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Abstract— We consider a prototypical path planning problem
on a graph with uncertain cost of mobility on its edges. At a
given node, the planning agent can access the true cost for
edges to its neighbors and uses a noisy simulator to estimate
the cost-to-go from the neighboring nodes. The objective of
the planning agent is to select a neighboring node such that,
with high probability, the cost-to-go is minimized for the worst
possible realization of uncertain parameters in the simulator. By
modeling the cost-to-go as a Gaussian process (GP) for every
realization of the uncertain parameters, we apply a scenario
approach in which we draw fixed independent samples of
the uncertain parameter. We present a scenario-based iterative
algorithm using the upper confidence bound (UCB) of the fixed
independent scenarios to compute the choice of the neighbor
to go to. We characterize the performance of the proposed
algorithm in terms of a novel notion of regret defined with
respect to an additional draw of the uncertain parameter,
termed as scenario regret under re-draw. In particular, we
characterize a high probability upper bound on the regret under
re-draw for any finite number of iterations of the algorithm,
and show that this upper bound tends to zero asymptotically
with the number of iterations. We supplement our analysis with
numerical results.

I. INTRODUCTION

Several motion planning problems involve optimization
of costs computed out of complex simulations. In these
problems, one rarely has access to the actual cost-to-go
and computing gradients of the cost can be infeasible. In
a bandit setting, one can only measure the cost at any future
location on a roadmap and obtain a noise-corrupted value. A
standard metric to analyze the performance of algorithms
for bandit problems is the notion of regret, which is the
average difference between the cost evaluated at multiple
future locations and the unknown optimal cost. This paper
applies a scenario-based framework to optimize the cost in
a motion planning problem and performs finite-time and
asymptotic analysis of a novel robust notion of regret.

Gaussian processes (GP) offer a rigorous framework for
function approximation [1]. GPs can capture both epistemic
(due to limited data) and aleatoric (modeling) uncertainties
[2]. They have been used extensively in path planning to
model mobile obstacles [3], for data-efficient learning [4]
as well as in the motion planning problem [5]. The key
idea is to use smooth continuous-time trajectories as samples
from a GP and then view the planning problem as one of
probabilistic inference [6]. GPs have been used to design
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robust controllers for motion planning [7] and for learning-
based exploration [8]. Robust motion planning techniques
require efficient evaluation of the belief of the robot about
its own location and about the environment, e.g., [9], [10].
Monte Carlo tree search performs an asymmetric expansion
of a search tree using a UCB-based policy [11], [12].
The technique has been applied to robotic motion planning
problems in [13], [14], [15]. This paper differs in the sense
that the cost to go can be simulated by querying only
neighboring locations in presence of uncertainty in terms
of the measurement noise as well as unknown but random
parameters in the simulation.

For a cost function that is defined jointly over the future
locations selected by the user and uncertain parameters
that are inaccessible to the user during the simulation (and
are selected later by the nature), there are no theoretical
guarantees (to the best of our knowledge) on how the iterative
solution will perform against the actual realization of the
uncertain parameter. We adopt a scenario approach for this
problem wherein several realizations of the uncertain param-
eters are sampled and the function is optimized for the worst
scenario. Scenario approaches have been used extensively to
solve computationally complex robust optimization arising
in control design (cf. the review papers [16], [17]).

This paper introduces a scenario approach applied to a
robust motion planning problem over a graph in a bandit
setting. We assume that the cost-to-go from every neighbor-
ing vertex can be modeled as a GP for every realization of
the uncertain parameter. The key contributions of this paper
are three-fold. First, we formalize an approach based on
scenario optimization, in which we draw fixed independent
samples of the uncertain parameter and examine a novel
notion of regret, termed as the scenario regret under re-draw.
Second, we present a scenario-based iterative algorithm using
the UCB of multiple scenarios to decide at what future
location(s) to simulate the cost-to-go. Third, we derive a high
probability upper bound on the regret for any finite number
of iterations of the algorithm. This bound is a multiple of
the regret in the nominal case of no uncertainty and the
extra factor scales logarithmically with the cardinality of the
input and the uncertainty set. We show that the regret tends
to zero asymptotically with the number of iterations, with
high probability. We supplement our analysis with two case
studies arising in motion planning for which the scenario
approach consistently provides a lower regret compared to a
baseline comprising the standard UCB algorithm applied to
the average value of the uncertain parameter, at the expense
of additional computation.



This paper is organized as follows. Section II presents the
problem formulation and formally introduces the notion of
regret. Section III presents the Scenario UCB algorithm and
analytic results on the regret. Section IV illustrates the results
on the two case studies. Section V summarizes the work
done and outlines future directions. The appendix contains
the proofs of all the theoretical results.

II. PROBLEM SET-UP

We consider an environment modeled as a graph with a
given start location S, a destination D and several inter-
mediate vertices connected by a set of edges. The location
S is connected to a set of neighboring vertices N (S) ⊂
Rd×· · ·×Rd, which we number from {1, . . . ,M}, without
any loss of generality. Each edge eS,i,∀i ∈ {1, . . . ,M},
has a reward WS,i ∈ R associated with it. The optimal
path computation from any vertex i to D involves running
a simulation to obtain a realization of the reward-to-go
V (xS,i, δ), where xS,i is the location of the i-th neighbor
of S and δ ∈ ∆ represents the uncertainty involved in the
reward-to-go. The value function V represents the reward
over the optimal path to the destination, i.e., the sequence of
edges with the highest sum of edge rewards. In particular, δ
comprises the uncertainty in the reward over all of the set
of edges of the graph. Given a realization of δ, the optimal
choice of vertex to go to from S is obtained by solving the
following Bellman equation,

xS,i∗ ∈ argmaxi∈{1,...,M}{WS,i + V (xS,i, δ)}, (1)

where i∗ is the index of a vertex that maximizes the net
reward from S. Since Equation (1) holds for any current
vertex S from where a robust version of the path planning
problem to the destination is to be solved, for ease of
exposition, we will drop the S dependence in Equation (1).

Since δ is uncertain, this paper poses a robust version of
the above equation which can be written as

xi∗ ∈ argmaxi∈{1,...,M}min
δ∈∆
{Wi + V (xi, δ)}. (2)

Thus, Problem (2) can be written equivalently as

max
x∈X

min
δ∈∆

F (x, δ), (3)

where the real-valued function F (xi, δ) := Wi + V (xi, δ)
and X represents the set of neighbors of the current node.

To be able to derive analytic results, we make the follow-
ing assumptions on the uncertainty δ and the function F .

Assumption 2.1 (Probabilistic uncertainty): The parame-
ter δ is a random variable taking values in a finite, discrete
set ∆ with probability distribution function, Pδ : ∆→ R≥0.
�
Assumption 2.1 is required to establish an analytic bound on
the number of scenarios required (cf. Theorem 3 from [18]
that leads to Corollary 5.1) to establish probabilistic guaran-
tees. However, in practice, the set ∆ may be continuous.

We consider three main categories of uncertainty. The first
is the endogenous uncertainty that corresponds to fundamen-
tal differences in environments of interest. For example, in

the context of road transportation, endogenous uncertainty
may correspond to variability due to differences in layouts
of road networks. The second is the exogenous uncertainty
that corresponds to variability due to external factors such
as number of vehicles in the road network. Together, these
two uncertainties describe the underlying objective function
that maps to the realization of the GP in our framework. The
third is the uncertainty in accessing the realized value of the
objective function and is accounted for by the measurement
noise. The endogeneous and exogeneous uncertainties are of
the epistemic type, while the measurement noise captures the
aleatoric uncertainty in our model [2].

In the sequel, we capture the exogenous uncertainty via
the uncertain parameter δ and drop the term exogenous for
brevity. Specifically, we make the following assumptions on
the two sources of uncertainty.

Assumption 2.2 (Robust Gaussian Process): For any
fixed value of δ, the function F (·, δ) is a realization of
a spatial GP with the mean function equal to µδ(·) and
a kernel kδ(·, ·), i.e., F (·, δ) ∼ GP(µ(.), kδ(·, ·)). In the
following, we will denote such a realization by ω ∈ Ω. �

Assumption 2.3 (Decoupled uncertainty): The GP param-
eter ω and the uncertainty parameter δ can be sampled
independently of each other in a decoupled manner. �

Assumption 2.3 holds when the function F , defined over a
discrete set of cardinality |X|, is a vector of function values
given by µδ(·)+Σδ(·, ·)ω, where µδ(·) is a vector of length
|X|, Σδ(·, ·) is a full rank square matrix of order |X| and ω
is a realization of |X|-variate Gaussian with zero mean and
identity covariance matrix. Indeed, such F is a realization
of a Gaussian process with mean µδ(·) and kernel function
matrix Σδ(·, ·)Σδ(·, ·)>.

Since the realization of the GP is determined by both ω
and δ, a natural question to ask is why should we adopt
robust optimization instead of learning the actual realization
of the GP using the GP optimization framework [19]? Recall
that the value of the function at a query point is computed
using a noisy simulator that may have access to endogenous
uncertainty, but not to exogenous uncertainty. Therefore, we
want the simulated values to be robust with respect to the
actual realization of the exogenous uncertainty. Furthermore,
when the policy that we design using the simulator is applied
to the physical system in real time, we need to ensure that
the performance guarantees (measured via regret bounds) for
the simulator also hold for the physical system. Towards this
end, we introduce a novel notion of robust regret.

Let ∆N := {δi | i ∈ {1, . . . , N}} ∈ ∆N be the set
of N independent and identically drawn samples of δ. In
scenario approach to robust optimization, the robustness is
computed with respect to an additional (N + 1)-th sample
of the uncertain parameter δN+1. We refer to this notion of
robustness as robustness under re-draw.

Consider the following scenario version of Problem (3),

J(∆N ) := max
x∈X

min
δ∈∆N

F (x, δ). (4)

We define the following notion of regret corresponding to



robustness under re-draw.
Definition 2.1 (Scenario regret under re-draw): Given

an algorithm generating a sequence of decisions
{x̄t(∆N )}t∈{1,...,T}, the scenario regret under re-draw
with the set ∆N+1 := ∆N ∪ δN+1, is

RT (∆N+1) :=
1

T

T∑
t=1

(J(∆N+1)− min
δ∈∆N+1

F (x̄t, δ)). (5)

Note that in RT , the sequence of decisions is computed
using only N scenarios and the regret is computed after
incorporating the (N + 1)-th scenario. Recall that these
scenarios are unknown realizations of GP and need to be
learned in a bandit setting. There are three sources of ran-
domness in the above formulations of the robustness/regret:
(i) the random draw of N scenarios; (ii) the random draw of
(N+1)-th scenario; and (iii) the noise in function evaluation
at query point.

We seek to design an algorithm and compute an associated
upper bound on RT . We will focus on finite time as well
as asymptotic analysis of the regret associated with the
algorithm. Although we assume that the set X is finite
and discrete, the asymptotic case remains of interest due
to measurement noise. In particular, we are interested in
consistent algorithms that are defined as follows.

Definition 2.2 (Consistent Algorithm): An algorithm is
said to be consistent if it generates a sequence of decisions
{x̄t}, such that the regret under re-draw asymptotically tends
to zero as T → +∞. �

III. SCENARIO REGRET UNDER RE-DRAW

In this section, we will first establish robustness properties
for the scenario regret under re-draw. Then, we will present
an algorithm and establish associated guarantees on the
scenario regret under re-draw.

A. Robustness of scenario regret under re-draw

Proposition 3.1 (Probabilistic robustness guarantees):
Given the parameters η, ζ ∈ (0, 1), the scenario regret under
re-draw defined in (5) with N = d 1

η (ln |X|+ln |∆|− ln ζ)e,
for discrete sets X and ∆, satisfies

PδN+1

{
RT (∆N+1) = RT (∆N )

}
> 1− η,

with probability at least 1− ζ. �

In Proposition 3.1, the outer probability is with respect to
N -sample, and the inner probability is defined with respect
to the (N + 1)-th sample. Proposition 3.1 implies that if we
have a large number of samples of uncertain parameter δ,
then with high probability, the regret with respect to sampled
set ∆N remains the same with the addition of a new (N+1)-
th sample δN+1.

B. A UCB based Algorithm

In view of the robustness guarantees from Proposition 3.1,
we now focus on solving problem (4). For ease of exposition,
we present our results for the case of the prior mean µδ(·) =
0. Our approach is described in Algorithm 1, in which
we maintain a separate GP for each sampled scenario i.

Let the simulation for F (x, δi) yield a Gaussian random
variable with mean F (x, δi) and variance ρ2. Suppose that
until time t, F (·, δi) has been simulated ti times at points
Ait := {xi1, . . . , xiti} to obtain noisy simulation results yit :=
[yi1, . . . , y

i
ti ]
′. Then, the posterior over F is a Gaussian with

mean µit(x) and covariance kδit (x, x′) given by

µit(x) = kit(x)T (Ki
t + ρ2I)−1yit,

kit(x, x
′) = kδi(x, x′)− kit(x)t(Ki

t + ρ2I)−1kit(x
′),

σit(x) =
√
kit(x, x), (6)

where kδi(·, ·) is the kernel function, the vector
kit(x) := [kδi(xi1, x) . . . k(xit, x)]T , and Ki

t is the positive
semi-definite kernel matrix [kδi(x, x′)]x,x′∈Ai

t
.

At each time t, Algorithm 1 maintains an upper confidence
bound based surrogate function µit−1(x) +

√
βtσ

i
t−1(x) for

F (x, δi) and selects the GP to be updated F (·, δit) and the
sampling point xt for simulation in algorithm steps 7: and
6:, respectively. In algorithm step 8:, nt ∼ N (0, ρ2) is the
simulation noise. The key feature of Algorithm 1 is that only
one GP realization is updated at each iteration making the
implementation scalable from a computational viewpoint.

Algorithm 1 Scenario Upper Confidence Bound
1: Input: N scenarios, Pδ(·) and a simulator for F (·, ·).
2: Draw a multi-sample δ1, . . . , δN using Pδ(·).
3: Choose initial values of GP parameters and the kernel

functions, {(µi0(·), σi0(·))}Ni=1 and {kδi(·, ·)}Ni=1.
4: Set, Di0 = ∅,∀i ∈ {1, . . . , N}.
5: for t = 1, 2, . . . do
6: Set xt := argmax

x∈X
min

i∈{1,...,N}
µit−1(x) +

√
βtσ

i
t−1(x)

7: Set it ∈ argmini∈{1,...,N} µ
i
t−1(xt) +

√
βtσ

i
t−1(xt)

8: Obtain yt = F (xt, δit) + nt
9: Update the data, Dt := Dt−1 ∪ {xt, yt, it}

10: Update GP parameters (µitt , σ
it
t ) using (6).

11: end for

We now present bounds on the regret under re-draw (5)
for Algorithm 1.

Theorem 3.1 (Regret under re-draw): Let λ̂ij’s denote
eigenvalues of the kernel matrix kδi evaluated over the
set X × X , ∀i ∈ {1, . . . , N}. For Algorithm 1 applied
to problem (4) with βt := 2 log(|X|π2t2/(3ε)) and regret
under re-draw (5), the following statement holds.

1) For any T ≥ 1,

P
{
RT (∆N ) ≤

√
8βT γT

T log(1 + 1/ρ2)

}
≥ 1− ε,

where, γiT ∈ O(ρ−2(T
∑|X|
j=2 λ̂

i
j + log

(
T
∑|X|
j=1 λ̂

i
j

)
))

and γT =
∑N
i=1 γ

i
T .

2) For all T > |X|, the claim in 1) holds with the choice
of γiT ∈ O(|X| log

(
T
∑|X|
j=1 λ̂

i
j

)
.

�
Proposition 3.1 states that the regret is unaffected by an

additional redraw with a high probability, i.e., RT (∆N+1) =



RT (∆N ), and Theorem 3.1 provides an explicit upper bound
on RT (∆N ) that decays monotonically to zero with T . Thus,
we can combine Proposition 3.1 and Theorem 3.1 to obtain
the following robustness property.

Corollary 3.1: For the sequence {xt}Tt=1 obtained from
Algorithm 1 solving problem (4) with N = d 1

η (ln |X| +
ln |∆| − ln ζ)e scenarios, with probability at least 1− ζ,

PδN+1

{
P
{
RT (∆N+1) ≤

√
8βT γT

T log(1 + 1/ρ2)

}
≥ 1− ε

}
≥ 1− η. �

Note the three levels of probability in Corollary 3.1.
The outermost probability of (1 − ζ) is with respect to
the N samples drawn in the scenario approach, the middle
probability is the probability that measures robustness with
respect to the additional draw δN+1, and the innermost
probability is with respect to the temporal realizations of the
T measurement noise sequences. We conclude this section
with the following result.

Corollary 3.2 (Consistency): With high probability, the
regret scales as

O
(√ (ln |X|+ ln |∆| − ln ζ)

η
× |X|

T
log
|X|T 2

ε
log(|X|T )

)
In other words, Algorithm 1 is consistent in the sense of
Definition 2.2. �

The proof of this claim follows from Corollary 3.1
which implies that the regret under re-draw scales as
O(
√
N |X| log(|X|T 2/ε) log(|X|T )/T ) in the general case

of any arbitrary T ≥ 1, and N satisfies the requirement in
Corollary 3.1.

Remark 3.1 (Scaling law): In comparison with the regret
upper bound for the nominal GP-UCB algorithm [19] that
does not account for parameter uncertainty, an extra term√

(ln |X|+ln |∆|−ln ζ)
η appears in the upper bound in Corol-

lary 3.2. The logarithmic scaling of this term with desired
confidence ζ and cardinalities |X| and |∆| makes the pro-
posed scenario approach particularly appealing. �

IV. APPLICATION TO PATH PLANNING

We now present numerical results of implementing Algo-
rithm 1 to a path planning problem over a roadmap between
a source and a destination. We present its application to two
problems – the first involving minimum Euclidean distance
between source and destination and the second involving
minimum time based on traffic data from Google Maps.
Although our analytic results require discrete ∆, we allow
∆ to be a continuum in our simulations.

A. Minimizing Euclidean Distance to Destination

In this problem, we denote the coordinates of each neigh-
boring location of the start node as the optimization variable
x and the distance to the destination from that neighbor
as the output y. We picked a squared exponential kernel
to model the dependence between any two points that are

Fig. 1. Numerical evolution of the regret under re-draw using the Scenario
UCB (Algorithm 1) and a baseline version of UCB.

at given distances x and x̃ from the start location, using
the dependence kδi(x, x̃) := vi exp(‖x − x̃‖2/`2i ). The
hyperparameters {(vi, `i)} are learnt from the training data
by maximizing the log-likelihood function using GPML [20].

The environment in this example is assumed to be a
unit square. The start location S is (0.25, 0.25), with 32
neighboring nodes. The destination is (1, 1), and the edge
costs Wi are set to be equal to the Euclidean distance
between S and i. The uncertainty δ comprises the set of
random variables δj,k for each edge of the graph leading
to the actual edge cost given by Wj,k + δj,k. Given a
neighboring node i of S, the function V (xi, δ) is assumed
to be the (negative of the) Euclidean length of the shortest
path from xi to the destination under this uncertainty model,
using the standard Dijkstra algorithm.

The numerical value of the scenario regret under redraw
(Definition 2.1) are reported in Figure 1. In this experiment,
δj,k ∼ Uniform[0, 0.05] and N = 25 scenarios were used.
The value of the process noise variance is σ = 0.01. As
a baseline, we consider the standard UCB algorithm [19]
applied to the function F (·, δ̄N ), where δ̄N := 1

N

∑N
i=1 δi.

The result is reported in Figure 1.

B. Minimizing Travel Time to Destination

This application involves applying the method to traffic
data collected from Google Maps. In this experiment, we
fixed the start point to New York City and destination point to
Upper Manhattan and selected multiple intermediate points
out of a given set as described in Table I. In this problem,
we denote the distance of each neighboring location from the
start node as the optimization variable x and the time to reach
to the destination from that neighbor as the output y. Akin to
the previous problem, we use the squared exponential kernel
and train its hyperparameters using a similar approach.

We now report the scenario regret under redraw from
Definition 2.1, ∀t ≥ 1. We provide a comparison with our
proposed scenario UCB approach from Algorithm 1 and
the baseline comprising the standard UCB algorithm [19]
applied to the function F (·, δ̄N ), where δ̄N := 1

N

∑N
i=1 δi.



TABLE I
DATA FROM GOOGLE MAPS TO GO FROM NEW YORK (ZIP: 10001) TO

UPPER MANHATTAN (COLLECTED ON 07/25/2019 AT 10:50AM EDT.

Location id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Distance 1.5 1.5 1.0 1.2 1.0 0.8 0.5 0.7 0.4 0.4 1.0 1.8 1.7 1.2 0.7

Travel Time 39 41 41 38 34 26 28 36 33 28 37 33 41 39 33

The results are summarized in Figure 2. In this experiment,
δj,k ∼ Uniform[0, 0.5] and N = 40 scenarios were used.

Fig. 2. Numerical comparison of the regret using the proposed scenario
UCB approach (Algorithm 1) and using the standard GP-UCB for the path
planning example from Table I.

Thus, in both case studies, we observe that the scenario
approach consistently provides a lower regret under redraw
compared to a baseline comprising the standard UCB algo-
rithm applied to the average value of the uncertainty.

V. CONCLUSION AND FUTURE DIRECTIONS

We applied the scenario approach to the problem of robust
motion planning when the cost-to-go is to be computed
out of a simulation, in a bandit setting. The cost-to-go is
assumed to be modeled as a GP for every realization of an
uncertain parameter. We developed a scenario approach in
which we draw fixed independent samples of the uncertain
parameter and introduced a notion of regret under re-draw.
We formalized a variant of a scenario-based iterative algo-
rithm using the UCB of multiple scenarios to decide at what
future location to evaluate the cost-to-go. We characterized a
high probability upper bound on the regret under re-draw for
any finite number of iterations of the algorithm and further
characterized conditions under which the regret, with high
probability, tends to zero asymptotically with the number
of iterations. Finally, we supplemented our analysis with
numerical results on two case studies in path planning.

Future directions include improved and tighter bounds on
the high probability guarantees, and extensions to multi-agent
robust motion planning problems.
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APPENDIX: MATHEMATICAL PROOFS

Consider the following reformulation of Problem (3).

max
x∈X,τ∈R

τ subject to F (x, δ) ≥ τ, ∀ δ ∈ ∆. (7)

For finite, discrete domains X and ∆ with cardinalities |X|
and |∆|, respectively, it follows that (τ, x) in (7) belongs to
a discrete set with cardinality |X| × |∆|.

An immediate consequence of Theorem 3 from [18] when
applied to Problem (4) is the following.

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/


Corollary 5.1: Given η, ζ ∈ (0, 1), if

N ≥ 1

η
(ln |X|+ ln |∆| − ln ζ),

then, with probability1 at least 1− ζ, for every x̂ ∈ X ,

Pδ
{
F (x̂, δ) ≤ min

i∈{1,...,N}
F (x̂, δi)

}
≤ η.

A. Proof of Proposition 3.1

From Assumption 2.3 and from Corollary 5.1, we con-
clude that with probability at least 1− ζ, for every x ∈ X

PδN+1
{F (x, δN+1) ≥ min

δ∈∆N

F (x, δ)} ≥ 1− η.

This is equivalent to

PδN+1

{
min
δ∈∆N

F (x, δ) = min
δ∈∆N+1

F (x, δ)
}
≥ 1 − η. (8)

Since min
δ∈∆N

F (x, δ) = min
δ∈∆N+1

F (x, δ),∀x ∈ X

⇒ max
x∈X

min
δ∈∆N

F (x, δ) = max
x∈X

min
δ∈∆N+1

F (x, δ),

we conclude from (8) and from Definition 2.1 that

PδN+1

{
RT (∆N ∪ δN+1) = RT (∆N )

}
≥ 1− η,

with probability at least 1− ζ.

B. Proof of Theorem 3.1

At the t-th iteration, define the instantaneous regret r as

r(xt, δit) := max
x∈X

min
δ∈∆N

F (x, δ)− F (xt, δit).

We begin with establishing the following bound on r(xt, δit).

Lemma 5.1 (Instantaneous regret bound): For any t ≥ 1,
the instantaneous regret satisfies,

P{r(xt, δit) ≤ 2
√
βtσ

it
t−1(xt)|Dt−1} ≥ 1− 2|X|e−βt/2,

where the underlying random variable corresponds to the
posterior distribution of the GP F (x, δit) conditioned on
Dt−1 defined in Algorithm 1.
Proof: Assumption 2.2 implies that the posterior of F (x, δi)
conditioned on Dt−1 is Gaussian with mean µit−1(x) and
standard deviation σit−1(x). For any t and for any i:

F (x, δi)|Dt−1 ∼ N (µit−1(x), (σit−1(x))2).

From the concentration of measures inequality for Gaussian
random variables, for any i, we have

P{|F (x, δi)− µit−1(x)| >
√
βtσ

i
t−1(x)|Dt−1} ≤ 2e−βt/2.

Using the union bound, we have for any i and for all x ∈ X ,

P{|F (x, δi)−µit−1(x)| >
√
βtσ

i
t−1(x)|Dt−1} ≤ 2|X|e−βt/2.

Now consider

r(xt, δit) = F (x∗[N ], δ∗[n])− F (xt, δit)

≤ F (x∗[N ], δit)− F (xt, δit),

1This probability is with respect to the multi-sample δ1, . . . , δN .

where (x∗[N ], δ∗[N ]) is a solution to the problem,

max
x∈X

min
δ∈∆N

F (x, δ).

Therefore, with probability at least 1− 2|X|e−βt/2,

r(xt, δit) ≤ µ
it
t−1(x∗[N ]) +

√
βtσ

it
t−1(x∗[N ])

− µitt−1(xt) +
√
βtσ

it
t−1(xt)

≤ µitt−1(xt) +
√
βtσ

it
t−1(xt)− µitt−1(xt) +

√
βtσ

it
t−1(xt)

= 2
√
βtσ

it
t−1(xt),

where the second inequality follows from the definition of
xt in step 6 of Algorithm 1. This completes the proof. �

Proof of Theorem 3.1: With βt = 2 log(|X|π2t2/(3ε)), it
follows from Lemma 5.1 that

P{r(xt, δit) > 2
√
βtσ

it
t−1(xt)} ≤ 6ε/π2t2.

By applying union bound,

P{r(xt, δit) > 2
√
βtσ

it
t−1(xt), for some t ∈ N} ≤ ε.

Now following steps similar to those in [19], with probability
at least 1− ε,

T∑
t=1

r(xt, δit)
2 ≤

T∑
t=1

4βt(σ
it
t−1(xt))

2

≤ 4βT

T∑
t=1

N∑
i=1

(σit−1(xt))
21(it = i)

≤ 4βT
log(1 + 1/ρ2)

N∑
i=1

T∑
t=1

log
(

1 +
(σit−1(xt))

2

ρ2

)
,

where the last inequality follows since s2 ≤ log(1 +
s2)/(ρ2 log(1 + 1/ρ2)) for each s ∈ [0, 1/ρ2] [19].

Let γiT = 1
2

∑T
t=1 log

(
1 +

(σi
t−1(xt))

2

ρ2

)
. It follows from

[19, Theorems 1 & 4] (with the choice of T∗ = 1 therein),

γiT ∈ O
(
ρ−2

(
T

|X|∑
j=2

λ̂ij + log(T

|X|∑
j=1

λ̂ij)
))
.

From Cauchy-Schwartz inequality, it follows that

Rre-draw
T (∆N ) ≤ 1

T

√√√√T

T∑
t=1

r(xt, δit)
2 ≤

√
8βT γT

T log(1 + 1/ρ2)
,

which establishes the first claim of this theorem. To establish
the second claim, observe that in the regime of T ≥ |X|, with
the choice of T∗ = |X| in [19][Theorems 1 & 4], we have

γiT ∈ O
( |X|
ρ2

log
(
T

|X|∑
j=1

λ̂ij

))
,

which leads to the second claim. �
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