Why Are Some Hysteresis Loops Shaped Like a Butterfly? *

Bojana Drinčić a, Xiaobo Tan b, Dennis S. Bernstein a

a Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109-2140
b Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824

Abstract

The contribution of this paper is a framework for relating butterfly-shaped hysteresis maps to simple (single-looped) hysteresis maps, which are typically easier to model and more amenable to control design. In particular, a unimodal mapping is used to transform simple loops to butterfly loops. For the practically important class of piecewise monotone hysteresis maps, we provide conditions for producing butterfly-shaped maps and examine the properties of the resulting butterflies. Conversely, we present conditions under which butterfly-shaped maps can be converted to simple piecewise monotone hysteresis maps to facilitate hysteresis compensation and control design. Examples of a preloaded two-bar linkage mechanism and a magnetostrictive actuator illustrate the theory and its utility for understanding, modeling, and controlling systems with butterfly-shaped hysteresis.

Key words: Hysteresis; butterfly hysteresis; unimodal transformation; Prandtl-Ishlinskii model.

1 Introduction

Hysteresis is a property of many nonlinear systems where the output-versus-input graph forms a nontrivial loop in the steady state, when the input varies periodically at an asymptotically low frequency (i.e., quasi-statically). Here a nontrivial loop means a loop with nonvanishing interior. In this paper, we refer to the aforementioned input-output loop as the hysteresis map of the system. The underlying mechanism that gives rise to hysteresis is multistability, which refers to the existence of multiple attracting equilibria. Under quasi-static excitation, the state of the system is attracted to different equilibria depending on the direction of the input (Bernstein, 2007).

Hysteretic systems arise in a vast range of applications, such as ferromagnetics, smart materials, biological systems, and aerodynamics (Tan & Iyer, 2009; Cross et al., 2009; Leang et al., 2009; Iyer & Tan, 2009; Oh et al., 2009). Modeling and control of hysteresis is an area of significant interest to the controls community (Tan & Baras, 2004; Wen & Zhou, 2007; Chen et al., 2009; Wang & Su, 2006). In some applications (e.g., a thermostat), the input-output map is independent of the frequency of excitation, and thus identical to the hysteresis map. In most applications, however, the dynamical system response depends on the frequency of excitation, and thus the input-output map is frequency-dependent and approaches the hysteresis map only as the frequency of excitation approaches zero. For details, see Oh & Bernstein (2005a). In the present paper, we consider the system operating at asymptotically low frequency, ignore the transient response, and focus only on the hysteresis map, that is, on the periodic steady-state response under a quasi-static input.

The present paper focuses on butterfly-shaped hysteresis maps, which arise in many applications, such as mechanics, optics, and smart materials (Sahota, 2004; Davi, 2001; Li & Weng, 2001; Ebine & Ara, 1999). A hysteresis map is a butterfly when it consists of two loops of opposite orientation. In some applications, the shape of the hysteresis map is reminiscent of butterfly wings, which explains the terminology.

The contribution of this paper is a framework that relates butterfly-shaped hysteresis maps to simple (single-loop) hysteresis maps, which are easier to model and more amenable to control design. In particular, unimodal mappings are used to transform simple loops to butterfly loops. For piecewise monotone hysteresis maps,
we provide conditions on the unimodal functions for producing butterfly-shaped maps and examine the properties of the resulting butterflies. Conversely, we present conditions under which butterfly-shaped maps can be converted to simple piecewise monotone hysteresis maps to facilitate hysteresis compensation and control design.

Although butterfly hysteresis maps are widely observed in the literature, we are not aware of any prior explanations of the significance or origin of the characteristic shape of these maps. The proposed framework can be used to better understand and model dynamical systems involving butterfly-shaped hysteresis. To illustrate this point, we consider the preloaded two-bar linkage, which is a classical example of elastic instability (Simitses, 1967). The hysteretic nature of this mechanism is studied in Padthe et al. (2008), where the hysteresis map is shown to be a simple closed curve in terms of the force input and linkage joint displacement output. In the present paper, we show that if we take the displacement of the spring-loaded mass as output, then the resulting hysteresis map is a butterfly. The mapping from the joint displacement to the displacement of the spring-loaded mass can be given explicitly and is clearly unimodal.

The proposed framework can also facilitate control design for systems demonstrating butterfly-shaped hysteresis maps. By transforming the butterfly map into a simple hysteresis map, we can exploit various well-studied hysteresis operators, such as the Preisach operator and the Prandtl-Ishlinskii (PI) operator (Brokate & Sprekels, 1996; Kuhnen, 2003; Janaideh et al., 2008; Visintin, 1994; Mayergoyz, 2003; Tan & Baras, 2004), and their inverses (Tan & Iyer, 2009) to develop effective hysteresis compensation and control schemes. We demonstrate this point by considering the butterfly-shaped hysteresis map for a magnetostrictive actuator (Tan, 2002). In particular, we show that a quadratic law rooted in the physics of magnetostrictive materials serves as a unimodal function for transforming the butterfly into a simple, piecewise monotone hysteresis map. The latter is then modeled with a generalized PI operator for inverse hysteresis compensation.

The contents of this paper are as follows. In Section 2 we describe a framework for mapping simple hysteresis maps into butterflies with unimodal functions, and present conditions that allow such transformations in cases involving piecewise monotone hysteresis maps. In Section 3 we consider a preloaded two-bar linkage mechanism, where the simple hysteresis loop between the linkage joint displacement and the force input is converted to a butterfly loop when a kinematics-based unimodal mapping is applied. In Section 4, the example of modeling and compensating magnetostrictive hysteresis is presented. Finally, concluding remarks are provided in Section 5. A preliminary version of some of the results of this paper is given in Drinčić & Bernstein (2009).

2 Transformation Between Simple and Butterfly-Shaped Hysteresis Maps

A hysteresis map is called simple, if it is a simple (oriented) closed curve, which divides the plane into three sets, namely, the interior region, the exterior region, and the curve itself (Guillemin & Pollack, 1974). Throughout this paper, let \(C \) be a simple hysteresis map and let \([x_0, x_1] \times [y_0, y_1]\) be the smallest rectangle with sides parallel to the \(x \)- and \(y \)-axes containing \(C \). We assume that, for each \(x \in (x_0, x_1) \), there exists a unique pair of points \((x, y_{\min}(x)), (x, y_{\max}(x)) \in C \) such that \(y_{\min}(x) < y_{\max}(x) \). The following definitions are needed.

Definition 1 A continuous map \(f: [y_0, y_1] \rightarrow \mathbb{R} \) is \(\wedge \)-unimodal if there exists \(y_c \in (y_0, y_1) \) such that \(f \) is increasing on \([y_0, y_c)\) and decreasing on \((y_c, y_1]\). \(f \) is \(\vee \)-unimodal if there exists \(y_c \in (y_0, y_1] \) such that \(f \) is decreasing on \([y_0, y_c)\) and increasing on \((y_c, y_1]\). \(f \) is unimodal if it is either \(\wedge \)-unimodal or \(\vee \)-unimodal.

Definition 2 A butterfly hysteresis map, or a butterfly, is the union of two oriented simple closed curves with disjoint interiors, a single point of intersection, and opposite orientation, such that the curves are contained in the rectangle \([x_0, x_1] \times [y_0, y_1]\) and for each \(x \in (x_0, x_1) \), the intersection of the curves and the vertical line through \(x \) consists of at most two points.

For \(f: [y_0, y_1] \rightarrow \mathbb{R} \), define \(f(C) \triangleq \{(x, f(y)) : (x, y) \in C\} \). The following result is immediate.

Lemma 3 Let \(f: [y_0, y_1] \rightarrow \mathbb{R} \) be unimodal. Then \(C' = f(C) \) is a butterfly if and only if there exist disjoint open intervals \(I_1 \) and \(I_2 \) such that \([x_0, x_1] = cl(I_1) \cup cl(I_2)\), and such that, for all \(x \in I_1 \) and all \(x' \in I_2 \),

\[
[f(y_{\min}(x)) - f(y_{\max}(x))] [f(y_{\min}(x')) - f(y_{\max}(x'))] < 0. \tag{1}
\]

We use the notation \(cl \) to denote the closure of a set. Note that \(cl(I_1) \cap cl(I_2) \) is a single point. From Lemma 3, it is straightforward to establish the following.

Corollary 4 If a simple hysteresis map \(C \) is left-right symmetric or up-down symmetric, then there exists no unimodal function \(f, \) such that \(C' = f(C) \) is a butterfly.

Next, we focus on a special class of simple hysteresis maps that are piecewise monotonic. This type of hysteresis maps is common in smart materials.

Definition 5 Let \(C \) be a simple hysteresis map such that, for \(x = x_0 \), there exists a unique point \((x_0, y) \in C \) and, for \(x = x_1 \), there exists a unique point \((x_1, y) \in C \). \(C \) is called piecewise monotonically decreasing if \(y_{\min}(x) \)
and $y_{\text{max}}(x)$ are decreasing functions of x. C is piecewise monotonically increasing if $y_{\text{min}}(x)$ and $y_{\text{max}}(x)$ are increasing functions of x. C is piecewise monotonic if it is either piecewise monotonically decreasing or piecewise monotonically increasing.

The following lemma is used in the proof of Theorem 7.

Lemma 6 Let S be a closed polygonal region in a plane with vertices A, B, C, D, labeled consecutively. Let C_1 be a continuous curve that connects A to C and satisfies $C_1 \notin \{A, C\} \subset \text{int}(S)$. Let C_2 be a continuous curve that connects B to D and satisfies $C_2 \notin \{B, D\} \subset \text{int}(S)$. Then $C_1 \cap C_2 \neq \emptyset$. If, in addition, there exist coordinate axes with respect to which C_1 is monotonically increasing (resp., decreasing) function and C_2 is monotonically decreasing (resp., increasing) function, then $C_1 \cap C_2$ consists of a single point.

Proof. Because C_1 is a continuous curve connecting A to C, it divides S into two open disjoint regions R_1 and R_2, where $B \in R_1$ and $D \in R_2$. Since the curve C_2 connects points B and D it must cross from region R_1 to region R_2. From the Jordan curve lemma C_2 must cross the boundary between these regions, that is, the curve C_1. It is straightforward that there exists a unique point of intersection between C_1 and C_2 if, with respect to some axes, these curves are monotonic with opposite monotonicity. □

Theorem 7 Let C be a piecewise monotonic simple hysteresis map. Furthermore, let f be a \vee-unimodal function with its minimum point $q_c(y_c)$ such that $y_c \in (y_0, y_1)$ or a \wedge-unimodal function with its maximum point $q_c(y_c)$, such that $y_c \in (y_0, y_1)$. Then $C' = f(C)$ is a butterfly.

Proof. We assume that the map f is \vee-unimodal and that C is monotonically increasing; the remaining three cases are analogous. Let $J_1 = (x_0, x_1)$, where $x_1 \in (x_0, x_1)$ and $y_{\text{max}}(x_1) = y_c$, and let $J_2 = (x_2, x_1)$, where $x_2 \in (x_0, x_1)$ and $y_{\text{min}}(x_2) = y_c$. Note that $x_1 < x_2$. Because f is \vee-unimodal, $f(y_a) < f(y_b)$ for $y_a, y_b \in (y_0, y_1)$ such that $y_a > y_b$, and $f(y_a) > f(y_b)$ for $y_a, y_b \in (y_0, y_1)$ such that $y_a < y_b$. Thus, for all $x \in J_1$, $f(y_{\text{max}}(x)) < f(y_{\text{min}}(x))$, and, for all $x \in J_2$, $f(y_{\text{max}}(x)) > f(y_{\text{min}}(x))$.

Let $J_3 = [x_1, x_2]$. Since C and f are piecewise monotonic, $C_1 = \{(x, f(y_{\text{max}}(x))) : x \in J_1\}$ is monotonically increasing and $C_2 = \{(x, f(y_{\text{min}}(x))) : x \in J_3\}$ is monotonically decreasing. Furthermore, it follows from Lemma 6 that $C \cap C_2$ consists of a unique point (x_q, q_c). Now, for all $x \in I_1 = (x_0, x_1)$, $f(y_{\text{max}}(x)) < f(y_{\text{min}}(x))$ while, for all $x \in I_2 = (x_1, x_2)$, $f(y_{\text{max}}(x)) > f(y_{\text{min}}(x))$. Thus, (1) is satisfied for all $x \in I_1$ and all $x' \in I_2$, and thus $C' = f(C)$ is a butterfly. □

We now further investigate the properties of the butterfly map created by applying a unimodal map to a simple hysteresis map C. The following definition is needed.

Definition 8 Let C be a simple hysteresis map or a butterfly, and let $[x_0, x_1] \times [y_0, y_1]$ be the smallest rectangle containing C. A point $(x, y_0) \in C$ is a minimum of C. A point $(x, y_1) \in C$ is a maximum of C.

The following result, which is not restricted to the class of piecewise monotone simple hysteresis maps, is illustrated by Figure 1.

Theorem 9 Let $f : [y_0, y_1] \to \mathbb{R}$ be unimodal and let C be a simple hysteresis map defined on the rectangle $[x_0, x_1] \times [y_0, y_1]$. Assume that, for each $y \in (y_0, y_1)$, there exists a unique pair of points $(x_{\text{min}}(y), y)$, $(x_{\text{max}}(y), y)$, such that $x_{\text{min}}(y) < x_{\text{max}}(y)$, and assume that $C' = f(C)$ is a butterfly. If f is \vee-unimodal, then C' has exactly two minima, which are equal. Alternatively, if f is \wedge-unimodal, then C' has exactly two maxima, which are equal.

Proof. We assume that the map f is \vee-unimodal; the \wedge-unimodal case is analogous. Let $[x_0, x_1] \times [q_c, q_1]$ be the smallest rectangle containing C'. Let $y_c \in (y_0, y_1)$ satisfy $q_c = f(y_c)$. By Definition 1, y_c is the global minimizer of f. By assumption, there exist exactly two points $(x_{\text{min}}(y_c), y_c)$ and $(x_{\text{max}}(y_c), y_c)$ in C such that $x_{\text{min}}(y_c) < x_{\text{max}}(y_c)$. Applying f to these points yields $(x_{\text{min}}(y_c), f(y_c))$, $(x_{\text{max}}(y_c), f(y_c)) \in C'$. Hence these points are minima of the curve C' and, since $x_{\text{min}}(y_c) \neq x_{\text{max}}(y_c)$, it follows that these points are distinct. Thus, the butterfly map C' has exactly two minima of equal value q_c. □

The following theorem is related to Theorem 9 and represents the dual of Theorem 7, and informs when a butterfly can be transformed into a simple, piecewise monotone hysteresis map.

Theorem 10 Let C' be a butterfly and let $[x_0, x_1] \times [y_0, q_1]$ be the smallest rectangle containing C', with sides parallel to the x- and y-axes. Decompose C' as the union of two branches, namely, branch B_+ associated with increasing x and branch B_- associated with decreasing x. Furthermore, define $g_+ : [x_0, x_1] \to [q_0, q_1]$ and $g_- : [x_0, x_1] \to [q_0, q_1]$, such that $B_+ \subset B_-$ are the graphs of g_+ and g_-, respectively.

(a) Assume that C' has exactly two minima (x_a, q_0), (x_b, q_0), with $x_a < x_b < x_1$ and $q_0 = q_0$. Furthermore, assume that g_+ (resp., g_-) is decreasing on $[x_0, x_a]$ and increasing on $[x_1, x_1]$, and g_- (resp., g_+) is decreasing on $[x_0, x_a]$ and increasing on $[x_1, x_1]$. Then, for each \vee-unimodal function f with minimum value q_0, there exists a piecewise monotonically increasing simple hysteresis map C_1 with counterclockwise (resp., clockwise) ori-
where the continuous functions f_- and f_+ are strictly decreasing and increasing, respectively (Figure 2(b)). Let f_-^{-1} and f_+^{-1} denote the inverse functions of f_- and f_+, respectively, as illustrated in Figure 2(c). Note that f_-^{-1} is continuous and strictly decreasing, and f_+^{-1} is continuous and strictly increasing, with $y_c = f_-^{-1}(q_c) = f_+^{-1}(q_c)$. Define a curve C_1 on the plane as the union of

\begin{align*}
 y &= f_-^{-1}(g_+(x)) \quad \text{as } x \text{ increases from } x_0 \text{ to } x_b, \\
 y &= f_+^{-1}(g_+(x)) \quad \text{as } x \text{ increases from } x_b \text{ to } x_1, \\
 y &= f_-^{-1}(g_-(x)) \quad \text{as } x \text{ decreases from } x_1 \text{ to } x_a, \\
 y &= f_+^{-1}(g_-(x)) \quad \text{as } x \text{ decreases from } x_a \text{ to } x_0,
\end{align*}

as illustrated in Figure 2(d). Since $f_-^{-1}(g_+(x_b)) = f_-^{-1}(y_c) = y_c = f_+^{-1}(g_+(x_b))$, $f_+^{-1}(g_+(x_1)) = f_-^{-1}(g_-(x_1))$ (from continuity of C'), $f_+^{-1}(g_-(x_a)) = y_c = f_-^{-1}(g_-(x_a))$, and $f_-^{-1}(g_-(x_0)) = f_+^{-1}(g_+(x_0))$ (from continuity of C'), C_1 is continuous and closed.

Define $y = h_+(x)$ on $[x_0, x_1]$ using (2) and (3), and define $y = h_-(x)$ on $[x_0, x_1]$ using (4) and (5). Namely, h_+ and h_- represent the two branches of C_1 associated with increasing and decreasing x, respectively. Using the properties of f_-^{-1} and g_{\pm}, it can be shown that both h_+ and h_- are strictly increasing functions of x. Furthermore, for each $x \in (x_0, x_1)$, $h_+(x) < h_-(x)$. Therefore, C_1 is a simple hysteresis map with counterclockwise ori-
entation. Finally, \(f(C_1) \) can be defined as

\[
\begin{align*}
 f_-(y) &= f_-(f_+^{-1}(g_+(x))) = g_+(x) & \text{as } x \text{ increases from } x_0 \text{ to } x_b, \\
 f_+(y) &= f_+(f_+^{-1}(g_+(x))) = g_+(x) & \text{as } x \text{ increases from } x_b \text{ to } x_1, \\
 f_+(y) &= f_+(f_+^{-1}(g_-(x))) = g_-(x) & \text{as } x \text{ decreases from } x_1 \text{ to } x_0, \\
 f_-(y) &= f_-(f_+^{-1}(g_-(x))) = g_-(x) & \text{as } x \text{ decreases from } x_a \text{ to } x_0,
\end{align*}
\]

and, thus, \(C' \equiv f(C_1) \).

Following the same line of reasoning as above, it can be proven that \(C_2 \) is a piecewise monotonically decreasing, simple hysteresis map with clockwise orientation, and \(C' \equiv f(C_2) \). \(\square \)

In Section 3 and Section 4, we show physical examples where the butterfly hysteresis loops satisfy the assumptions of Theorem 10, and the unimodal functions linking the butterfly and simple loops are given by the physical models. If a butterfly hysteresis loop satisfies the assumptions of Theorem 10, and yet a proper physical model is not available, we can choose an arbitrary \(\vee \)-unimodal (\(\wedge \)-unimodal, resp.) function \(f \) with minimum (maximum, resp.) value of \(q \), as shown. Such an \(f \) guarantees successful transformation of the butterfly loop into a simple, piecewise monotone loop. The proof of Theorem 10 is constructive, and thus it not only establishes the claims, but also illustrates how the simple loop is constructed with the chosen \(f \). To illustrate, we transform the butterfly shown in Figure 3(a) into a simple loop using the two \(\vee \)-unimodal functions shown in Figure 3(b). The resulting simple loops are shown in Figure 3(c). Note that functions \(f_1 \) and \(f_2 \) have the same minimum value \(q_c \), but at two different values of \(y \), namely \(y_c \) and \(y_{c'} \).

3 Hysteresis in a Preloaded Two-bar Linkage Mechanism

In this section we analyze the dynamics of a two-bar linkage with joints P, Q, and R and preloaded by a spring with stiffness constant \(k \) as shown in Figure 4. The purpose of this discussion is to show that we can transform a simple hysteresis map into a butterfly through a unimodal map. Additional details of derivations related to the simple hysteresis map are given by Padthe et al. (2008).

A constant vertical force \(F \) is applied at \(Q \), where the two bars are joined by a frictionless pin. Let \(\theta \) denote the counterclockwise angle that the left bar makes with the horizontal, and let \(q \) denote the distance between the joints P and R. When \(F = 0 \), the linkage has three equilibrium configurations. In the first two \(\theta \) and \(q \) are \(\pm \theta_0 \) and \(q_0 = 2l\cos\theta_0 \), respectively, and the spring \(k \) is relaxed. For the third equilibrium, both bars are horizontal with \(\theta = 0 \).

Note that \(y \) is the vertical distance from the joint \(Q \) to the horizontal equilibrium, and \(q \) is the horizontal distance from joint \(P \) to joint \(R \) as shown in Figure 4. If \(\theta \) is known, then \(y \) and \(q \) can be determined from

\[
y = l \sin \theta, \quad q = 2l \cos \theta,
\]

respectively.

The equations of motion for the preloaded two-bar link-
force varies quasi-statically) are also shown in Figure 6. The set \(\mathcal{E} \) is useful for analyzing the hysteresis of the preloaded two-bar linkage. It is shown in Oh & Bernstein (2005b) that a system that exhibits hysteresis has a multi-valued equilibrium map and that the hysteresis map is a subset of the equilibrium map. The only parts of the hysteresis map that do not belong to the equilibria set are the vertical sections.

![Hysteresis Maps](image)

Fig. 6. Comparison of the equilibrium sets \(\mathcal{E} \) and the hysteresis maps for the preloaded two-bar linkage. The output variable is \(y \) in (a) and \(q \) in (b). The hysteresis map is a subset of \(\mathcal{E} \) except for the vertical segments at the bifurcation points. The parameter values are given in Figure 5(a) with \(F(t) = \sin(0.001t) \) N.

Thus the hysteresis map is a simple closed curve when the output variable is \(y \) and a butterfly when the output variable is \(q \). Furthermore, we note that the butterfly in Figure 5(b) satisfies the conditions of Theorem 10(b), which implies that \(f \) should be \(\Lambda \)-unimodal. From the kinematics equation (10) we find the unimodal map \(f = \sqrt{4l^2 - y^2} \) shown in Figure 7, which is indeed \(\Lambda \)-unimodal and transforms the simple hysteresis map into a butterfly.

![Bifurcation Diagram](image)

Fig. 7. The \(\Lambda \)-unimodal mapping function \(f(y) = \sqrt{4l^2 - y^2} \), which transforms the simple hysteresis map of the buckling mechanism into a butterfly.

4 Hysteresis in a Magnetostrictive Actuator

In this section we present butterfly hysteresis data obtained from a magnetostrictive actuator. Based on material physics, we find the unimodal function that relates the butterfly hysteresis map to a simple hysteresis map that is piecewise monotone. The latter can be modeled...
with a hysteresis operator such as generalized Prandtl-Ishlinskii model, which can then be inverted for compensation of the hysteresis effect in the magnetostrictive actuator.

A Terfenol-D magnetostrictive actuator manufactured by Etrema Products, Inc. exhibits displacement-to-current butterfly hysteresis shown in Figure 8. We note that the observed butterfly has two minima that are approximately equal, and can be taken as satisfying assumptions of Theorem 10. In order to transform the butterfly into a simple hysteresis map, we adopt the following from Tan (2002).

![Figure 8. Experimental displacement-to-current butterfly hysteresis in a Terfenol-D magnetostrictive actuator (Tan, 2002).](image)

Definition 11 Let ΔL be the change in the length of the magnetostrictive rod, and let L_{rod} be the length of the demagnetized rod. Then the magnetostriction in the rod is

$$\lambda \triangleq \frac{\Delta L}{L_{rod}}. \quad (14)$$

Based on the physics of magnetostrictive materials (Brown, 1966) the magnetostriction λ and the magnetization M along the rod direction can be approximately related through a quadratic law stated in Tan (2002)

$$\lambda = a_1 M^2 + b_1, \quad (15)$$

where $a_1 = \frac{\lambda_s}{M_s^2}$, b_1 is a constant, λ_s is the saturation magnetostriction, and M_s is the saturation magnetization. The input current I and the magnetic field H are related through

$$H = c_0 I + H_{bias}, \quad (16)$$

where c_0 is the coil factor and H_{bias} is the bias field produced by a dc current. Actuator specifications state that $M_s = 7.87 \times 10^5$ A/m, $L_{rod} = 5.13 \times 10^{-2}$ m, $c_0 = 1.54 \times 10^4$ m$^{-1}$; the remaining parameters are experimentally identified to be $\lambda_s = 1.313 \times 10^{-3}$ and $H_{bias} = 1.23 \times 10^4$ A/m.

Combining Definition 14 with (15) and (16) we transform the butterfly curve in Figure 8 into a simple hysteresis curve between the magnetic field H and the magnetization along the rod M. Using the unimodal mapping (15), we obtain

$$M = \pm \sqrt{\frac{\lambda - b_1}{a_1}}. \quad (17)$$

The sign of M is chosen such that the $H-M$ hysteresis curve is piecewise monotonically increasing, as dictated by the physics. The resulting plot of λ versus M is shown in Figure 9(a). Equation (16) is used to calculate the values of the magnetic field H corresponding to the input current. The resulting $H-M$ hysteresis map is shown in Figure 9(b). The vertical jump in the hysteresis map at the point where it crosses the x-axis is due to the fact that, because of measurement error, the two local minima of the butterfly map in Figure 8 are not exactly equal. However, the experimental data approximately meet the assumptions of Theorems 9 and 10.

![Figure 9. Transformation from the butterfly to a simple closed curve.](image)
Table 1
Identified parameters of the generalized PI model from the least squares optimization routine.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_0</td>
<td>4.0904</td>
<td>c_1</td>
<td>0.777 m/A</td>
</tr>
<tr>
<td>c_2</td>
<td>-0.066</td>
<td>c_3</td>
<td>-0.269</td>
</tr>
<tr>
<td>ρ</td>
<td>4.640 A/m</td>
<td>τ</td>
<td>-0.191</td>
</tr>
<tr>
<td>q</td>
<td>11.961 A/m</td>
<td>β</td>
<td>1.139</td>
</tr>
</tbody>
</table>

Comparison of the output of the identified generalized PI model with parameters in Table 1 and experimental data in Figure 9(b) is shown in Figure 10(a). Using (14)-(16) we convert the output of the generalized PI model from Figure 10(a) into a butterfly hysteresis curve. The comparison of this butterfly map and the experimentally measured data from Figure 8 is shown in Figure 10(b).

In the example of magnetostrictive hysteresis, the simple $M-H$ hysteresis map obtained from the butterfly carries physical meaning (ferromagnetic hysteresis), and can in theory be experimentally validated using the measurement of M. However, in general, when we reduce a butterfly map to a simple hysteresis map for control purposes, the latter does not have to carry specific physical interpretation, and thus no validation is necessary.

Future work includes the extension of these results to include hysteretic unimodal maps and multibutterflies. The use of hysteretic unimodal maps may give more flexibility in the types of butterflies that can be obtained from a given simple hysteresis map and enable easier fits to experimental data in control applications.

Acknowledgements

This research is supported in part by a National Defense Science and Engineering Graduate Fellowship and NSF Grants 0758963 and 0824830.

References

