Biomass Feedstock

Bottlenecks

Approach

Expertise

S1007

The Science and Engineering for a Biobased Industry and Economy

“Multistate Research Committee”

A.R. Womac, The University of Tennessee

November 6-7, 2003

Washington, D.C.
“Feedstock”

- Biologically Based – Recent Solar Capture
- Many sources – Much potential
- Typically Voluminous
- Typically Cultivated/ Cultured
- Feedstock Supply/ Engineering
 - Growth
 - Harvest
 - Handle
 - Store
 - Transport
 - Processe
 - “Supply and Prep of Plant Material for Conversion”
Feedstock Integration

• Feedstock Supply Can’t Function in a Knowledge Vacuum
 – Optimizing Biological production versus ease of Harvesting?
 – Knowledge of Feedstock value versus Over-investment?
 – What are feedstock requirements and tolerances for the conversion?
 – What do feedstock quality compromises do to conversion efficiency?
 – Does large-scale conversion perform like bench-top experiments?
 – Standards for At-the-Door Feedstock Characteristics
Feedstock Bottlenecks

• Growth
 – Impact of system design on biomass yield and quality
 – Impact of system operation on ecosystem and environment
• Harvest
 – Terrestrial and Aquatic cutting and gathering equipment
 – Ag machinery not robust for many feedstock sources
• Storage
 – Wet versus Dry
 – Supply Management versus Fermentation versus Drying Energy
• Transport
 – Handling Discrete versus Continuous Units
 – Transport Density versus Densification Energy
• Processing
 – Size Reduction Energy versus Conversion Process Efficiency
 – Physical Separation versus Benefits
• Standardization
 – Few standards to ensure consistent feedstock supply to processing plants
Feedstock Approach

• Growth
 – Optimization of Genetic and Agronomic Factors
 – Harvest frequency on Yield, Quality, Wildlife Habitat, CRP grasslands

• Harvest
 – Take advantage of Biomass Weakest Mode of Failure
 – In-Field processing, Size Reduction, Dry Flowable Product, Densification

• Storage
 – Centralized storage – methods, deterioration, Dry Matter Losses
 – In-field “storage”

• Transport
 – Availability - Use - Moisture - Deterioration Strategies
 – GPS – GIS – Shortest Distance Management

• Processing
 – Size Reduction Optimization
 – Separation Benefits

• Standardization
 – ASAE and other – Uniform terminology, system integration
Feedstock Expertise

• Growth
 – Paul Adler Agronomist USDA-ARS
 – Lewis Liu Molecular Biologist USDA-ARS
 – David Brune Engineer Clemson University

• Harvest
 – Raymond Huhnke Engineer Oklahoma State University
 – Shahab Sokhansanj Engineer ORNL
 – Alvin Womac Engineer University of Tennessee

• Storage
 – Carl Bern Engineer Iowa State University

• Transport
 – Michael Montross Engineer University of Kentucky

• Processing
 – Lonnie Ingram Microbiologist University of Florida