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Abstract—We consider a dynamic game setting in which a
large population of strategic individuals decides whether to
adopt protective measures to protect themselves against an
infectious disease, specifically the susceptible-infected-susceptible
(SIS) epidemic. Protection is costly and partially effective, and
adopting protection reduces the probability of becoming infected
for susceptible individuals and the probability of transmitting the
infection for infected individuals. In a departure from most prior
works that assume the decision-makers to be myopic, we model
individuals who choose their actions to maximize the infinite
horizon discounted expected reward. We define the notion of
best response and stationary Nash equilibrium in this class of
games, and completely characterize the equilibrium policy and
stationary state distribution for different parameter regimes.
Numerical results illustrate the evolution and convergence of the
infected proportion and the policy of protection adoption to the
equilibrium.

Index Terms—Game theory, Stochastic systems.

I. INTRODUCTION

As observed during the COVID-19 pandemic, the evolution
or spread of infectious diseases depends critically on the
behavior of susceptible and healthy individuals in society.
In particular, the adoption of (partially effective) protective
measures such as wearing masks and adhering to social
distancing plays a critical role in shaping the future growth
of the disease. Due to the selfish and strategic nature of
individual behavior, past work has examined the interplay of
epidemic evolution and individual behavior in the framework
of game theory; see [1] for a comprehensive review. Since the
number of decision-makers is typically large in this setting, the
frameworks of population games [2] and mean-field games [3]
have been adopted.

In a seminal work [4], the authors consider the class of
susceptible-infected-susceptible (SIS) epidemic where a large
population of individuals decide whether to adopt protection
or not and analyze the equilibrium of the epidemic dynamics
under Nash equilibrium strategies. Follow-up works [5] and
[6] extended the above setting to include network interactions.
However, these works assumed that adopting protection com-
pletely stops disease transmission, and did not consider (evolu-
tionary) learning dynamics for agents to update their strategies
and converge to the Nash equilibrium. Coupled evolution of
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epidemic and behavioral dynamics have been studied very
recently in [7]–[12]. Specifically, [7], [8] consider partially
effective protection against the SIS and SIRI epidemics with
the cost function defined via the instantaneous risk of becom-
ing infected and model behavioral evolution via the replicator
dynamics. In [12], the authors consider a social influence
factor in the cost function and model behavioral evolution
via imitation dynamics. Such coupled evolution often leads
to oscillatory convergence behavior in the SIS epidemic as
shown in [7], [10], [12]. The authors in [9] examine how to
dynamically update the reward matrix to ensure convergence
to a desired equilibrium. In the above works, each individual
strategically maximizes a myopic reward function which is
possibly a function of the current infection prevalence, but
does not include the impact of the chosen action on the future
infection state and reward.

However, in the context of epidemics, individuals often
reason about their future infection state while choosing their
present action and aim to maximize the aggregate reward
over a longer time horizon, i.e., they are forward-looking
as opposed to myopic. Despite the motivation, there have
been limited investigations on epidemic games with forward-
looking agents. A notable recent exception is [13] which
leverages the framework of dynamic population games [14]
and studies the strategies of individuals who maximize infi-
nite horizon discounted expected reward in the context of a
variant of the susceptible-infected-recovered (SIR) epidemic
that includes asymptomatic infections and recovery. While the
dynamic population game framework is related to the class of
mean-field games which has been examined in the context of
epidemics (mostly the SIR model and its variants) [3], unlike
mean-field games, it enables applying evolutionary learning
algorithms to study the evolution of individual behavior and
convergence to equilibrium strategies.

In this paper, we consider the SIS epidemic setting with
a large population of agents who decide whether to adopt
protection or not at each time step in order to maximize the
infinite horizon discounted expected reward. Protection is par-
tially effective in the sense that infected individuals adopting
protection are less likely to infect others and susceptible indi-
viduals adopting it are less likely to become infected compared
to unprotected individuals. The instantaneous reward consists
of the cost of adopting protection, the cost of infection, and
the cost of being unprotected while infected (e.g., the cost
of violating quarantine norms). Similar to [14], we define
the best response as a Markovian policy that maximizes the
single-stage deviation value function [15]1 and accordingly,

1analogous to the notion of the state-action value function in the Markov
decision process literature.



introduce the notion of stationary Nash equilibrium at which
both the infection state distribution and the policy are invariant.
We then prove a complete characterization of the stationary
Nash equilibrium (including the infected proportion at the
endemic equilibrium and the policy adopted by susceptible and
infected individuals) for different parameter regimes. Finally,
we examine the impact of the discount factor and cost of
adopting protection on equilibrium infection level and policy
via simulations.

II. SIS EPIDEMIC MODEL AND STATE TRANSITIONS
UNDER PROTECTION ADOPTION

We consider a homogeneous large population of agents
where each agent can be in either of the two states: susceptible
(S) or infected (I) with Z := {S,I}. Susceptible agents
are at risk of becoming infected when they come in contact
with infected agents, whereas infected agents recover at an
exogenous rate and once again become susceptible to the
disease. The state distribution d ∈ D := ∆(Z), where ∆(X )
is the space of probability distributions supported on X .
Specifically, d[s] ∈ [0, 1] denotes the proportion of agents
in state s, and

∑
s∈Z d[s] = 1.

A. Actions and Policies
At any time instant, each individual chooses to either adopt

protection (i.e., using masks or personal protective equipment
(PPE) kits or adhering to social distancing guidelines) denoted
by P, or decides to remain unprotected, denoted by U. For-
mally, we denote this choice as an action a ∈ A = {P,U}. A
Markovian policy denoted by π : Z→ ∆(A), maps an agents
state s ∈ Z to a randomization over the actions a ∈ A, and
π[a|s] denotes the probability that an agent in infection state s
chooses action a. All agents are assumed to be homogeneous
and follow the same policy π. The (time-varying) social state
is defined to be the concatenation of the policy and state
distribution (π, d).

B. Individual State Transitions
We assume that a susceptible agent upon adopting protec-

tion is γ ∈ (0, 1) times (less) prone to infection compared to
an unprotected susceptible agent. Similarly, an infected agent
adopting protection is less likely to transmit or cause a new
infection. Formally, let βU ∈ (0, 1) and βP ∈ (0, 1) denote the
probabilities of an infected individual causing a new infection
if it is unprotected and protected, respectively. We assume that
βU > βP. In other words, protection is partially effective in
preventing as well as transmitting new infections. Finally, an
infected agent recovers from the infection and transits back
to the susceptible state with probability δ ∈ (0, 1) which is
independent of any external process.

We now define the transition probabilities for every state-
action pair. Since P[s+ = S|s, a] = 1 − P[s+ = I|s, a], we
will only define P[s+ = I|s, a]. For an infected agent, the
probability that it will become susceptible in the next time-
step is δ independent of any action it chooses and the current
social state. Accordingly, we have

P[s+ = I|s = I, a](π, d) = 1− δ,

for a ∈ {P,U}. For a susceptible agent, the probability of
becoming infected depends on its own action as well as the
proportion of protected and unprotected infected agents; the
latter depends on the policy π[a|I] and the proportion of
infected agents d[I]. Define βπ := βUπ[U|I] + βPπ[P|I],
then the probability of a susceptible agent becoming infected,
depending on its chosen action, is given by

P[s+ = I|s = S, a = U](π, d) = βπd[I],

P[s+ = I|s = S, a = P](π, d) = γβπd[I].

The above expressions define the state transition probabil-
ities for each state-action pair. When an agent chooses its
actions following a policy π, the transition probability from
current state s to future state s+ is given by

Peff[s
+|s](π, d) =

∑
a∈A

π[a|s]P[s+|s, a](π, d). (1)

As a result, under the assumption that agents are homogeneous
and follow the same policy π, the state distribution evolves in
discrete-time as

dk+1 = Peff(πk, dk)>dk, (2)

where Peff(πk, dk) is the stochastic matrix at time-step k with
policy πk and state distribution dk.

Before we define the rewards associated with different
actions and the decision-making framework of the agents, we
characterize the infected proportion at the equilibria of the
above dynamics for a given Markovian policy π. Under (2),
the proportion of infected agents evolves as

dk+1[I] = (1− dk[I])βπdk[I](γπ[P|S] + π[U|S])

+ dk[I](1− δ)
=: dk[I]

(
1− δ + (1− dk[I])βπ,eff

)
, (3)

where βπ,eff := βπ(π[U|S] + γπ[P|S]) captures the effect
of protection adoption on the disease transmission rate under
policy π. We now state the following result.

Lemma 2.1: At a given policy π adopted by all the agents,
there are at most two equilibrium points of the dynamics (3):
• the disease-free equilibrium given by d∗dfe[I] = 0; and
• the endemic equilibrium given by d∗ee,π[I] = 1− δ

βπ,eff
.

The endemic equilibrium d∗ee,π[I] exists when βπ,eff > δ and
is stable in this regime. The disease-free equilibrium always
exists and is stable when βπ,eff ≤ δ.

Proof: Note that (3) is analogous to the scalar discrete-
time SIS epidemic dynamics with infection rate given by
βπ,eff. Thus, the result follows from analogous arguments as
the proof of Case 2 of Proposition 4.6 in [6].

In other words, the disease-free equilibrium is stable when
the natural recovery rate is larger than the effective infection
rate. Consequently, the endemic equilibrium is more interest-
ing and relevant to study the impact of protection adoption and
is the focus of this work. We impose the following assumption
which guarantees that d∗ee,π[I] always exists.

Assumption 2.2: The parameters satisfy γβP > δ which
guarantees that βπ,eff > δ for any policy π.

In the following, for simplicity of notation, we will denote
d∗ee,π[I] by I∗ee,π .



C. Rewards

We now define the rewards or costs associated with different
actions. We assume that an agent adopting the protection at a
given time incurs an instantaneous cost CP > 0 irrespective of
its infection state. An infected agent incurs an instantaneous
cost CI > 0 which represents the discomfort associated with
infection. In addition, an infected agent who does not adopt
protection incurs an additional cost CU > 0 which could
represent the penalty imposed by authorities for violation
of quarantine norms. Accordingly, the static or instantaneous
reward matrix is given by

R =

[
−CP 0

−CP − CI −CU − CI

]
,

where the first (second) row represents the reward for an agent
who is susceptible (infected) while the first (second) column
represents the reward for an agent who adopts protection
(remains unprotected). The stage reward of an agent in state
s choosing an action a is denoted by R[s, a]. The expected
instantaneous reward of an agent under policy π is defined as
Reff[s](π) =

∑
a∈A π[a|s]R[s, a].

In a departure from previous works such as [7] which
assume that agents are myopic and choose their actions to
maximize their instantaneous rewards, we here assume that
agents are forward-looking and consider the impact of their
actions on the future state. In particular, agents seek to
maximize discounted infinite horizon expected reward. To this
end, we introduce the discount factor α ∈ [0, 1). At a given
stationary social state (π, d), the value function for an agent
belonging to the state s satisfies

V [s](π, d) = Reff[s](π)

+ α
∑
s+∈Z

Peff[s
+|s](π, d)V [s+](π, d), (4)

following Bellman’s principle of optimality. In order to define
the best response of an agent to a social state (π, d), we define
the single-stage deviation value function for an agent in state
s choosing action a for the present time step and subsequently
following the homogeneous policy π as

Q[s, a](π, d) = R[s, a]

+ α
∑
s+∈Z

P[s+|s, a](π, d)V [s+](π, d). (5)

Thus, while computing Q, the agent is fully aware of the
immediate reward and the effect of its present action on the
future state, and chooses its action to maximize Q.

D. Best Response and Stationary Nash Equilibrium

We now define the best response map and stationary Nash
equilibrium in this setting.

Definition 2.3 (Best Response): The best response map is a
set-valued correspondence from the space of social states to
the set of policies B : Π×D ⇒ Π = ∆(A)|Z| given by

B(π, d) := {{σs ∈ ∆(A)}s∈Z|∑
a∈A

(σs[a]−σ′s[a])Q[s, a](π, d) ≥ 0,∀σ′s ∈ ∆(A),s ∈ Z}.

In other words, at a given social state (π, d), a randomized
strategy that maximizes the expected single-stage deviation
value (5) is a best response. As the set of actions is finite
(two) in our setting, a best response always exists, and the
correspondence B is guaranteed to be non-empty. The above
definition is analogous to the single-stage deviation principle
studied in stochastic games literature [15]. We now define the
notion of stationary Nash equilibrium.

Definition 2.4 (Stationary Nash Equilibrium [14]): A social
state (π∗, d∗) ∈ Π × D is a stationary Nash equilibrium if it
satisfies

π∗ ∈ B(π∗, d∗),

d∗ = Peff(π
∗, d∗)>d∗,

where B(π∗, d∗) is the best response map defined in Definition
2.3 and Peff(π

∗, d∗) is defined in (1).
Thus, at this stationary Nash equilibrium, the state distri-

bution d∗ is invariant under the time-homogeneous stochastic
matrix Peff(π

∗, d∗), and π∗ is a best response to the equi-
librium social state. Since the game-theoretic setting that we
have considered has a finite number of states (i.e. two) and
actions (i.e. two), and the state transition and reward functions
are continuous in the social state, it follows from [14] that a
stationary Nash equilibrium is guaranteed to exist.

III. ANALYSIS OF VALUE FUNCTION

In this section, we derive several intermediate results per-
taining to the value function V and the single-stage deviation
value function Q for each of the individual states. Since the
best response is defined in terms of the Q function, it is
necessary to analyze the difference in the Q function values to
determine optimal or equilibrium policy and state distribution.

First, we consider the infected state I. If agents follow
policy π, then we have

Reff[I](π) = −π[P|I]CP − π[U|I]CU − CI, (6)
V [I] = Reff[I] + α(δV [S] + (1− δ)V [I]), (7)

where the dependence of the value function on the social
state (π, d) is suppressed for better readability. The single-
stage deviation values upon adopting protection and remaining
unprotected are respectively given by:

Q[I,P] = −CP − CI + α(δV [S] + (1− δ)V [I]), (8)
Q[I,U] = −CU − CI + α(δV [S] + (1− δ)V [I]), (9)
⇒Q[I,P]−Q[I,U] = CU − CP. (10)

In other words, the best response of an infected agent depends
only on the difference between the penalty of avoiding quar-
antine and the cost of adopting protection, irrespective of the
social state and discount factor. Consequently, we have the
following result on the best response and equilibrium policy
of an infected agent.

Lemma 3.1: Let π∗ denote the policy at a stationary Nash
equilibrium. If CP < CU, we have π∗[P|I] = 1 and π∗[U|I] =
0. Similarly, if CP > CU, we have π∗[P|I] = 0 and π∗[U|I] =
1.



We now consider the behavior of agents in the susceptible
state S. When agents follow policy π at state distribution d,
the expected stage reward and the value function are

Reff[S] = −π[P|S]CP, (11)
V [S]=Reff[S]+α(V [S]+βπ,effd[I](V [I]−V [S])), (12)

where the dependence on the social state is omitted for
better readability. Accordingly, the single-stage deviation value
functions for a susceptible agent are given by

Q[S,P]=−CP+α((1− γβπd[I])V [S]+γβπd[I]V [I]), (13)
Q[S,U] = α((1− βπd[I])V [S] + βπd[I]V [I]). (14)

The difference is computed as

Q[S,P]−Q[S,U]=−CP+αβπd[I](1−γ)(V [S]−V [I]), (15)

where the right-hand side depends on the difference in the
value functions associated with infected and susceptible states.
The following lemma derives a useful expression on this
quantity when the state distribution corresponds to the endemic
equilibrium under a given policy.

Lemma 3.2: Suppose agents follow a given policy π, and the
state distribution is at the corresponding endemic equilibrium
d∗π with infected proportion given by I∗ee,π . Then,

V [S](π, d∗π)− V [I](π, d∗π) =
Reff[S](π)−Reff[I](π)

1− α(1− βπ,eff)
.

Proof: Subtracting (7) from (12), and rearranging the
terms, we obtain

V [S](π, d)− V [I](π, d) =
Reff[S](π)−Reff[I](π)

1− α(1− δ − βπ,effd[I])

=
Reff[S](π)−Reff[I](π)

1− α(1− βπ,eff)
,

where at the second equality, we have used the fact that at
d = d∗π , we have d[I] = I∗ee,π = 1− δ

βπ,eff
following Lemma

2.1, which implies δ + βπ,effI∗ee,π = βπ,eff .

IV. CHARACTERIZATION OF STATIONARY NASH
EQUILIBRIUM

In this section, we present our main findings regarding the
characterization of stationary Nash equilibrium in different
parameter regimes. We first tackle the case where CP < CU.
We first introduce several quantities of interest as

C1
P,max =

αCI(βP − δ)(1− γ)

1− α(1− βP + (βP − δ)(1− γ))
,

C1
P,min =

αCI(γβP − δ)(1− γ)

γ(1− α(1− γβP))
,

I† =
CP[1− α(1− δ)]

αβP[CI(1− γ)− CPγ]
, (16)

x? =
1

1− γ
[
1− δ

βP(1− I†)

]
. (17)

We are now ready to establish our main result.
Theorem 4.1: Suppose Assumption 2.2 holds. When CP <

CU, we have the following characterization of the stationary
Nash equilibrium.

• policy π∗[P|I] = 1, π∗[P|S] = 0, and infected proportion

I∗ee,π = 1− δ

βP
, if and only if CP ≥ C1

P,max;

• π∗[P|I] = 1, π∗[P|S] = 1, and I∗ee,π = 1 − δ

γβP
, if and

only if CP ≤ C1
P,min; and

• π∗[P|I] = 1, π∗[P|S] = x?, and I∗ee,π = I†, if and only
if C1

P,min < CP < C1
P,max.

Proof: When CP < CU, it follows from Lemma 3.1
that the optimal policy for the infected agents is given by
π∗[P|I] = 1 and π∗[U|I] = 0 at the stationary Nash
equilibrium. Consequently, βπ = βP. Let π∗[P|S] = x for
some x ∈ [0, 1] at the stationary Nash equilibrium. Then,
π∗[U|S] = 1 − x and βπ,eff(x) = βP(1 − x + γx) ∈ [0, 1].
Furthermore, the proportion of infected agents at the endemic
equilibrium induced by this policy is given by

I?(x) = 1− δ

βπ,eff(x)
= 1− δ

βP(1− x+ γx)
, (18)

which is strictly decreasing in x for x ∈ [0, 1].
Following (15) and Lemma 3.2, we compute the difference

in the Q function values at the Nash equilibrium as

Q[S,P]−Q[S,U]

= −CP + αβPI
?(x)(1− γ)(V [S]− V [I])

= −CP + αβPI
?(x)(1− γ)

CP(1− x) + CI

1− α(1− βπ,eff(x))

⇒(1− α(1− βπ,eff(x)))(Q[S,P]−Q[S,U])

= CIαβP(1− γ)I?(x) + CP[−1 + α− αβπ,eff(x)

+ αβP(1− x)(1− γ)I?(x)]

= CIαβP(1− γ)I?(x)

+ CP[−1 + α− αδ − αβPγI?(x)]

= I?(x)αβP[CI(1− γ)− CPγ]− CP[1− α(1− δ)],
(19)

where in the second last step, we have used the fact that
βπ,eff(x)I?(x) = βπ,eff(x)− δ.

We now examine the following cases.
Case 1: CP ≥ C1

P,max. With some algebraic calculations, it
can be shown that C1

P,max <
CI(1−γ)

γ . Therefore, we consider
two sub-cases. First, we consider C1

P,maxγ < CI(1 − γ) ≤
CPγ. In this regime, the R.H.S. of (19) is strictly less than 0.
Consequently, we have Q[S,P] < Q[S,U] and x = π∗[P|S] =
0 is the only possible best response. Consequently, we have
I?(0) = 1− δ

βP
at the equilibrium.

We now consider C1
P,maxγ ≤ CPγ < CI(1 − γ). In this

regime, the R.H.S. of (19) is strictly decreasing since I?(x) is
a strictly decreasing function of x. As a result, if the R.H.S. is
non-positive (non-negative) at x = 0 (x = 1), it stays negative
(positive) over the entire range x ∈ (0, 1] (x ∈ [0, 1)). We
obtain conditions for the R.H.S. of (19) to be non-positive as

I?(0)αβP[CI(1− γ)− CPγ]− CP[1− α(1− δ)] ≤ 0

⇔ (βP − δ)αCI(1− γ) ≤ CP[(βP − δ)αγ + 1− α(1− δ)]

⇔ CP ≥
CIα(βP − δ)(1− γ)

1− α(1− δ − γ(βP − δ))
=: C1

P,max.



In other words, Q[S,P] < Q[S,U] for all x ∈ (0, 1] (with
possible equality at x = 0) if and only if CP ≥ C1

P,max. As a
result, π∗[P|S] = 0 is the only possible best response at which
I?(0) = 1− δ

βP
.

Case 2: CP ≤ C1
P,min. In this regime, the term multiplying

I?(x) in (19) is positive and following similar arguments as
Case 1, we obtain conditions for the R.H.S. of (19) to be
non-negative at x = 1 as

I?(1)αβP[CI(1− γ)− CPγ]− CP[1− α(1− δ)] ≥ 0

⇔ (γβP −δ)αCI(1−γ)≥CPγ[(γβP −δ)α+1−α(1− δ)]

⇔ CP ≤
CIα(γβP − δ)(1− γ)

γ(1− α(1− γβP))
=: C1

P,min.

Thus, CP ≤ C1
P,min is necessary and sufficient for x =

π∗[P|S] = 1 to be the policy at a stationary Nash equilibrium,
and at x = 1, I?(1) = 1− δ

γβP
.

Case 3: C1
P,min < CP < C1

P,max. In this regime, the term
multiplying I?(x) in (19) is positive as before. Additionally,
the R.H.S. of (19) is positive at x = 0 and negative at x =
1. Consequently, there is a unique x? ∈ [0, 1] at which the
R.H.S. is equal to zero, or equivalently, Q[S,P] = Q[S,U].
For any x < x?, we have Q[S,P] > Q[S,U] leading to the
best response of an agent being π[P|S] = 1, and similarly,
for x > x?, the best response is π[P|S] = 0. Thus, we must
have x = x? and Q[S,P] = Q[S,U] at the stationary Nash
equilibrium. By setting the R.H.S. of (19) to zero, we obtain
I?(x?) = I† and x? is obtained using (16) and (17).

Remark 4.2: The above theorem shows that adopting pro-
tection is preferred when the associated cost CP is sufficiently
small. Further, both C1

P,min and C1
P,max are monotonically

increasing in the discount factor α. Thus, for a given CP,
as individuals become more forward-looking, they are more
likely to adopt protection. Thus, non-myopic behavior plays
a key role in individuals adopting protection in a strategic
setting. As protection becomes more effective (i.e., as γ
decreases), C1

P,max increases, which leads to adopting pro-
tection becoming a more attractive choice at the equilibrium.
Finally, as CP increases from C1

P,min to C1
P,max, the policy of

adopting protection π∗[P|S] decreases monotonically from 1 to
0 and the infected proportion I† increases monotonically from
1 − δ

γβP
to 1 − δ

βP
. The above observations provide valuable

insights to the policymakers on how to choose the values of CP

or CU as a function of epidemic parameters, the effectiveness
of protection and degree of non-myopic behavior to induce a
desired level of infection at the equilibrium.

Remark 4.3: While the above result holds under Assumption
2.2, we briefly discuss the consequence of relaxing it. When
δ > βP, we have C1

P,max < 0, and thus, for any CP > 0, we
have CP > C1

P,max. It can be easily shown that at a stationary
Nash equilibrium, π∗[P|S] = 0 (similar to Case 1 of Theorem
4.1) and infected proportion I∗dfe,π = 0. Similarly, when
γβP < δ < βP, the protection adoption behavior would be
governed in a similar manner as Case 1 and 3 of Theorem 4.1.
The complete derivation is omitted due to space constraints.

Remark 4.4: The equilibria derived in Theorem 4.1 have a
similar flavour as the results obtained in [7] for the myopic
setting. However, there does not exist a specific value of

the loss parameter L in [7] at which the results obtained in
Theorem 4.1 would map exactly to the results obtained in
[7]. Further connections between the myopic and non-myopic
settings will be explored in a follow-up work.

We now tackle the case where CP > CU. We define the
following quantities of interest.

C2
P,max =

α(βU − δ)(1− γ)(CU + CI)

1− α+ αβU
,

C2
P,min =

α(γβU − δ)(1− γ)(CU + CI)

α(γβU − δ) + γ(1− α) + γαδ
,

I‡ =
CP[1− α(1− δ)]

αβU[(1− γ)(CI + CU)− CP]
, (20)

z? =
1

1− γ
[
1− δ

βU(1− I‡)

]
. (21)

Our result is stated below.
Theorem 4.5: When CP > CU, we have the following

characterization of the stationary Nash equilibrium.

• π∗[P|I] = 0, π∗[P|S] = 0, and I∗ee,π = 1 − δ

βU
, if and

only if CP ≥ C2
P,max;

• π∗[P|I] = 0, π∗[P|S] = 1, and I∗ee,π = 1 − δ

γβU
, if and

only if CP ≤ C2
P,min; and

• π∗[P|I] = 0, π∗[P|S] = z?, and I∗ee,π = I‡, if and only
if C2

P,min < CP < C2
P,max.

The proof follows from analogous arguments as the proof
of Theorem 4.1, and is omitted in the interest of space.

When agents are myopic, i.e., the discount factor α = 0,
then C1

P,max = C2
P,max = 0, and only the first sub-case of both

the theorems are operative.

V. NUMERICAL RESULTS

We now illustrate our findings using numerical simulations.
For brevity, we focus on the case CP < CU. We use the
following parameter values in our simulations.

α βP βU γ δ d0[I]

0.9 0.6 0.7 0.3 0.05 0.1

Here, d0[I] denotes the probability of an individual being
infected at time k = 0.

We select the costs CU = 10 and CI = 5, which yields
C1
P,max = 5.9029 and C1

P,min = 5.2099. Accordingly, we
select two different values of CP consistent with the last two
cases in Theorem 4.1 as 3 and 5.75, respectively. The infection
state distribution is updated according to (2).

We adopt the perturbed best response dynamics given by the
logit choice function [2], [6] to update the policy (for every
state action pair) as

πk+1[a|s] =
exp(λQ[s, a](πk, dk))∑
a′ exp(λQ[s, a′](πk, dk))

.

In other words, the policy is updated such that the action with
a larger Q function value is chosen with a higher probability.
The degree of preference towards the action associated with
the higher Q function value is controlled by a parameter
λ > 0 which also captures the degree of bounded rationality
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Fig. 1. Evolution and convergence of infected proportion and policy of adopting protection when CP < CU and λ = 20 (left and middle panels), and
protection adoption policy at the stationary Nash equilibrium for the range of α from 0 to 0.99 and the range of CP from 0.2 to 2 (right panel).

associated with human decision-making [2], [6]. We omit
further discussion along these lines in the interest of space.

The plots in the left and the middle panels of Fig. 1 show
that the evolution of system trajectories is consistent with
Theorem 4.1. Interestingly, the evolution of dk[I] in the left
panel of Fig. 1 is monotonic, while they are oscillatory in the
middle panel. During the transient phase, when the fraction
of the infected population is low, Q[S,P] < Q[S,U] and the
behavioral policy adopts protection with a small probability,
which increases the fraction of infected population. When the
fraction of the infected population is sufficiently high, then
Q[S,P] > Q[S,U] and the behavioral policy adopts protection
with higher probability, which decreases the fraction of the
infected population. These interleaving processes lead to the
observed oscillatory behavior.

In the right panel of Fig. 1, we explore the influence of pa-
rameters α (which determines the extent to which an individual
is forward-looking) and CP (cost of adopting protection) on the
policy of susceptible agents adopting protection at equilibrium.
We have used the following parameters for this study.

βP βU γ δ CI CU λ

0.6 0.8 0.6 0.28 12 10 15

For a fixed cost of protection CP, increasing α which leads to
more forward-looking behavior, results in increasing adoption
of the protection at the stationary Nash equilibrium. Similarly,
for a given value of α, increasing the cost of protection CP

results in decreasing adoption of the protection in accordance
with the observations stated in Remark 4.2.

VI. CONCLUSIONS

We studied the influence of strategic non-myopic protection
adoption policies on the spread of the SIS epidemic using a
dynamic population game framework. We rigorously charac-
terized the protection adoption policy and the associated frac-
tion of the infected population at the Nash equilibrium under
different parameter regimes. We numerically illustrated the
transient response properties by using perturbed best response
dynamics, and showed that system trajectories are monotonic
in certain parameter regimes while they are oscillatory in
some parameter regimes. Finally, we illustrated the influence
of the degree of non-myopia and the cost of protection on the
behavioral policy. There are several promising directions for

future research of the proposed framework with non-myopic
agents (both in the context of epidemics and other applica-
tions), including shaping the reward matrix to induce desired
equilibrium behavior, analysis of agents with heterogeneous
activity patterns and establishing convergence of evolutionary
learning dynamics.
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