transistor) SRAM Cell
 - bistable (cross-coupled) INVs for storage
 - access transistors MAL & MAR
 - word line, WL, controls access
 - WL = 0 (hold) = 1 (read/write)
- **DRAM**: Dynamic Random Access Memory
 - Dynamic: must be refreshed periodically
 - Volatile: loses data when power is removed
 - 1T DRAM Cell
 - single access transistor; storage capacitor
 - control input: word line (WL); data I/O: bit line
- **DRAM to SRAM Comparison**
 - DRAM is smaller & less expensive per bit
 - SRAM is faster
 - DRAM requires more peripheral circuitry
ROM/PROM Basics

- **ROM**: Read Only Memory
 - no capabilities for "online" memory Write operations
 - data programmed
 - during fabrication: ROM
 - with high voltages: PROM
 - by control logic: PLA
 - Non-volatile: data stored even when power is removed

- **PROM**: Programmable Read Only Memory
 - programmable by user -using special program tools/modes
 - read only memory -during normal use
 - non-volatile
 - Read Operation
 - like any ROM: address bits select output bit combinations
 - Write Operation
 - typically requires high voltage (~15V) control inputs to set data
 - stores charge to floating gate (see figure) to set to Hi or Low
 - Erase Operation
 - to change data
 - EPROM: erasable PROM: uses UV light to reset all bits
 - EEPROM: electrically-erasable PROM, erase with control voltage

Comparison of Memory Types

- **DRAM**
 - very high density → cheap data cache in computers
 - must be periodically refreshed → slower than SRAM
 - volatile; no good for program (long term) storage

- **SRAM** (basically a Latch)
 - fastest type of memory
 - low density → more expensive
 - generally used in small amounts (L2 cache) or expensive servers

- **EEPROM**
 - slow/complex to write → not good for fast cache
 - non-volatile; best choice for program memory

- **ROM**
 - hardware coded data; rarely used except for bootup code

- **Register (flip flop)**
 - functionally similar to SRAM but less dense (and thus more expensive)
 - reserved for data manipulation applications
Memory Overview

- **N x n** array of 1-bit cells
 - n = byte "width": 8, 16, 32, etc.
 - N = number of bytes = "length"
 - m = number of address bits
 - max N = 2^m
- **Array I/O**
 - data (in and out)
 - D_{n-1} - D_0
 - address
 - A_{m-1} - A_0
 - control
 - varies with design
 - WE = write enable (assert low)
 - WE=1 = read, WE=0 = write
 - En = block enable (assert low)
 - used as chip enable (CE) for an SRAM chip

Memory Array Addressing

- **Standard Memory Addressing Scheme**
 - m address bits are divided into x row bits and y column bits (x+y=m)
 - address bits are encoded so that 2^m = N
 - array physically organized with both vertical and horizontal stacks of bytes

Memory "size":
- # bytes = N, # bits = N x n

Example:
1k x 8 RAM → 10 addr lines, 8-bit bytes
2^{10} = 1k (1024) mem locations = length
width = 8-bit, size = 1k-byte, 8k-bits
Typical Memory Chip

- **Data**
 - x-bits in parallel, typically x = 8, 16

- **Address signals**
 - m address signals → M = 2^m addresses

- **Control signals**
 - /WE: write enable - when activated, values on data lines are written to specified address
 - /OE: output enable - data at specified location placed on data pins of memory chip, data lines connected to data bus using tristate outputs
 - /CS: chip select - selects a specific chip in an array of memory chips

- **Connection to HC12**

Memory Expansion

expanding memory length
Memory Expansion
expanding memory width

Memory Expansion
expanding memory length and width