Bias-dependent Impedance Model for Ionic Polymer-Metal Composites

Yannick Kengne Fotsinga and Xiaobo Tanb

\textit{Smart Microsystems Laboratory}
\textit{Department of Electrical and Computer Engineering}
\textit{Michigan State University, East Lansing, MI 48824, USA}

(Dated: March 31, 2012)

Ionic polymer-metal composites (IPMCs) are a novel class of soft sensing and actuation materials with promising applications in robotic and biomedical systems. In this paper we present a model for nonlinear electrical dynamics of IPMC actuators, by applying perturbation analysis on the dynamics-governing partial differential equation (PDE) around a given bias voltage. By approximating the steady-state electric field under the bias with a piecewise linear function, we derive a linear PDE for the perturbed charge dynamics, which has piecewise constant coefficients and coefficients linear in the spatial variable. Through power series expansion, we solve the PDE to get the charge distribution up to any prescribed order. The perturbed electric field and current are subsequently obtained, which results in a bias-dependent impedance model. This model captures the nonlinear nature of the IPMC electrical dynamics, and degenerates to the linear model when the bias is zero. The model predicts that, as the bias voltage increases, both the magnitude and the phase delay of the impedance decrease. These trends are quantitatively verified in experiments, where excellent agreement is achieved between the experimental measurements and model predictions.

I. INTRODUCTION

Ionic polymer-metal composites (IPMCs) are a novel class of soft actuation and sensing materials. An IPMC consists of three layers, with an ion-exchange polymer membrane (e.g., Nafion) sandwiched by metal electrodes. Inside the polymer, (negatively charged) anions covalently fixed to polymer chains are balanced by mobile, (positively charged) cations. An applied voltage across an IPMC leads to the transport of cations and accompanying solvent molecules, resulting in both differential swelling and electrostatic forces inside the material, which cause the material to bend and hence the actuation effect1,2. Because of their softness and low actuation voltage requirement, IPMC actuators have been proposed for various applications in biomedical devices and underwater robotics3–6.

Recent years have seen significant advances in improving IPMC materials. One research thrust is on developing various electrodoping techniques to enhance actuation performance and electromechanical properties of IPMCs7–10. Another research thrust is on understanding the roles of solvents and ions11–13. For example, ionic fluids have been proposed as solvents for IPMCs to enable stable in-air actuation14,15. Closely coupled with the material development effort is the interest in the modeling and understanding of IPMC actuation behavior and mechanisms2,16–24. Current modeling work on IPMC actuators typically falls into three categories, with progressively increased level of complexity and fidelity: black-box models, gray-box models, and white-box models. Black-box models attempt to reproduce empirical responses without referring to the physical origin of the phenomena25,26. These models are simple, but are sample-dependent and not geometrically scalable. The gray-box models incorporate some physical principles but still use empirical descriptions to define some other complex physical processes27–29. White-box models, on the other hand, aim to capture the underlying physics of IPMC actuators2,16,18–22,30–34.

A number of researchers have reported the characterization and modeling of nonlinear behaviors in IPMCs. For example, in the study of a linear, two-port transducer model for IPMCs, Newbury and Leo noted the significant impact of the initial curvature of an IPMC on its actuation response35. Bar-Cohen et al. reported the remanent deformation of an IPMC sample after the electrical activation was removed36. With a black-box approach, Bonomo and coworkers introduced diode elements into their circuit model to capture the nonlinear electrical response of IPMCs37. Hysteresis in IPMCs is another nonlinear phenomenon that has been studied by several groups. For example, Paquette et al. showed that a nanocomposite-IPMC exhibited less pronounced hysteresis in the current/voltage (I/V) characteristics than an untreated IPMC38. Chen and Tan proposed a black-box model for an IPMC actuator by cascading a Preisach hysteresis model with a linear system38, while Hao and Li used a parallel connection of a Frandl-Ishlinskii model and linear dynamics to capture the hysteresis and creep behavior, respectively39. In addition, Kothera and coworkers explored several tools in black-box nonlinear system identification, including Volterra series40 and Hammerstein structures41, to characterize and model nonlinear IPMC responses.

Most physics-based PDE models capture nonlinear dynamics in IPMCs, but typically, they can only be solved numerically and cannot be used for real-time control design. For example, Tadokoro et al. proposed a PDE model that accommodates electric field-induced ion transport, ion-dragged solvent transport, membrane swelling and contraction, and conformational changes, and showed the agreement of simulation results with experimental measurement on the actuation response under a step voltage input31. Wallmersperger et al. developed a model of transport and electromechanical transduction based on a coupled chemoelectrical multifield formulation, and employed an adaptive multigrid method to obtain the numerical resolution, which was found to match the ex-

aElectronic mail: kengnefo@msu.edu
bElectronic mail: xbtan@msu.edu
experimental results. While these models are instrumental in understanding the physics of IPMCs, they rely on numerical solutions and offer little direct analytical insight. On the other hand, several methods have been explored by researchers to gain certain analytical insight into nonlinear IPMC behaviors (especially electrical behaviors) from physics-based models. For example, Porfiri proposed Poisson–Nernst–Planck equations to model the time evolution of the electric potential and the concentration of mobile cations, and used the method of matched asymptotic expansions to compute the nonlinear capacitance of an IPMC and consequently derived a physics-based circuit model. Davidson and Goulbourne also applied the matched asymptotic expansions method to study the capacitance of ionic liquid-based IPMCs. Nonlinear capacitance of an IPMC has also been developing by Chen et al. by deriving the steady-state solution under a step voltage, for the nonlinear dynamics-governing PDE. While all these works shed important light on the nonlinear capacitance, they do not provide closed-form dynamic models for IPMCs. Finally, by dropping the nonlinear term in the governing PDE, Chen and Tan derived an explicit, infinite-dimensional transfer function model for the impedance and actuation behavior of IPMCs; however, the linearity assumption implies that this model is only valid when the actuation voltage is low.

In this paper we propose a new approach to the understanding of nonlinear IPMC electrical dynamics using perturbation analysis, which will result in closed-form transfer function models for IPMC impedance under different actuation voltage biases. In particular, the perturbed dynamics of an IPMC biased at any given voltage is examined. By approximating the steady-state electric field under the bias with a piecewise linear function, we derive a linear PDE for the perturbed charge dynamics, which has piecewise-constant coefficients and coefficients linear in the spatial variable. The latter coefficients depend on the bias voltage. Through power series expansion, we solve the PDE to get the charge distribution up to any prescribed order. The perturbed electric field and current are subsequently obtained, yielding a bias-dependent impedance model. This model captures the nonlinear nature of the IPMC electrical dynamics, and degenerates to the linear model when the bias is zero. The impedance model predicts that, as the bias voltage increases, both the magnitude and the phase delay of the impedance decrease. Experiments on an IPMC sample have been conducted to characterize its electrical behavior under four different biases from 0 to 1.5 V. Experimental results have quantitatively confirmed the model-predicted trends.

To our best knowledge, this work is the first to formally report the bias-dependent impedance of IPMCs and to provide a theoretical explanation. The proposed model is also expected to be instrumental in control design for IPMC actuators.

The remainder of the paper is organized as follows. We first present the analysis and piecewise-linear approximation of the electric field under a constant voltage (bias) in Section II. The perturbation analysis is presented in Section III, to derive the bias-dependent impedance model. Methods and materials for experimental model validation are described in Section IV, and the results are presented and discussed in Section V. Finally, concluding remarks are provided in Section VI.

II. STEADY-STATE FIELD ANALYSIS AND APPROXIMATION

We first analyze the steady-state distribution of the electric field within the polymer when a bias voltage is applied. Numerical results indicate that the field can be approximated with a piecewise linear function that has three segments. The later perturbation analysis will be performed around this approximate steady-state field distribution.

A. Review of dynamics-governing PDEs

We start with the PDE model for ion transport dynamics that was originally proposed by Nemat-Nasser and Li. Consider Fig. 1, where an IPMC beam is clamped at one end (z = 0) and its displacement at the other end (z = L) is denoted by w(t). The neutral axis of the beam is denoted by x = 0, and the upper and lower surfaces are denoted by x = h and x = −h, respectively.

![Figure 1. Geometric definition of an IPMC cantilever beam.](image)

Typically the lateral dimensions of an IPMC beam are much greater than its thickness, which allows us to assume that all field variables (electric field, electric displacement, etc.) inside the polymer are restricted to the thickness direction only. Let ϕ, E, D, and ρ denote the electric potential, electric field, electric displacement and the charge density, respectively. The following equations hold:

\[
E = \frac{D}{\kappa_e} \frac{\partial \phi}{\partial x} \tag{1}
\]

\[
\rho = \frac{\partial D}{\partial x} = F(C^+ - C^-) \tag{2}
\]

where \(\kappa_e\) is the effective dielectric constant of the polymer, \(F\) is Faraday's constant, and \(C^+\) and \(C^-\) are the cation and anion concentrations, respectively.

Using the continuity equation, we get

\[
\frac{\partial J}{\partial x} = -\frac{\partial C^+}{\partial t} \tag{3}
\]

The ion flux consists of diffusion, migration and convection terms, and can be derived as:

\[
J = -\frac{d\kappa_e}{F} \left(\frac{\partial^2 E}{\partial x^2} - \frac{F(1 - C^- \delta_V)}{RT} E \left(\frac{\partial E}{\partial x} + \frac{FC^-}{\kappa_e} \right) \right) \tag{4}
\]
where \(d \) is the ionic diffusivity, \(R \) is the gas constant, \(T \) is the absolute temperature and \(\delta V \) is the volumetric change, which represents how much the polymer volume swells after taking water. With (3), one can derive the nonlinear PDE in terms of the electric field as

\[
\frac{\partial^2 E}{\partial x^2} = d \left(\frac{\partial^2 E}{\partial x^2} - \frac{F(1 - C^{-\delta V})}{RT} \left[\frac{\partial^2 E}{\partial x^2} + \frac{\partial E}{\partial x} \right]^2 \right)
- \frac{F^2 C^{-1}(1 - C^{-\delta V}) \partial E}{RT \kappa_e \partial x} (5)
\]

In several papers\(^2,16,45,46\) the nonlinear term involving in (5) has been dropped based on the assumption

\[
\rho(x) = \kappa_e \frac{\partial E}{\partial x} \ll C^{-1} F
\]

resulting in a linear PDE, which has been used to derive closed-form models for IPMC dynamics\(^45,46\). However, Chen and Tan\(^44\) show that the assumption (6) holds only for small actuation voltages (< 0.2 V). The goal of this paper, therefore, is to develop closed-form models that are valid independent of the assumption (6).

B. Steady-state field distribution under a constant voltage

We first analyze the steady-state charge and electric field distributions under a constant applied voltage \(V_0 \). This will be instrumental in our perturbation analysis later. Under a constant voltage, the system will approach the equilibrium state, where \(J = 0 \). Eq. (4) then implies

\[
\frac{\partial^2 E_0}{\partial x^2} - \frac{F(1 - C^{-\delta V})}{RT} E_0 \left(\frac{\partial E_0}{\partial x} + \frac{F C^{-1}}{\kappa_e} \right) = 0
\]

where \(E_0 \) represents the steady-state distribution of the electric field. Two additional equations are required for solving for \(E_0 \) and the corresponding charge distribution \(\rho_0 \):

1) The overall charge-balance condition leads to

\[
\int_{-h}^{h} \rho_0(x) \, dx = 0
\]

where \(\rho_0 = \kappa_e \frac{\partial E_0}{\partial x} \).

2) The potential difference across IPMC is equal to the applied voltage

\[
\int_{-h}^{h} E_0(x) \, dx = V_0
\]

Chen and Tan\(^44\) proposed a recursive scheme for numerically solving the equations (7)-(9). We have adopted the same scheme to solve for the field distributions under different voltages (Fig. 2). Table I lists the parameters used in our computation, which were identified for an IPMC sample used in the experiments of this work. Following Nemat-Nasser and Li\(^5\), we take \(1 - C^{-\delta V} \approx 1 \). From Fig. 2, under each voltage, the electric field vanishes except in the boundary regions. Furthermore, as the voltage \(V_0 \) increases, both the electric field value and the range of its non-vanishing region increase.

Another observation one can make from Fig. 2 is that the electric field in the boundary regions varies with the spatial variable \(x \) in a linear fashion, at least to the first-order approximation. We thus propose the approximation of the field distribution with a piecewise linear function, which will greatly facilitate the model development later on. In particular, we approximate \(E_0 \) as

\[
E_0(x) = \begin{cases} E_{0,1} = a_1 x + b_1, & \text{for } x < h_1 \\ E_{0,2} = a_2 x + b_2, & \text{for } h_1 \leq x \leq h_2 \\ E_{0,3} = a_3 x + b_3, & \text{for } x > h_2 \end{cases}
\]

where \(h_1 = -\frac{b_1}{a_1} \) and \(h_2 = -\frac{b_2}{a_2} \) denote the approximate boundaries for the zero-field region, and \(a_2 = b_2 = 0 \). Fig. 3 illustrates the piecewise-linear approximation for the case of \(V_0 = 1.5 \). V, and Table II lists the approximating coefficients \(a_i, b_i, i = 1, 2, 3 \), for all cases computed in Fig. 2.

<table>
<thead>
<tr>
<th>(Vo)</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>9.6485 x 10^{-1}</td>
<td>8.31</td>
<td>2.43 x 10^{-1}</td>
</tr>
<tr>
<td>R</td>
<td>1091</td>
<td>1.0 x 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6.4385 x 10^{-4}</td>
<td>3.14</td>
<td>2.43 x 10^{-1}</td>
</tr>
<tr>
<td>l</td>
<td>1.0 x 10^{-4}</td>
<td>1.0 x 10^{-3}</td>
<td></td>
</tr>
</tbody>
</table>

Table I. Parameters used in numerical solving (7)-(9).

Figure 2. Simulation results: steady-state electric field distribution under constant voltages.
The bias-dependent impedance model

A. Perturbation analysis

The nonlinear PDE (5) can be compactly written as

\[
\frac{\partial^2 E}{\partial x \partial t} = d \left(\frac{\partial^3 E}{\partial x^3} - f \left[\frac{\partial^2 E}{\partial x^2} E + \frac{\partial E}{\partial x} \right]^2 - g \frac{\partial E}{\partial x} \right)
\]

where \(f \) and \(g \) are constants given by

\[
f = \frac{F(1 - C^{- \delta_V})}{RT} \quad \text{and} \quad g = \frac{F^2 C^{- (1 - C^{- \delta_V})}}{RT \kappa_c}
\]

We now consider applying a voltage input \(V \) that is perturbed from a constant bias \(V_0 \):

\[
V(t) = V_0 + \epsilon V_1(t)
\]

where \(0 < \epsilon \ll 1 \). The solution to (11), \(\bar{E}(x,t,\epsilon) \), can be expanded around \(\epsilon = 0 \)

\[
\bar{E}(x,t,\epsilon) = E_0(x) + \epsilon E_1(x) + \epsilon^2 E_2(x) + \cdots
\]

where \(E_0(x) \) represents the steady-state field distribution under the bias voltage \(V_0 \). For perturbation analysis, we ignore terms involving \(\epsilon^2 \) and higher order terms, and obtain an approximate solution of the form

\[
E(x,t) = E_0(x) + \epsilon E_1(x,t)
\]

We plug (14) into each term in (11) and ignore terms involving \(\epsilon^2 \):

\[
\frac{\partial E}{\partial x} = \frac{\partial E_0}{\partial x} + \epsilon \frac{\partial E_1}{\partial x}
\]
\[
\frac{\partial^2 E}{\partial x \partial t} = \epsilon \frac{\partial^2 E_1}{\partial x \partial t} + \left(\frac{\partial E_0}{\partial x} \right)^2 + 2 \epsilon \frac{\partial E_0}{\partial x} \frac{\partial E_1}{\partial x} + \epsilon^2 \left(\frac{\partial E_1}{\partial x} \right)^2 - \epsilon^2 \frac{\partial^2 E_0}{\partial x \partial t} - \epsilon E_0 \frac{\partial^2 E_1}{\partial x \partial t}
\]

Eq. (11) is then rewritten as

\[
\frac{\partial^2 E}{\partial x^2} = \frac{\partial^2 E_0}{\partial x^2} + \epsilon^2 \frac{\partial^2 E_1}{\partial x^2} + \epsilon \frac{\partial E_0}{\partial x} \frac{\partial E_1}{\partial x} + \epsilon^2 \frac{\partial^2 E_0}{\partial x \partial t} + \epsilon E_0 \frac{\partial^2 E_1}{\partial x \partial t}
\]

From (7), we have

\[
\frac{\partial^3 E_0}{\partial x^3} = f \left[\frac{\partial^2 E_0}{\partial x^2} E_0 + \left(\frac{\partial E_0}{\partial x} \right)^2 \right] - g \frac{\partial E_0}{\partial x} = 0
\]

which allows us to simplify (15) to

\[
\frac{1}{d} \frac{\partial^2 E_1}{\partial x \partial t} = \frac{\partial^3 E_1}{\partial x^3} - f \left[\frac{\partial^2 E_0}{\partial x^2} E_1 + E_0 \frac{\partial^2 E_1}{\partial x^2} + 2 \frac{\partial E_0}{\partial x} \frac{\partial E_1}{\partial x} \right] - g \frac{\partial E_1}{\partial x}
\]

The charge density \(\rho(x,t) \) can be decomposed as

\[
\rho(x,t) = \rho_0(x) + \epsilon \rho_1(x,t)
\]

where \(\rho_1 = \kappa_e \frac{\partial E_0}{\partial x} \). Eq. (17) can be rewritten in terms of \(\rho_1 \):

\[
1 \frac{\partial \rho_1}{\partial t} - f \kappa_e \frac{\partial^2 E_1}{\partial x^2} \rho_1 + f \frac{\partial \rho_1}{\partial x} E_0 + 2 f \frac{\partial E_0}{\partial x} \rho_1 + g \rho_1 = 0
\]
With the piecewise-linear approximation (10) for \(E_0(x) \), we have \(\frac{\partial^2 E_0}{\partial x^2} = 0 \) for all \(x \) except at \(x = h_1, h_2, \) and \(\frac{\partial E_0}{\partial x} = a_i \), where \(a_i, i = 1, 2, 3, \) is as defined in (10). The PDE (19) for \(\rho_1 \) can then be simplified as

\[
\frac{1}{\kappa_e} \frac{\partial \rho_1}{\partial t} - \frac{\partial^2 \rho_1}{\partial x^2} + f \rho_1 + g \rho_1 = 0 \tag{20}
\]

which can be further converted to the Laplace domain

\[- \frac{\partial^2 \rho_1}{\partial x^2} + f(a_i x + b_i) \frac{\partial \rho_1}{\partial x} + (1 - \frac{s}{d} + 2a_i f + g) \rho_1 = 0 \tag{21}\]

where \(s \) is the Laplace variable, and with a bit abuse of notation, \(\rho_1 = \rho_1(x, s) \) now represents the charge distribution in the \(s \)-domain. For ease of presentation, we will also use the same notation to represent \(E_1 \) and \(V_1 \) in the time- and \(s \)-domains.

B. Derivation of the impedance model

The charge density \(\rho_1 \) can be solved from (21) together with the following two conditions:

\[
\int_{-h}^{h} \rho_1(x, s) \, dx = 0
\tag{22}
\]

\[
\int_{-h}^{h} E_1(x, s) \, dx = \frac{1}{\kappa_e} \int_{-h}^{h} \rho_1(\xi, s) \, d\xi \, dx = V_1(s) \tag{23}
\]

Note that in the first equality in (23) we have used the observation \(E_1(0, s) \approx 0 \).

Some of the coefficients \(n = 1 \) are piecewise constant and some have \(x \)-dependence, which prevents one from obtaining a closed-form solution. Instead, we represent \(\rho_1 \) with a power series, the coefficients of which depend on \(x \):

\[
\rho_1(x, s) = \sum_{n=0}^{\infty} n \alpha(x, s) x^n \tag{24}
\]

Subsequently, we have

\[
\frac{\partial \rho_1}{\partial x} = \sum_{n=1}^{\infty} n \alpha x^{n-1}
\tag{26}
\]

\[
\frac{\partial^2 \rho_1}{\partial x^2} = \sum_{n=2}^{\infty} n(n-1) \alpha x^{n-2}
\tag{27}
\]

Plugging (25) - (27) into (21), we have

\[
- \sum_{n=2}^{\infty} n(n-1) \alpha x^{n-2} + a_i f \sum_{n=1}^{\infty} n \alpha x^n
\]

\[
+ f b_i \sum_{n=1}^{\infty} n \alpha x^{n-1} + \left[\frac{s}{d} + 2a_i f + g \right] \sum_{n=0}^{\infty} n \alpha x^n = 0
\tag{28}
\]

Eq. (28) can be manipulated into the following form:

\[
- \sum_{n=0}^{\infty} (n + 2) (n + 1) \alpha x^n + a_i f \sum_{n=1}^{\infty} n \alpha x^n
\]

\[
+ f b_i \sum_{n=0}^{\infty} (n + 1) \alpha x^n + \left[\frac{s}{d} + 2a_i f + g \right] \sum_{n=0}^{\infty} n \alpha x^n
\]

\[= 0
\]

Equating the coefficients of powers of \(x \), we obtain, for \(n = 0 \),

\[- 2a_{2,i} + f b_i a_{1,i} + \left(\frac{s}{d} + 2a_i f + g \right) \alpha_{0,i} = 0 \tag{29}\]

and for \(n \geq 1 \),

\[- (n + 2)(n + 1) \alpha_{n+2,i} + a_i f n \alpha_{n,i} + f b_i (n + 1) \alpha_{n+1,i} + \left[\frac{s}{d} + 2a_i f + g \right] \alpha_{n,i} = 0 \tag{30}\]

Eqs. (29) and (30) imply, for all \(n \geq 0 \),

\[
\alpha_{n+2,i} = \frac{f b_i (n + 1) \alpha_{n+1,i} + \left(\frac{s}{d} + a_i f (n + 2) + g \right) \alpha_{n,i}}{(n + 2)(n + 1)} \tag{31}\]

With the recursion (31), one can express all coefficients \(\alpha_{n,i}, n \geq 2 \), in terms of \(\alpha_{0,i} \) and \(\alpha_{1,i} \), and we can obtain the latter by using (22) and (23). It turns out that \(\alpha_{0,i} \) and \(\alpha_{1,i} \) are independent of \(i \) and we will simply write them as \(\alpha_0 \) and \(\alpha_1 \), respectively. In practice, we seek an approximation to the power series (24)

\[
\rho_1(x, s) = \sum_{n=0}^{N} \alpha_n x^n = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \ldots + \alpha_N x^N \tag{32}\]

for a given \(N \). Once \(\rho_1(x, s) \) is obtained, we can evaluate the transferred charge \(Q_1(s) \) and the current \(I_1(s) \) associated with the applied voltage \(V_1(s) \):

\[
Q_1(s) = A \int_0^h \rho_1(x, s) \, dx
\]

\[
I_1(s) = s Q_1(s)
\]

where \(A \) is the surface area of the IPMC. The bias-dependent impedance model, for a given order \(N \), is then derived as

\[
Z(s) = \frac{V_1(s)}{I_1(s)} = \frac{\tilde{a}_N s^{N-1} + \ldots + \tilde{a}_2 s^2 + \tilde{a}_1 s + \tilde{a}_0}{s(\tilde{b}_N s^{N-1} + \ldots + \tilde{b}_2 s^2 + \tilde{b}_1 s + \tilde{b}_0)} \tag{33}\]

where \(\tilde{a}_0, \tilde{a}_1, \ldots, \tilde{a}_N-1, \) and \(\tilde{b}_0, \tilde{b}_1, \ldots, \tilde{b}_{N-1} \) are constants that are dependent on the physical parameters of the IPMC. For example, for \(N = 1 \),

\[
Z(s) = \frac{2h}{s(3A \kappa_e)}
\]

Note that when the bias \(V_0 = 0 \), the steady-state electric field \(E_0(x) \equiv 0 \), and thus \(a_i = b_i = 0 \), for \(i \in \{1, 2, 3\} \).
In this case, the PDE (21) for the charge distribution degenerates to the one obtained by dropping the nonlinear term in (5), and thus the resulting impedance model becomes the same as the linear model derived by Chen and Tan (2009) (when the surface resistance of the IPMC is ignored). Therefore, our model encompasses the linear model as a special case.

IV. EXPERIMENTAL MODEL VERIFICATION: MATERIALS AND METHODS

A. Material and experimental setup

Experiments were conducted on an IPMC sample, obtained from Environmental Robots Inc., to validate the proposed bias-dependent impedance model. The sample was Nafion-based with platinum electrodes. We post-processed the sample by depositing a 0.5 μm thick layer of gold on each electrode surface to enhance its conductivity. This resulted in negligible surface resistance, thus satisfying the assumption made in the modeling work. The sample was 51 mm long, 11 mm wide, and 320 μm thick. The free length of the sample was 47 mm in the cantilevered configuration. All experiments were conducted at room temperature.

In experiments the cantilevered IPMC beam was soaked in deionized water. For verification of the impedance models, actuation voltages of the form \(V_0 + 0.2 \sin(\omega t) \) were applied. Four different values of the bias \(V_0 \) were used, 0 V, 0.5 V, 1 V, and 1.5 V. For each bias value, AC actuation voltages ranging 0.1–100 Hz were used for measuring the corresponding impedance responses. The actuation signals were generated from a computer equipped with a dSPACE system (DS 1104 R&D Controller Board and Control Desk, dSPACE), and amplified by a power amplifier (BOP 36–6D, Kepco) before being applied to the IPMC. The actuation voltage and current signals were captured by the dSPACE system. Fast Fourier transforms were performed on these signals in Matlab to extract the magnitude and phase at any given frequency, from which the empirical gain and phase frequency responses were obtained and used for the model validation.

B. Methods for parameter identification

Faraday’s constant \(F \) and the gas constant \(R \) are physical constants and thus do not require identification: \(F = 9.6487 \times 10^4 \text{C/mol}, R = 8.31 \text{J/(mol} \cdot \text{K)} \). The sample dimensions were measured directly; in particular, the half thickness \(h = 1.6 \times 10^{-4} \) m. The absolute temperature \(T \) was taken to be 300 K. The volumetric change \(\delta_V \) was set to be zero, and the anion concentration \(C^- \) was taken to be 1091 mol/m\(^3\) following the reported values in the literature (2009).

The remaining parameters for the impedance model include the ionic diffusivity \(d \) and the effective dielectric constant \(\kappa_e \). These two parameters were determined with data fitting. This process, however, was not straightforward because the coefficients \(\{a_i, b_i\}_{i=1}^{3} \) in (21) and thus (33) depend on the numerically computed field profile \(E_0(x) \), and the computation of \(E_0(x) \) requires knowing the parameters including \(\kappa_e \). A recursive procedure was taken to solve this problem. We started with reported values for \(d \) and \(\kappa_e \) in the literature (2009), ran simulation for the steady-state equations (7)–(9) and obtained \(\{a_i, b_i\}_{i=1}^{3} \). We then used the Matlab function \texttt{lsqnonlin} to identify \(d \) and \(\kappa_e \), to minimize the error between the model predictions and the experimental data on the impedance spectrum. With the newly obtained value for \(\kappa_e \), we went back to recompute \(E_0 \) and \(\{a_i, b_i\}_{i=1}^{3} \). This process was repeated until the best data fit was achieved. Note that although these two parameters were identified through data fitting, the simultaneous matching of four data sets (as shown in Section V), each including gain and phase responses at multiple frequencies, provides adequate evidence supporting the modeling approach itself.

V. RESULTS AND DISCUSSIONS

The impedance model (33) contains an order parameter \(N \). The model is expected to be more actuate with larger \(N \), but a larger \(N \) implies higher complexity. Therefore, a suitable \(N \) needs to be determined. Fig. 4 shows the evolution of the impedance spectrum as the order \(N \) of the approximating power series for \(\rho_1 \) is increased, where the bias voltage \(V_0 \) is 1.5 V. We can see that the approximating series converges and \(N = 6 \) provides adequate accuracy in the approximation. This value of \(N \) is used in all model predictions presented in this section.

![Figure 4. Convergence of the impedance model as the order N increases. The bias voltage \(V_0 = 1.5 \) V.](image)

Fig. 5 shows the measured impedance spectra of the IPMC sample under four different biases, \(V_0 = 0, 0.5, 1, 1.5 \) V. It can be observed that within the tested frequency range 0.1 – 100 Hz, the gain response decreases (implying higher current response) with the frequency, while the phase lead between the current and the voltage (negative of the shown phase) initially increases and then drops with the frequency. In addition,
as the bias increases, the gain response decreases (higher current response), while the phase lead between the current and the voltage drops. Fig. 6 shows the model predictions of the impedance spectra under the same set of bias voltages. We can see that the model predictions not only capture the trends of gain and phase responses as the frequency increases, but also capture the trends when the bias increases. To provide a closer comparison between the model and the experimental data, we put the model prediction and experimental measurement for each bias on the same graph; see Figs. 7–10. The good agreement in all cases provides strong evidence that the model is able to capture the bias-dependent impedance of IPMC materials. Note that, as we commented at the end of Section III, the bias-dependent impedance model for the case of \(V_0 = 0 \) coincides with the linear model. Therefore, from Figs. 5–10, while the linear model is able to provide a good prediction for the zero-DC bias case, it will fail to capture the impedance changes as the DC bias is increased.

VI. CONCLUSION AND FUTURE WORK

In this paper we reported for the first time the dependence of the electrical dynamics of IPMCs on the bias actuation voltage, and presented rigorous modeling analysis for this phenomenon. The proposed model started with the nonlinear PDE governing the charge dynamics. Instead of directly dropping the nonlinear term in the PDE, we performed perturbation analysis around a given operating point characterized by a constant bias. The methodology for solving the resulting PDE for the perturbed dynamics was developed, with which closed-form local impedance models were derived. The proposed bias-dependent impedance model was validated experimentally.

There are several directions in which this work can be extended. In this paper we have assumed perfectly conducting electrode surfaces. It is of interest to incorporate the effect of surface resistance into the model, as done by Chen and Tan in the development of a linear, physics-based model. Second, we are interested in characterizing and modeling the
dependence of the actuation dynamics on the bias voltage. A natural model structure for the actuation dynamics comprises a cascading of electrical dynamics, electromechanical coupling, and mechanical dynamics4,45. In addition to the bias-dependent electrical dynamics as studied in this paper, the mechanical dynamics will also exhibit bias-dependent nonlinear behavior for two reasons. An applied bias voltage induces compressive stress and tensile stress on the anode and cathode sides of the IPMC, respectively. Due to the stress-stiffening effect47,48, the apparent stiffness and thus the natural frequencies of the IPMC beam will be bias-dependent. Moreover, with the large deformation induced by a relatively large bias voltage, linear stress-strain relationship no longer applies and one will need to incorporate nonlinear mechanics into the modeling process49. We will investigate how to accommodate both stress-stiffening and large-deformation effects in modeling the bias-dependent mechanical dynamics, which will then be used to construct the full actuation model.

ACKNOWLEDGMENTS

This work was supported in part by NSF (ECCS 0547131, IIS 0916720) and ONR (grant N000140810640, program manager Dr. T. McKenna). The authors wish to thank Hong Lei for preparing the IPMC material and fine-tuning the experimental setup.

REFERENCES

1M. Shahinpoor and K. Kim, Smart Materials and Structures \textbf{10}, 819 (2001).
3M. Shahinpoor and K. Kim, Smart Materials and Structures \textbf{14}, 197 (2005).
4Z. Chen, S. Shahara, and X. Tan, IEEE/ASME Transactions on Mechatronics \textbf{15}, 448 (2010).
6M. Aureli, V. Kopman, and M. Porfiri, IEEE/ASME Transactions on Mechatronics \textbf{15}, 603 (2010).