velocity potential for rectangular cavity with rigid boundary

\[\Phi = A e^{j \omega t} \cos(k_x x) \cos(k_y y) \cos(k_z z), \]

with \(k_x = \frac{\pi}{L_x} l \) \(l = 0, 1, 2, \ldots \)

\[k_y = \frac{\pi}{L_y} m \] \(m = 0, 1, 2, \ldots \)

\[k_z = \frac{\pi}{L_z} n \] \(n = 0, 1, 2, \ldots \)

\[\rho = -\rho \frac{\partial \Phi}{\partial t} = -\rho j \omega A e^{j \omega t} \cos(k_x x) \cos(k_y y) \cos(k_z z) \]

\(|\Phi| \) has peaks at \(x = 0, x = L_x, y = 0, y = L_y, \)

\(z = 0, z = L_z \)

i.e., \(|\cos(k_x x)| \big|_{x=0} = 1, \big|\cos(k_x L_x)\big| = 1, \) etc.
\[\mathbf{v} = \nabla \mathbf{u} = A e^{j \omega t} \left[-k_x \sin(k_x x) \cos(k_y y) \cos(k_z z) \mathbf{\hat{x}} \\
- k_y \sin(k_y y) \cos(k_x x) \cos(k_z z) \mathbf{\hat{y}} \\
- k_z \sin(k_z z) \cos(k_x x) \cos(k_y y) \mathbf{\hat{z}} \right] \]

Normal component of \(\mathbf{v} = u_x \mathbf{\hat{x}} + u_y \mathbf{\hat{y}} + u_z \mathbf{\hat{z}} \)

is \(u_x \) in the \(x \)-dir,

\(u_y \) in the \(y \)-dir, and

\(u_z \) in the \(z \)-dir.

Key: Need normal component of \(\mathbf{v} \) to equal zero at each boundary.

To show this, factor out (i.e., ignore) the common \(A e^{j \omega t} \) term, so

\[u_x = -k_x \sin(k_x x) \cos(k_y y) \cos(k_z z) \]

\[u_y = -k_y \sin(k_y y) \cos(k_x x) \cos(k_z z) \]

\[u_z = -k_z \sin(k_z z) \cos(k_x x) \cos(k_y y) \]
need \(u_x(x=0) = 0 \) and \(u_x(x=L_x) = 0 \)

for all values of \(y+z \).

This is clearly true, as \(\sin(k_x 0) = 0 \)

and \(\sin(\frac{\pi L_y}{L_x}) = 0 \)

so these terms vanish (as they should)

across the rigid boundary.

Can show the same goes for \(u_y(y=0) = 0, u_y(y=L_y) = 0, u_2(z=0) = 0, \) and \(u_2(z=L_z) = 0. \)

So, the normal component of \(\vec{v} \) is indeed equal to zero on the face of every rigid boundary, and the necessary B.C.'s are satisfied.