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Abstract— Using the context of human-supervised object
collection tasks, we explore policies for a robot to seek assistance
from a human supervisor and avoid loss of human trust in
the robot. We consider a human-robot interaction scenario in
which a mobile manipulator chooses to collect objects either
autonomously or through human assistance; while the human
supervisor monitors the robot’s operation, assists when asked,
or intervenes if the human perceives that the robot may not
accomplish its goal. We design an optimal assistance-seeking
policy for the robot using a Partially Observable Markov
Decision Process (POMDP) setting in which human trust is
a hidden state and the objective is to maximize collaborative
performance. We conduct two sets of human-robot interaction
experiments. The data from the first set of experiments is
used to estimate POMDP parameters, which are used to
compute an optimal assistance-seeking policy that is used in
the second experiment. For most participants, the estimated
POMDP reveals that humans are more likely to intervene
when their trust is low and the robot is performing a high-
complexity task; and that robot asking for assistance in high-
complexity tasks can increase human trust in the robot. Our
experimental results show that the proposed trust-aware policy
yields superior performance compared with an optimal trust-
agnostic policy.

I. INTRODUCTION

While autonomous systems are becoming pervasive across
a range of domains including, healthcare, agriculture, and
transportation, they often require human assistance to deal
with complex and uncertain environments [1]–[4]. One of
the key factors in the successful design of such human-robot
teams is the calibration of the human partner’s trust in the
robot’s capabilities. Trust in robot/automation is defined as
“the attitude that an agent will help achieve an individual’s
goals in a situation characterized by uncertainty and vulner-
ability [5]”. The disuse, misuse, and abuse of automation
and its underpinnings in terms of under- and over-trust in
automation is well-documented [6]–[8]. Therefore, trust must
be accounted for not just in the physical design of robots, but
also in the design of its policies in complex and uncertain
environments.

In this paper, using the context of human-supervised
object collection tasks, we study trust-aware policies for
an autonomous system to seek assistance from a human
supervisor. We adopt a Partially Observable Markov Decision
Process (POMDP) framework to design optimal trust-aware
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policies and compare them with trust-agnostic optimal poli-
cies which as opposed to the trust-aware policy, do not take
into account the state of human trust.

The influence of factors such as reliability, transparency,
and workload on humans has been extensively explored [6].
However, these traditional studies have treated trust as a static
parameter. Lately, a significant focus has been devoted to
understanding the dynamic evolution of human-automation
trust [2], [9]–[17]. These works focus on the dynamic
evolution of trust and the influence of factors such as the
quality of robot performance, transparency of the robot’s
operation, and forgetfulness of the human agent about prior
robot performance. From a modeling perspective, broadly
speaking, the models can be divided into deterministic linear
models and probabilistic models.

The deterministic linear models [13]–[15] use a linear
time-invariant dynamical system in which the states are
variables such as current trust level, cumulative trust level,
and expectation bias, and input includes human experience in
terms of performance and reliability. These models have also
been extended to capture mutual trust between humans and
robots [18], [19], and have been used to study the influence
of information transparency in reconnaissance missions [14],
human reliance on driving assistance systems [13], subtask
allocation in collaborative assembly tasks [18], and schedul-
ing teleoperation in underwater robotic navigation [19].

The probabilistic models treat the trust as a hidden state
and estimate its distribution conditioned on variables such
as robot performance and human actions in a Bayesian
setting [20]. The POMDP models [2], [16], [17], [21]–
[23] are a class of probabilistic models that treat human
mental states, such as trust and workload, as discrete (usually,
binary) hidden variables and infer their transition matrices
conditioned on human and robot actions, environmental state,
and task outcome. These models have been used to design
task schedules in human-supervised robotic operations such
that human interventions [16] and monitoring rate [21] are
minimized. These models have also been used to design op-
timal recommendations and associated levels of explanation
based on human trust and workload [2], [22]. In contrast to
these works, we focus on a scenario where the robot may
seek assistance from a human operator to avoid loss of trust
and design an optimal assistance-seeking policy.

Using the context of human-supervised object collection
tasks, we study trust-aware policies for an autonomous
system to seek assistance from a human supervisor. We adopt
a POMDP framework in which the future trust state depends
on the current trust state, robot action, environmental com-
plexity, and prior experience of the human supervisor. We



characterize experience by the success/failure of the robot
in accomplishing its goals. The observations in the POMDP
model are human actions, which depend on the current trust,
environmental complexity, and robot actions. We conduct
two sets of human subject experiments. In the first set, we
adopt a randomized assistance-seeking policy and adopt an
Input-Output Hidden Markov Model (IOHMM) [24] frame-
work to estimate the parameters of the POMDP model. In
the second set, we leverage the learned POMDP to design a
trust-aware optimal assistance-seeking policy and show that
it achieves superior team performance than a trust-agnostic
optimal policy. The major contributions of this work are
twofold. First, we design an optimal trust-aware assistance-
seeking policy for the robot such that the team performance is
maximized. Second, we validate the efficacy of the proposed
policy through human subject experiments.

The remainder of the paper is organized as follows. We
review key ideas of IOHMM and POMDP in Section II. We
describe the collaborative object collection task in Section III
and design the optimal trust-aware assistance-seeking policy
in Section IV. We discuss the estimated human behavioral
model and its implications in Section V. We compare trust-
aware and trust-agnostic policies through human-in-the-loop
experiments in Section VI and we conclude in Section VII.

II. BACKGROUND: IOHMM AND POMDP

Let {S̄t ∈ S̄}t∈N be a Markov chain with an input {ut ∈
U}t∈N, i.e., the probability distribution of S̄t+1 is completely
determined by S̄t and ut+1. Here, S̄ and U are some finite
sets. In an IOHMM [24], the state S̄t is not available for
measurement (it is hidden), and only an output {yt ∈ Y}t∈N
is measured, which is a realization of an unknown probability
distribution P(yt|St, ut). Here, Y is some finite set.

Given {yt, ut}t∈N, S̄, and Y , a key inference goal for
IOHMM is to estimate the state transition probabilities
P(S̄t+1|S̄t, ut+1), emission probabilities P(yt|S̄t, ut), and
the prior distribution of S1. An extended Baum-Welch algo-
rithm [24] has been developed to estimate these probabilities.

A POMDP is a generalization of the IOHMM in which
some of the inputs are controllable and other inputs are
assumed Markovian and included in the state space. Let
{St ∈ S}t∈N be the augmented state Markov chain, {at ∈
A}t∈N be the action sequence, i.e., the sequence of control-
lable inputs, and {ot ∈ O}t∈N be the observation sequence.
Here, S,A, and O are finite sets. The POMDP is defined
by state transition probabilities P(St+1|St, at), observation
probabilities P(ot|St, at), and a reward function R(St, at).
Note that state St includes hidden state S̄t and non-controlled
inputs in the IOHMM and ot includes perfect measurements
of the non-controlled inputs and output yt in the IOHMM.

III. HUMAN-SUPERVISED ROBOTIC OBJECT
COLLECTION EXPERIMENT

We consider a human-supervised object collection task
in which a human and a mobile manipulator collaborate
to collect incorrectly placed items on grocery shelves and
deposit them in a bin attached to the manipulator. The human

supervisor has access to the live feeds of three views: the
world view, a local view, and an end-effector view; see
Fig. 1 for a snapshot of the experiment interface. The human
supervisor can teleoperate the manipulator with a joystick.

We refer to each attempt by the manipulator to collect
an object as a trial. At each trial, the mobile manipulator
can either collect an object autonomously or can ask for
human assistance, which allows the human to teleoperate the
manipulator and collect the item. We refer to the former robot
action by a− and the latter by a+. The human supervisor
monitors the robot’s operation for safety and efficiency. She
teleoperates the manipulator to collect objects either to assist
the robot when asked or to voluntarily intervene when she
perceives that the robot may fail. We refer to the observed
human action, when not asked to assist, as intervene o− when
she intervenes and rely o+, otherwise.

Fig. 1: Experimental Setup. The top figure shows the world view of the
environment available to the human supervisor. The bottom left and middle
figures show the local view and end-effector view used by the human during
teleoperation. The bottom right figure shows the operation status. The setup
uses ROS-Gazebo [25] and resources available in [26], [27].

The complexity C of a trial is determined by the presence
of an obstacle in the direct path between the manipulator and
the object to be collected, and it can either be low CL or
high CH . We assume that the complexity of trials is an i.i.d.
Bernoulli random variable with pCH being the probability of
the complexity being high.

The outcome of each trial can be a success or a failure.
An autonomous object collection is considered a failure if
the robot does not safely collect the object, i.e., if the robot
collides with its surroundings and/or fails to deposit the
object in the bin. Otherwise, autonomous object collection
is considered a success. We assume that autonomous object
collection is successful with probabilities psuc

L and psuc
H in

environments with low and high complexities, respectively.
We also assume that, when teleoperating, the human always
successfully collects the item and deposits it in the bin.

We define the human experience Et+1 at the end of
trial t by the trial’s outcome (robot performance). For an
autonomous operation, the experience is reliable E+, when
the robot succeeds; and faulty E−, when the robot fails. For
a voluntary intervention by the supervisor, the experience
is faulty E−. Since the robot is expected to operate without



assistance in low-complexity trials, assistance seeking in high
complexity is labeled as reliable E+, and assistance seeking
in low complexity is labeled as faulty E−.

The human-robot team objective is to maximize the dis-
counted cumulative team reward across all trials. The reward
in each trial is defined by

Ra
o,E =


+2, if (a, o, E) = (a−, o+, E+),

+1, if a = a+,

0, if (a, o) = (a−, o−),

−3, if (a, o, E) = (a−, o+, E−).

(1)

The reward in (1) is designed to ensure that the number
of collected objects is maximized while minimizing human
effort from assistance and intervention.

IV. TRUST-AWARE OPTIMAL ASSISTANCE-SEEKING

The human-in-the-loop system studied in this paper is
shown in Fig. 2, and in this section, we describe its different
subsystems.
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Fig. 2: Collaborative object collection setup. The human behavioral model
with trust as a hidden state yields the likelihood of human intervention and
is used by the robot to design an optimal policy in a POMDP setting.

A. Trust-modulated Human Behavioral Model

The human behavioral model determines the probability of
the human taking action o− when the robot takes action a−.
We assume that this probability depends on the complexity
of the trial and a hidden state that captures the human
perception of the expected robot performance (success or
failure). We refer to this hidden state as the trust Tt and
assume it takes binary values: high TH and low TL.

Building upon existing models of the dynamic evolution
of trust [13], we assume that trust Tt+1 at the end of trial t
is influenced by trust Tt at the end of trial t− 1, complexity
Ct of trial t, experience Et+1 at the end of trial t, and
action at of the robot in trial t. Fig. 3 shows the IOHMM-
based dynamic human behavioral model that is modulated
by the hidden trust dynamics. Once this IOHMM has been
trained, it yields the probabilities P(Tt+1|Tt, Et+1, Ct, at)
and P(ot|Tt, at, Ct).

B. POMDP-based Optimal Assistance-Seeking Policy

We pose the design of optimal assistance-seeking policy
as a POMDP. The elements of this POMDP are
States, actions, and observations. We take the POMDP
states as St = (Tt, Et, Ct) ∈ {TL, TH} × {E−, E+} ×
{CL, CH}, where Tt is a hidden state and (Et, Ct) are
observed states; the actions at ∈ {a−, a+}; and observations
ot ∈ {o−, o+}.
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Fig. 3: IOHMM-based dynamic human behavioral model. The hidden trust
dynamics Tt modulate the human behavioral outcome ot.

State transition matrices and observation probabilities.
Using the IOHMM structure in Fig. 3 and the fact that Ct’s
are i.i.d., we can write

P(St+1|St) = P(Tt+1|Et+1, Tt, Ct, at)

× P(Ct+1)P(Et+1|Tt, Ct, at),

where P(Tt+1|Et+1, Tt, Ct, at) is known from the human
behavioral model, P(Ct+1 = CH) = pcH by design, and
P(Et+1|Tt, Ct, at) is computed as

P(Et+1|Tt, Ct, at) =
∑
ot∈O

P(Et+1|ot, Ct, at)P(ot|Tt, Ct, at)

where P(ot|Tt, Ct, at) is known from the trained human
behavior model, and

P(Et+1 = E+|ot, Ct, at)

=



psuc
L , if (at, Ct, ot) = (a−, CL, o+),

psuc
H , if (at, Ct, ot) = (a−, CH , o+),

0, if (at, Ct, ot) = (a−, ∗, o−),
0, if (at, Ct, ot) = (a+, CL, ∗),
1, if (at, Ct, ot) = (a+, CH , ∗).

Reward function and discount factor. Using the reward
defined in (1), the reward function for the POMDP is

R(S, a−) = Ra−

o+,E+P(E+|o+, C, a−)P(o+|T,C, a−)

+Ra−

o+,E−P(E−|o+, C, a−)P(o+|T,C, a−)

+Ra−

o−,E+P(o−|T,C, a−),

R(S, a+) = Ra+

∗,∗,
(2)

where, for brevity, we have represented events by their
outcomes; for example, we have represented the event {E =
E+} by E+. The discount factor γ is chosen as 0.987.

C. Belief MDP Reformulation of the POMDP

To solve the above POMDP, we reformulate it as an
equivalent MDP with belief states Sb = (bTt , Et, Ct), where
bTt = P(Tt = TH |Et, Ct−1, at−1, b

T
t−1). The action set

and the discount factor will be the same as the POMDP



formulation. The belief update can be written as

bTt+1 = P(Tt+1 = TH |Tt = TH , Et+1, Ct, at)b
T
t +

P(Tt+1 = TH |Tt = TL, Et+1, Ct, at)(1− bTt ). (3)

Likewise, P(Et+1|bTt , Ct, at) is computed by computing the
expected value of P(Et+1|Tt, Ct, at) over Tt. The reward
function for the belief MDP is computed by computing the
expected value of R(St, a) in (2) over Tt. For computational
purposes, we discretize bTt and use update (3) to compute its
state transition matrix.

V. ESTIMATED HUMAN BEHAVIORAL MODEL

To estimate the human behavioral model, we conducted
a human subject experiment1. We recruited a total of 9
participants for this experiment. Each participant performed
71 trials out of which 41 involved a low complexity envi-
ronment, while the remaining 30 involved high complexity
environment. When the robot is operating autonomously, it
has a success probability psuc

H = 0.83 in the high complexity
environments and psuc

L = 0.97 in low complexity. In each
trial, the robot asks for human assistance with a probability
of 0.10, if the environment complexity is low; and with a
probability of 0.4, if the environment complexity is high.
For each trial, the data collected are human action o, robot
action a, complexity C, and experience E.

The data collected from all participants are pooled together
and are used to estimate the parameters of the human
behavioral model using an extended version of the Baum-
Welch algorithm. We now present and discuss the estimated
parameters in the human behavioral model. For brevity, we
have represented events by their outcomes.

A. Initial Trust and Observation Probabilities.

The initial probabilities of trust being high are estimated
to be P(TH) = 1. This indicates that humans are estimated
to start the session with high trust. The estimated observation
probabilities P(ot|Tt, Ct, at) are shown in Fig. 4.

Fig. 4a shows that, the estimated P(o−t |Tt, Ct, a
+
t ) = 1

for any C and T . This is consistent with the fact that
when the robot seeks assistance, then the human teleoperates
irrespective of the trust state and environment complexity.

Fig. 4b shows the estimated P(o+t |Tt, C
L
t , a

−
t ). If the robot

does not ask for assistance in low complexity, then the human
relies on the robot with probability 1 and 0.98 when the trust
is high and low, respectively. This is consistent with the high
success probability for low environment complexity.

Fig. 4c shows the estimated P(o+t |Tt, C
H
t , a−t ). If the robot

does not ask for assistance in high complexity, then the
human relies on the robot with a probability of 0.95 and
0.46 when the trust is high and low, respectively. This is
also consistent with the lower success probability for high
environment complexity.

1The human behavioral experiments were approved under Michigan State
University Institutional Review Board Study ID 391.

B. State Transition Matrices.

Fig. 5 shows the estimates of state transition matrices for
low environment complexity. Fig. 5a shows the estimate of
P(Tt+1|Tt, E

+
t+1, C

L
t , a

−
t ). Here, if the current trust is high,

then it remains high with probability 1; while if the current
trust is low, then it remains low with probability 1. Thus,
success in an easy task does not repair trust.

Fig. 5b shows the estimate of P(Tt+1|Tt, E
−
t+1, C

L
t , a

−
t ).

Here, if the current trust is high, then it transitions to low
with a probability of 0.39; while if the current trust is low,
then it remains low with a probability of 0.99. This shows
that failure in an easy task has a negative effect on trust.

Fig. 5c shows the estimate of P(Tt+1|Tt, E
−
t+1, C

L
t , a

+
t ).

Here, the trust state does not change after the trial with
probability 1. Thus, seeking assistance in low complexity
has minimal effect on trust.

Fig. 6 shows the estimates of state transition matrices for
high environment complexity. Fig. 6a shows the estimate
of P(Tt+1|Tt, E

+
t+1, C

H
t , a−t ). Here, if the current trust is

high, then it remains high with probability 1; while if the
current trust is low, then it transitions to high with probability
1. Thus, success in complex tasks has more impact on
increasing trust compared with easier tasks.

Fig. 6b shows the estimate of P(Tt+1|Tt, E
−
t+1, C

H
t , a−t ).

Here, if the current trust is high, then it transitions to low with
probability 1; while if the current trust is low, then it remains
low with probability 0.7. Thus, high-complexity tasks are
high-risk, high-reward: the success of the autonomous opera-
tion can increase trust significantly; while a failure decreases
trust significantly.

Fig. 6c shows the estimate of P(Tt+1|Tt, E
+
t+1, C

H
t , a+t ).

Here, if the current trust is high, then it remains high with a
probability of 0.94; while if the current trust is low, then it
transitions to high with a probability of 0.44. Thus, seeking
assistance in high complexity may increase trust, possibly
due to the human perceiving the system as “being careful” by
“not risking” to attempt high-complexity tasks. Thus, seeking
assistance in high complexity can help build/repair trust and
prevent interventions by the human supervisor.

VI. VALIDATION OF TRUST-AWARE
ASSISTANCE-SEEKING POLICY

In this section, we present the optimal assistance-seeking
policy based on the estimated POMDP in Section V and val-
idate its efficacy with data from human subject experiments.

A. Computed Assistance-seeking Policy

Using the POMDP parameters estimated in Section V,
we computed the optimal state-action value function
Q(bt, Et, Ct, a) for the belief-MDP in Section IV-C using
the value iteration algorithm.

The state-action value functions Q(bt, Et, Ct, a) for Ct =
CL and Ct = CH are shown in Fig. 7. Note that experience
Et has no influence on the state-action value functions. This
may be attributed to the fact that Et only affects human
behavior through Tt (see Fig. 3).
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Fig. 6: Estimated trust state transition probabilities P(Tt+1|Tt, Et+1, Ct, at) for high environment complexity Ct = CH

Based on the state-action value functions in Fig. 7, it can
be deduced that the optimal action is to never seek assistance
in a low-complexity trial. For high-complexity trials, the op-
timal policy switches from seeking assistance to not seeking
assistance as the belief bT crosses a threshold of ≈ 0.75.
Thus, the optimal policy attempts to gather higher reward
by autonomously collecting the object in a high complexity
trial, if human trust is sufficiently high; otherwise, it works
towards increasing human trust by seeking assistance and
avoiding any loss in reward due to unnecessary interruption
by the human supervisor.

We also computed an optimal trust-agnostic assistance-
seeking policy. For a trust-agnostic policy, the only attribute
of a trial is the environmental complexity. We used the data
from the experiment in Section V to estimate the probability
P(ot = o−|Ct) and used it with psuc

L and psuc
H to compute

the expected reward for actions a− and a+ for both low
and high complexities. These calculations suggested that the
optimal trust-agnostic policy is to never seek assistance in
low-complexity trials and to always seek assistance in high-
complexity trials.

B. Evaluation of the proposed policy

We performed a second set of human subject experiments
to evaluate the proposed optimal trust-aware assistance-
seeking policy and compared it with the optimal trust-
agnostic policy. Five participants were recruited for these
experiments. Every participant performed two blocks of
experiments in which the robot adopted trust-aware and trust-
agnostic policies, respectively. The order of the blocks was
randomly selected. 3 participants started with the trust-aware
policy block and 2 participants started with the trust-agnostic
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Fig. 7: Estimated action-value functions for the belief-MDP

policy block. In each block, the participants performed 17
low-complexity and 17 high-complexity trials.

The cumulative reward for all the participants under both
policies is shown in Fig. 8. Using the trust-agnostic policy,
the median score is 51, while the median score for the trust-
aware policy is 57. The trust-aware policy outperformed
the trust-agnostic policy for most participants. With the
trust-aware policy, the manipulator collected more items
autonomously as compared to the trust-agnostic policy.

Remark 1 (Timescale of trust repair): During the exper-
iments, we noticed that low trust is easily triggered for



some participants compared to others. These participants
incurred low cumulative rewards in both trust-aware and
trust-agnostic settings because they often intervened in low-
complexity trials. Our pooled estimates did not specialize to
individuals and failed to capture such conservative behavior.
This also highlights how certain individuals may require a
longer number of trials for their trust to be repaired.

Trust-agnostic Trust aware

50

55

60

Fig. 8: Cumulative reward statistics for the trust-agnostic and trust-aware
policies. The trust-aware policy outperformed the trust-agnostic policy for
most participants.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, using the context of human-supervised object
collection tasks, we designed optimal trust-aware policies
for a mobile manipulator to seek assistance from a human
supervisor. We adopted a POMDP framework and showed
that the optimal policy admits a threshold structure: it only
seeks assistance when the human trust is below a threshold,
and this threshold varies with the complexity of the task. We
conducted human subject experiments and showed that the
proposed optimal trust-aware policy outperforms the optimal
trust-agnostic policy.

An interesting direction of future research is to schedule
the low and high-complexity trials such that overall team per-
formance is maximized. Other directions of future research
include designing trust-aware policies for non-supervisory
human-robot collaboration tasks.
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