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ABSTRACT

OPTIMAL LEARNING OF DEPLOYMENT AND SEARCH
STRATEGIES FOR ROBOTIC TEAMS

By

Lai Wei

In the problem of optimal learning, the dilemma of exploration and exploitation stems from the fact

that gathering information and exploiting it are, in many cases, two mutually exclusive activities.

The key to optimal learning is to strike a balance between exploration and exploitation. The Multi-

Armed Bandit (MAB) problem is a prototypical example of such an explore-exploit tradeoff, in

which a decision-maker sequentially allocates a single resource by repeatedly choosing one among

a set of options that provide stochastic rewards. The MAB setup has been applied in many robotics

problems such as foraging, surveillance, and target search, wherein the task of robots can bemodeled

as collecting stochastic rewards. The theoretical work of this dissertation is based on the MAB

setup and three problem variations, namely heavy-tailed bandits, nonstationary bandits, and multi-

player bandits, are studied. The first two variations capture two key features of stochastic feedback

in complex and uncertain environments: heavy-tailed distributions and nonstationarity; while the

last one addresses the problem of achieving coordination in uncertain environments. We design

several algorithms that are robust to heavy-tailed distributions and nonstationary environments.

Besides, two distributed policies that require no communication among agents are designed for the

multi-player stochastic bandits in a piece-wise stationary environment.

The MAB problems provide a natural framework to study robotic search problems. The above

variations of theMAB problems directly map to robotic search tasks in which a robot team searches

for a target from a fixed set of view-points (arms). We further focus on the class of search problems

involving the search of an unknown number of targets in a large or continuous space. We view the

multi-target search problem as a hot-spots identification problem in which, instead of the global

maximum of the field, all locations with a value greater than a threshold need to be identified.

We consider a robot moving in 3D space with a downward-facing camera sensor. We model the



robot’s sensing output using amulti-fidelity Gaussian Process (GP) that systematically describes the

sensing information available at different altitudes from the floor. Based on the sensing model, we

design a novel algorithm that (i) addresses the coverage-accuracy tradeoff: sampling at a location

farther from the floor provides a wider field of view but less accurate measurements, (ii) computes

an occupancy map of the floor within a prescribed accuracy and quickly eliminates unoccupied

regions from the search space, and (iii) travels efficiently to collect the required samples for target

detection. We rigorously analyze the algorithm and establish formal guarantees on the target

detection accuracy and the detection time.

An approach to extend the single robot search policy to multiple robots is to partition the

environment into multiple regions such that workload is equitably distributed among all regions

and then assign a robot to each region. The coverage control focuses on such equitable partitioning

and the workload is equivalent to the so-called service demands in the coverage control literature. In

particular, we study the adaptive coverage control problem, in which the demands of robotic service

within the environment are modeled as a GP. To optimize the coverage of service demands in the

environment, the team of robots aims to partition the environment and achieve a configuration that

minimizes the coverage cost, which is a measure of the average distance of a service demand from

the nearest robot. The robots need to address the explore-exploit tradeoff: to minimize coverage

cost, they need to gather information about demands within the environment, whereas information

gathering deviates them frommaintaining a good coverage configuration. We propose an algorithm

that schedules learning and coverage epochs such that its emphasis gradually shifts from exploration

to exploitation while never fully ceasing to learn. Using a novel definition of coverage regret, we

analyze the algorithm and characterizes its coverage performance over a finite time horizon.
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CHAPTER 1

INTRODUCTION

Decision-making in the face of uncertainty is one of the most fundamental problems in robotics re-

search which requires the system to actively learn the environment while completing assigned tasks.

Exploration versus exploitation tradeoff is a key challenge in such problems. Here, exploration

means learning the environment to reduce the uncertainty while exploitation means taking the best

actions according to the existing information. In applications such as robotic deployment and search

where efficiency is of major concern, it is imperative to strike a good balance between exploration

and exploitation. This encourages an investigation into algorithms that enable the robotic system

to address this tradeoff in uncertain environments and achieve good finite-time performance.

The problems of interest in this dissertation include both theoretical investigations of the

exploration versus exploitation tradeoff and its applications to robotic systems. The theoretical

work is based on the Multi-Armed Bandit (MAB) setup [1] which is a classic mathematical

formulation featuring the exploration versus exploitation tradeoff. With no prior information, a

decision-maker sequentially chooses one among a set of stochastic arms (options) to achieve the

maximum cumulative reward. An efficient adaptive arm selection rule keeps a good balance of

learning the expected mean rewards and picking the empirically most profitable option. The high-

level ideas embodied in the MAB problem extend naturally to many applications dealing with

resource allocation in the face of uncertainty. Two prototypical examples in robotics research are

target search and multi-robot deployment, and they are studied in this work. In a target search

problem, to quickly and accurately locate the targets of interest, the autonomous vehicle needs

to effectively learn the likelihood of target positions through sensing and spend more effort at

locations that are more plausible to contain the target. The multi-robot deployment problem deals

with the optimal allocation of a team of robots such that the robot team configuration matches with

the demand of services within the environment. For example, more firefighting robots should be

assigned to areas with a larger probability of wildfire breakouts to ensure a shorter response time.
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In this dissertation, we study three variations of theMAB problem, namely heavy-tailed bandits,

nonstationary bandits, and multi-player bandits. Though the classical stochastic MAB problem has

a concise formulation and well-established theoretical guarantees, it fails to capture many key

properties of stochastic processes in real-world problems. The heavy-tailed MAB relaxed the

assumption that rewards from each arm are bounded or sub-Gaussian. This extension is motivated

by applications such as social networks [2] and financial markets [3], wherein certain variables of

interest exhibit heavy-tailed distributions. In the nonstationary MAB problem, in addition to being

unknown, the reward distributions are assumed to be time-varying. This formulation characterizes

the drift of physical processes in unknown dynamic working environments, e.g., the frequency of

certain biological activities changes due to the different light conditioning in a day. Themulti-player

MAB problem involves maximizing the total group reward such that no two decision-makers select

the same arm. This requires achieving a coordinated behavior of multiple decision-makers facing

uncertainty. An important aspect of the multi-player MAB problems is the collision model, which

means the reward is shared or no reward is received if multiple agents select the same option.

This formulation arises naturally in cognitive radio [4–6], wherein a transceiver can intelligently

detect and use vacant communication channels, and provides a rich modeling framework for other

interesting domains such as animal and robotic foraging [7, 8], autonomous surveillance [9] and

acoustic relay positioning for underwater communication [10].

A canonical example of the exploration-exploitation tradeoff in robotics applications is the

target search problem. In many scenarios, the search task is to find the locations that emit large

signals [11]. For example, the human body is relatively hot compared with its surroundings and

emits more infrared radiations, which can be used to sense the existence of victims in a search and

rescue scenario. TheMAB problem provides a natural framework to study robotic search problems.

In particular, the class of robotic search problems in which a robot team searches for a target from a

set of view-points (arms), or monitors an environment from a set of viewpoints, directly map to the

above variations of the MAB problems. We next focus on the class of search problems involving

the search of an unknown number of targets in a large or continuous space that is not constrained

2



to be observed from a small set of viewpoints.

We consider a robot moving in a 3D continuous environment to search for targets located on

the 2D floor. For a given location of the robot, the sensors on the robot provide a score indicating

the likelihood of the presence of a victim within the sensing footprint of the robot. We refer to

these scores at all locations in the environment at a given altitude as the sensing field. The group

of sensing fields at different altitudes from the floor is modeled a multi-fidelity Gaussian process

(GP) [12] which is an auto-regressive model that captures the following fact: sensing at locations

farther from the floor provides a wider field of view but less accurate measurements. The objective

is to design a search policy that schedules the altitude and locations of the points at which the

robot should collect samples such that the search time is minimized while ensuring a desired search

accuracy.

An approach to extend the single robot search policy to # robots is to partition the environment

into # regions such that some measure of "search load" is equitably distributed across all regions.

The coverage control focuses on such equitable partitioning and the search load is typically referred

to as serving demand in coverage control literature. In particular, the coverage control [13] concerns

the deployment of a multi-agent team in order to meet "servicing" demands in an environment. The

team of agents aims to minimize the coverage cost which is a function of the demand distribution,

agent locations in the environment, and the allocation of the set of points within the environment to

robots. In a standard coverage problem [13], the demand function is assumed to be known, while

in this dissertation, we assume it to be unknown and model it as a realization of a GP. Similar to

the MAB problem, the coverage problem with unknown demands exhibits the exploration versus

exploitation tradeoff: learning the demands requires inefficient deployment with respect to the true

demands.

1.1 Background and Literature Synopsis

The canonical stochastic MAB was historically proposed in [1] to model the clinical trials, where

different treatments with unknown effects are viewed as stochastic arms. At each time step, the

3



agent selects one arm from a set of options and receives a reward associated with it. The reward

sequence at each arm is assumed to be an unknown i.i.d random process. The difficulty of such a

problem lies in the exploration versus exploitation dilemma since the agent has to play the poorer

arms to learn about their mean rewards. In fact, there exists an intrinsic tradeoff between choosing

the most informative and seemingly the most rewarding alternative.

Robbins [14] formulated the objective of the stochastic MAB problem as minimizing the regret,

that is, the loss in expected cumulative rewards caused by failing to select the best arm every time. In

their seminal work, Lai and Robbins [15], established a logarithm problem-dependent asymptotic

lower bound on the regret achieved by any policy. The lower bound being problem-dependent

means it depends on the reward distribution at each arm. Using a simple heuristic called optimism

in the face of uncertainty, a general method of constructing Upper Confidence Bound (UCB) rules

for parametric families of reward distributions is also presented in [15], and the associated policy

is shown to attain the logarithm lower bound. Several subsequent UCB-based algorithms [16, 17]

with efficient finite-time performance have been proposed.

The simple formulation of the stochastic MAB limits its applications in many real-world

problems. Bubeck et al. [18] relaxed the sub-Gaussian assumption by only assuming the rewards

to have finite moments of order 1 + n for some n > 0. Their work allows the MAB model to be

used in applications such as social networks [2] and financial markets [3] wherein certain variables

of interest are inherently heavy-tailed.

The nonstationary MAB problem captures the dynamic aspect of the environment and has

received some interest. In [19], the authors studied the bandit problem in which an adversary,

rather than well-behaved stochastic arms, controls the payoffs. The performance of a policy is

evaluated using the weak regret, which is the difference in the cumulated reward of a policy

compared against the best single action policy. While being able to capture nonstationarity, the

generality of the reward model in adversarial MAB makes the investigation of globally optimal

policies very challenging. The nonstationary stochastic MAB can be viewed as a compromise

between stationary stochastic MAB and adversarial MAB. It maintains the stochastic nature of the

4



reward sequence while allowing some degree of nonstationarity in reward distributions. Instead of

the weak regret analyzed in adversarial MAB, a strong notion of regret defined with respect to the

best arm at each time step is studied in these problems. A broadly studied nonstationary problem

is piecewise stationary MAB [20], wherein the reward distributions are piecewise stationary. A

more general nonstationary problem is studied in [21], wherein the cumulative maximum variation

in mean rewards is subject to a variation budget.

In some decision-making problems, multiple agents could get involved and the choice made by

one agent could influence the selections of other agents. Most multi-player MAB studies deal with

a stationary environment and the task is to maximize the total rewards collected by all the agents.

As in the single-player case, the performance of the entire group of agents can be characterized

using group regret, which is defined as the loss in expected total rewards caused by the agents

failing to select the best set of arms every time. In [22], a lower bound on the group regret for

a centralized policy is derived and algorithms that asymptotically achieve this lower bound are

designed. Distributed multi-player MAB problem with no communication among players has

been studied in [4, 5, 23–25]. In [26–28], distributed cooperative agents communicate through a

communication network to improve their estimates of mean rewards and arm selections.

The MAB problem has been applied in many scientific and technological areas. For example, it

is used for opportunistic spectrum access in communication networks, wherein multiple secondary

users actively detect and use vacant channels [5, 29]. The arm models the availability of a channel

and the reward from an arm is eliminated if it is selected by multiple users. In theMAB formulation

of online learning for demand response [30, 31], an aggregator calls upon a subset of users (arms)

who have an unknown response to the request to reduce their loads. Besides, contextual bandits

are widely used in recommender systems [32, 33], wherein the acceptance of a recommendation

corresponds to the rewards from an arm. The MAB setup has also been used in robotic research,

which is one of the major topics in this dissertation.

In many robotic applications such as foraging, surveillance [7–9, 34] and acoustic relay po-

sitioning for underwater communication [10], the task of robots can be modeled to be collecting
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stochastic rewards [35, 36]. These rewards may correspond to, for example, the likelihood of

an anomaly at a spatial location, the concentration of a certain type of algae in the ocean, the

communication quality of a specific location, etc. Algorithms for the MAB problems have been

extended to these problems. It needs to be noted that in robotic applications, motion is normally

energy-consuming and time-demanding, while switch between arms comes with no cost in MAB

models. By introducing block-allocation strategies, the exploration versus exploitation tradeoff can

be balanced with a sufficiently small number of arm switches [37–39]. In [9], the robotic surveil-

lance problem is studied in an environment that is abruptly changing due to the arrival of unknown

spatial events. To solve the problem, a block-allocation strategy [20] is adapted to the piece-wise

stationary MAB setting. Other algorithms that benefit path planning in robotic applications include

the Deterministic Sequencing of Exploration and Exploitation (DSEE) algorithms [25, 40, 41] due

to their deterministic and predictable structures.

Unlike the MAB problems in which rewards from different arms are commonly assumed to

be independent, the feedbacks in robotic applications such as sensing information from different

locations are usually correlated. GPs are powerful tools to capture spatially correlated information

and they are widely used to characterizing spatiotemporal sensing fields [42, 43]. Sung et al. [11]

study the hot-spot identification problem in an environment within the framework of GP MAB [38,

44]. GPs have also been used in robotic inspection and search. Hollinger et al. [45] study an

inspection problem in which the robot needs to classify the underwater surface. They use a

combination of GP-implicit surface modeling and sequential hypothesis testing to classify surfaces.

In autonomous robotic target search, the vehicle is required to quickly and accurately locate

the targets of interest in an unknown and uncertain environment. Examples include victim search

and rescue, mineral exploration, and tracking natural phenomena. There have been some efforts

to address target search within the context of informative path planning [9, 11, 36, 45–58], which

deals with path planning for the robots to maximize the utility of data collection. For example,

Meera et al. [52] model target occupancy map as a GP and design a heuristic algorithm for target

detection that handles tradeoffs among information gain, field coverage, sensor performance, and
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collision avoidance. In this dissertation, our multi-target search solution is inspired by successive

elimination ideas from MAB research in [59, 60]. The robot sequentially collected new sensing

information and remove regions unlikely to contain the target from the search task. The proposed

algorithm combines informative path planning with Bayesian confidence interval estimation and

enables the robot to efficiently collect information and concentrate measurements in promising

areas.

The coverage control [13] is another interesting topic in robotics. It arises naturally in multi-

robot systemswhen a teamof agents is assigned to deploy themselves over an environment according

to a particular demand function, which specifies the degree to which a robot is needed at each

location. The objective is to minimize the coverage cost which is determined by the demand

distribution, robot locations, and task allocations. Example applications of coverage control range

from autonomous wildfire fighting, to smart agriculture, to ecological surveying, to environmental

cleaning. Classical coverage control problem [13, 61–63] assumes the demand function is known,

while recent works have focused on the adaptive coverage problem, in which agents are not assumed

to have knowledge of demand function a priori. In [64–69], the demand function defined on the

working environment is modeled as a realization of a GP which can be learned by taking samples

at different locations. The exploration versus exploitation dilemma in adaptive coverage control

is due to the conflict between collecting samples to refine demand estimation and maintaining a

good configuration to reduce the coverage cost. As with the MAB setup, adaptive coverage also

solves a stochastic optimization problem, though its task is more complicated than selecting the

most rewarding arm. In the same spirit as the DSEE algorithm for MAB problems, the adaptive

coverage policy proposed in this dissertation deterministically shifts its emphasis from exploration

to exploitation.

1.2 Contribution and Organization

In this section, the organization of the chapters in this dissertation is outlined and the contributions

in each chapter are discussed in detail.
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Chapter 2. We first review the stationary stochastic MAB problem and corresponding concepts

such as regret, worst-case regret, and lower bounds on regret. We then study the heavy-tailed

Bandits in which the sub-Gaussian assumption of reward distributions is relaxed. Instead, the

reward distributions admit moments of order 1 + n for some n > 0, similarly as in [18]. We modify

the MOSS [70] algorithm for the sub-Gaussian reward distribution by using a saturated empirical

mean to design a new algorithm called Robust MOSS. By analyzing Robust MOSS, we show

that it achieves worst-case regret matching with the lower bound while maintaining a distribution-

dependent logarithm regret. To the best of our knowledge, Robust MOSS is the first algorithm to

achieve order-optimal worst-case regret for heavy-tailed bandits. This is the major contribution of

this chapter. Numerical illustrations are provided to verify the robustness of the proposed algorithm

against heavy-tailed rewards. We close the chapter with comments and bibliographic remarks on

the classic MAB problem.

Chapter 3. In this chapter, we study a special nonstationary stochastic MAB problem called

piece-wise stationary bandits. We assume the mean rewards from arms switch to unknown values

at unknown time instants and the reward distribution remains stationary between consecutive

switches.

The main contribution of this chapter is the design of two generic algorithms, namely, the

Limited Memory DSEE (LM-DSEE) and the Sliding-Window UCB# (SW-UCB#). LM-DSEE

inherits the structure of the DSEE algorithm [25, 40] for the stationary bandit and comprises

interleaving blocks of exploration and exploitation. In the exploitation epochs, an arm is selected

based on themost recent exploration. This avoids a large bias in reward estimation in a nonstationary

environment. And, SW-UCB# is a modification of the SW-UCB algorithm from [20] that relaxes

the assumption of knowing horizon length. We rigorously show these algorithms incur sublinear

regret, i.e., the time average of the regret asymptotically converges to zero. A comparison of both

algorithms is made and discussed based on the simulation results.

Chapter 4. We study the multi-player stochastic bandits in a piece-wise stationary environment.

We consider a collision model in which a player receives a reward at an arm if it is the only player
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to select the arm. This problem features achieving coordination in an uncertain and nonstationary

environment.

The contribution of this chapter is the design of two novel distributed algorithms that require no

communication between agents, namely Round-Robin SW-UCB# (RR-SW-UCB#) and the Sliding-

Window Distributed Learning with Prioritization (SW-DLP). For both algorithms, it is shown that

the group regret is upper bounded by a sublinear function of time even with the collision model,

i.e., both algorithms achieve coordination while efficiently learning a nonstationary environment.

Chapter 5. In this chapter, we study a more general nonstationary stochastic MAB problem

proposed in [21] in which the cumulative maximum variation in mean rewards is restricted to

a variation budget. There is no restriction on how do reward distributions change, for example,

they may change abruptly like the piece-wise stationary bandits, or they may drift slowly between

subsequent abrupt changes. The performance of a policy is measured by comparing its cumulative

expected rewards with that of an oracle that selects the arm with the maximum mean reward at

each time and it is characterized using the worst-case regret, which is the regret for the worst

choice of reward distribution sequences that satisfies the variation budget. We extend UCB-based

policies with three different approaches, namely, periodic resetting, sliding observation window,

and discount factor, and show that they achieve order-optimal worst-case performance. We also

relax the sub-Gaussian assumption on reward distributions and develop robust versions of the

proposed policies that can handle heavy-tailed reward distributions and maintain their performance

guarantees.

The major contributions of this work are threefold. First, we extend MOSS [70] to design

Resetting MOSS (R-MOSS) and Sliding-Window MOSS (SW-MOSS). Also, we show Discounted

UCB (D-UCB) [20] can be tuned to solve the problem. Secondly, with rigorous analysis, we show

that R-MOSS and SW-MOSS achieve the exact order-optimal worst-case performance and D-UCB

is near-optimal. Finally, we relax the bounded or sub-Gaussian assumption on the rewards required

by these algorithms and design policies robust to heavy-tailed rewards. We show the theoretical

guarantees on the worst-case regret can be maintained by the robust policies.
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Chapter 6. We consider a scenario in which an autonomous vehicle equipped with a downward-

facing camera operates in a 3D environment and is tasked with searching for an unknown number

of stationary targets on the 2D floor of the environment. The key challenge is to design a search

policy that minimizes the search time while ensuring a high target detection accuracy. We model

the sensing field using a multi-fidelity GP that systematically describes the sensing information

available at different altitudes from the floor. Based on the sensing model, we design a novel

algorithm called Expedited Multi-Target Search (EMTS) that (i) addresses the coverage-accuracy

tradeoff: sampling at a location farther from the floor provides a wider field of view but less

accurate measurements, (ii) computes an occupancy map of the floor within a prescribed accuracy

and quickly eliminates unoccupied regions from the search space, and (iii) travels efficiently to

collect the required samples for target detection. We rigorously analyze the algorithm and establish

formal guarantees on the target detection accuracy and the expected detection time. We illustrate

the algorithm using a simulated multi-target search scenario.

The primary contribution of this chapter is the extension of the classical informative path

planning approach for the single-fidelity GP to the multi-fidelity GP setting. This novel extension

allowed for jointly planning for sampling locations and associated fidelity levels, and thus, ad-

dresses the fidelity-coverage tradeoff for expedited target search. The EMTS algorithm is proposed

and illustrated in an underwater victim search scenario using the Unmanned Underwater Vehicle

Simulator. The algorithm is analyzed in terms of its accuracy and expected detection time.

Chapter 7. We study the problem of distributedmulti-robot coverage over an unknown, nonuniform

sensory field, which is a deployment problem with uncertain demands. Modeling the sensory field

as a realization of a GP and using Bayesian techniques, we devise a policy that aims to balance

the tradeoff between learning the sensory function and covering the environment. We propose an

adaptive coverage algorithm called Deterministic Sequencing of Learning and Coverage (DSLC)

that schedules learning and coverage epochs such that its emphasis gradually shifts from exploration

to exploitation while never fully ceasing to learn. Using a novel definition of coverage regret which

characterizes the overall coverage performance of a multi-robot team over a time horizon ) , we
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analyze DSLC to provide an upper bound on expected cumulative coverage regret. Finally, we

illustrate the empirical performance of the algorithm through simulations of the coverage task over

an unknown distribution of wildfires.

The most important contribution of this chapter is the definition of coverage regret which

enables the finite-time analysis of the online estimation and coverage algorithm. Existing works

evaluate the algorithm performance by assuming the coverage algorithm attains global optimality

and comparing the performance with a globally optimal result. Since the coverage problem itself is

NP-Hard, this assumption is too strong, especially with distributed deployment being considered.

The coverage regret is definedwith respect to locally optimal solutionswhich relaxes the assumption

of achieving a globally optimal coverage and perfectly characterizes the convergence property of a

policy.

Chapter 8. In this chapter, we conclude the dissertation with a summary of contributions and future

directions. For the MAB problems addressed in this work, we discuss their potential applications

in robotic patrolling. For the robotic target search and adaptive coverage control, the problem

generalizations and possible solutions are illustrated in detail.
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CHAPTER 2

STATIONARY STOCHASTIC BANDITS

In a stationary stochastic MAB problem, an agent chooses an arm iC from the set of  arms

{1, . . . ,  } at each time C ∈ {1, . . . , )} and receives the associated random reward -iCC . The reward

at each arm : is drawn from an unknown probability distribution 5: with unknown mean `: . The

problem being stationary mean the reward distribution for each arm does not change with time.

Normally, it is assumed that the reward distributions are sub-Gaussian.

Definition 2.1 (Sub-Gaussian reward). For any arm : ∈ {1, . . . ,  }, the probability distribution

5: is 1/2 sub-Gaussian, i.e., if - ∼ 5: ,

∀_ ∈ R : E
[
exp(_(- − `))

]
≤ exp

(
_2

8

)
.

The main example for sub-Gaussia rewards are random rewards with bounded support [0, 1] which

is commonly used in MAB literature.

The objective for the stochastic MAB problem is to maximize the expected value of the cumu-

lative reward
∑)
C=1 -

iC
C . We assume that iC is selected based upon past observations {-iBB , iB}C−1

B=1

following some policy d. Specifically, d determines the conditional distribution

Pd
(
iC = : | {-iBB , iB}C−1

B=1

)
at each time C ∈ {1, . . . , ) − 1}. If Pd (·) takes binary values, we call d deterministic; otherwise, it

is called stochastic.

Let the maximum mean reward among all arms be `∗. We use Δ: = `∗ − `: to measure the

suboptimality of arm : . For a policy d, to maximize the expected cumulative reward E [() ] is

equivalent to minimize the regret defined by

'
d

)
:= E d

[
)∑
C=1

(
`∗ − -iCC

) ]
=

 ∑
:=1

Δ:E
d [=: ())],

where =: ()) is the total number of times the arm : has been chosen until time ) , and the second

expectation is taken over different realization of arm selections. It needs to be noted that 'd
)
can
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be viewed as the difference between the expected cumulative reward obtained by selecting the arm

with the maximum mean reward `∗ and selecting arms i1, . . . , i) .

2.1 Lower Bounds on Regrets

The objective of regret minimization was originally formulated by Robbins [14]. It was established

later a logarithm problem-dependent asymptotic lower bound on the number of times a suboptimal

arm is selected by a uniformly good policy in [15, 71]. Here, a policy d being uniformly good

means for any possible set of reward distributions { 51, . . . , 5 },

E ['d
)
] = >()0) for every 0 > 0,

which means lim)→∞ E ['d) ]/)
0 = 0 for any 0 > 0.

Lemma 2.1 (Lai and Robbins’ Lower bound [15, 71]). Suppose there is a unique best arm with

reward distribution 5 ∗ and an uniformly good policy d is applied. For any suboptimal arm : and

every n > 0,

lim
)→∞

P

(
=: ()) ≥

1 − n
�KL( 5: | | 5 ∗)

)
= 1,

where �KL denote the Kullback-Leibler divergence of two distributions. Hence,

lim inf
)→∞

E [=: ())]
log)

≥ 1
�KL( 5: | | 5 ∗)

.

The above result indicates a suboptimal arm needs to be selected at least logarithm number of

times, resulting in the logarithm lower bound for a stochastic MAB problem. It can also be seen

that regret 'd
)
is implicitly determined by reward distributions in { 51, . . . , 5 } as well as policy

d. So, 'd
)
is also called distribution-dependent regret. In contrast, the distribution-independent

regret, also known as worst-case regret, is defined by taking the maximum over at all possible

reward distribution combinations.

Definition 2.2 (Worst-case Regret). The worst-case regret is the regret for the worst possible choice

of reward distributions and it can be expressed as

worst'
d

)
= sup
{ 51,..., 5 }

'
d

)
.
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The regret associated with the policy that minimizes the above worst-case regret is called

minimax regret. According to [72], the minimax regret also has a lower bound 1/20
√
 ) . This

result is about finite-time performance and can be derived by selecting a set of reward distributions

that present challenges to the allocation policy. Consider a scenario in which there is a unique

best arm and all other arms have identical mean rewards such that the gap between optimal and

suboptimal mean rewards is Δ. For such a problem, it has been shown in [73] that for any policy d,

'
d

)
≥ �1

 

Δ
ln

()Δ2

 

)
+ �2

 

Δ
, (2.1)

where �1 and �2 are some positive constants. It needs to be noted that for Δ =
√
 /) , the above

lower bound becomes �2
√
 ) , which matches with the lower bound 1/20

√
 ) .

2.2 Upper Confidence Bound Strategies

The family of Upper Confidence Bound (UCB) strategies uses the principle called optimism in the

face of uncertainty. At each time slot, a UCB index which is a statistical index composed of both

mean reward estimate and the associated uncertainty measure is computed at each arm, and the

arm with the maximum UCB is picked. Within the family of UCB algorithms, two state-of-the-art

algorithms for the stationary stochastic MAB problems are UCB1 [16] and MOSS [70]. With arm

: being sampled =: (C) of times before C, ˆ̀:,=: (C) is the associated empirical mean. Then, UCB1

computes the UCB index for each arm : at time C as

6UCB1:,C = ˆ̀:,=: (C) +

√
2 ln C
=: (C)

.

The finite-time performance guarantee of UCB1, which is stronger than asymptotic property, has

been proved in [16].

Lemma 2.2 (Regret Upper Bound for UCB1). For the stationary stochastic MAB problem, if the

reward distributions have bounded support [0, 1], the regret of UCB1 after any ) satisfies

'UCB1
) ≤ 8

∑
::Δ:>0

ln)
Δ:
+

(
1 + c

2

3

)
 ∑
:=1

Δ: .
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Notice that the above upper bound matches with the order of Lai and Robbin’s logarithm lower

bound in Lemma 2.1. As is shown in [70], the worst-case regret of UCB1 can be derived by

selecting values for Δ: to maximize the upper bound, resulting in

worst'UCB1
) ≤ 10

√
( − 1)) (ln)).

Comparing this result with the lower bound on the minimax regret 1/20
√
 ) there exists an extra

factor
√

ln) . This issue has been resolved by the algorithm called Minimax Optimal Strategy in the

Stochastic case (MOSS) [70], which is the first algorithm that enjoys both logarithm distribution-

dependent and order-optimal distribution-independent bound. With prior knowledge of horizon

length ) , and the UCB index for MOSS is expressed as

6MOSS
:,C = ˆ̀:,=: (C) +

√√√
max

(
ln

(
)

 =: (C)

)
, 0

)
=: (C)

.

We now recall the worst-case regret upper bound for MOSS.

Lemma 2.3 (Worst-case regret upper bound for MOSS [70]). For the stationary stochastic MAB

problem, the worst-case regret of the MOSS algorithm satisfies

worst'MOSS
) ≤ 49

√
 ).

2.3 Heavy-tailed Stochastic MAB

This section is a slightly modified version of our published work on heavy-tailed bandits, and it is

reproduced here with the permission of the copyright holder1.

The rewards being bounded or sub-Gaussian is a common assumption that gives the sample

mean an exponential convergence and simplifies theMABproblem. However, inmany applications,

such as social networks [2] and financialmarkets [3], the rewards are heavy-tailed. Bubeck et al. [18]

relax the sub-Gaussian assumption by only assuming the rewards to have finite moments of order

1 + n for some n ∈ (0, 1]. They present the robust UCB algorithm and show that it attains a
1©2018 IEEE. Reprinted with permission from [74].
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logarithmic distribution-depend regret upper bound on the regret that is within a constant factor of

the lower bound in the heavy-tailed setting. However, the solutions provided in [18] are not able

to provably achieve an order optimal worst-case regret. Specifically, the factor of optimality is a

poly-logarithmic function of time-horizon.

The heavy-tailed stochasticMAB problem studied in this section is the stochasticMAB problem

with the following assumptions.

Assumption 2.1. Let - be a random reward drawn from any arm : ∈ {1, . . . ,  }. There exists a

constant D ∈ R>0 such that E
[
|- |1+n

]
≤ D1+n for some n ∈ (0, 1].

Assumption 2.2. Parameters ) ,  , D and n are known.

We now recall the lower bound on the minimax regret for the heavy tailed bandit problem

derived in [18].

Theorem 2.4 ([18, Th. 2]). For any fixed time horizon ) and the stochastic MAB problem under

Assumptions 2.1 and 2.2 with D = 1, the worst-case regret for a uniformly good policy d satisfies

worst'
d

)
≥ 0.01 

n
1+n )

1
1+n .

Remark 2.1. Since ') scales with D, the lower bound for heavy tail bandit is Ω
(
D 

n
1+n )

1
1+n

)
. This

lower bound also indicates that within a finite horizon ) , it is almost impossible to differentiate the

optimal arm from arm : , if Δ: ∈ $
(
D( /)) n

1+n
)
. As a special case, rewards with bounded support

[0, 1] correspond to n = 1 and D = 1. Then, the lower bound Ω(
√
 )) matching with the regret

upper bound is achieved by MOSS.

2.3.1 A Robust Minimax Policy: Robust MOSS

In Robust MOSS, to deal with the heavy-tailed reward distribution, we replace the empirical mean

with a saturated empirical mean. Although the saturated empirical mean is a biased estimator, it

has better convergence properties. The formal definition is given later in this section. We construct

a novel UCB index to evaluate the arms, and at each time slot, the arm with the maximum UCB
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index is picked. Let =: (C) be the number of times that arm : has been selected until time C − 1. At

time C, let ˆ̀:
=: (C) be the saturated empirical mean reward computed from the =: (C) samples at arm

: . Robust MOSS initializes by selecting each arm once and subsequently, at each time C, selects

the arm that maximizes the following UCB

6:
=: (C) = ˆ̀:

=: (C) + (1 + [)2=: (C) ,

where [ > 0 is an appropriate constant, 2=: (C) = D ×
[
q(=: (C))

] n
1+n and

q(=) =
ln+

(
)
 =

)
=

,

where ln+(G) := max(ln G, 1). Note that both q(=) and 2= are monotonically decreasing in =.

The robust saturated empirical mean is similar to the truncated empirical mean used in [18],

which is employed to extend UCB1 to achieve logarithm distribution-dependent regret for the

heavy-tailed MAB problem. Let {-8}8∈{1,...,<} be a sequence of i.i.d. random variables with mean

` and E
[
|-8 |1+n

]
≤ D1+n , where D > 0. Pick 0 > 1 and let ℎ(<) = 0blog0 (<)c+1 such that

ℎ(<) ≥ <. Define the saturation point �< by

�< := D ×
[
q
(
ℎ(<)

) ]− 1
1+n .

Then, the saturated empirical mean estimator is defined by

ˆ̀< :=
1
<

<∑
8=1

sat(-8, �<), (2.2)

where sat(-8, �<) := sign(-8)min
{
|-8 | , �<

}
.

Define 38 := sat(-8, �<) − E [sat(-8, �<)] which has the following properties.

Lemma 2.5. For any 8 ∈ {1, . . . , <}, 38 satisfies (i) |38 | ≤ 2�< (ii) E [32
8
] ≤ D1+n�1−n

< .

Proof. Property (i) follows immediately from the definition of 38, and property (ii) follows from

E [32
8 ] ≤ E

[
sat2(-8, �<)

]
≤ E

[
|-8 |1+n �1−n

<

]
.

�
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The following lemma examines the estimator bias and provides an upper bound on the error of

the saturated empirical mean.

Lemma 2.6 (Bias of saturated empirical mean). For an i.i.d. sequence of random variables

{-8}8∈{1,...,<} such that E [-8] = ` and E
[
-1+n
8

]
≤ D1+n , the saturated empirical mean (2.2)

satisfies ����� ˆ̀< − ` −
1
<

<∑
8=1

38

����� ≤ D1+n

�n<
.

Proof. Since ` = E
[
-8

(
1{|-8 |≤�<} + 1{|-8 |>�<}

) ]
, the error of estimator ˆ̀< satisfies

ˆ̀< − ` =
1
<

<∑
8=1

(
sat(-8, �<) − `

)
=

1
<

<∑
8=1

38 +
1
<

<∑
8=1

(
E [sat(-8, �<)] − `

)
,

where the second term is the bias of ˆ̀<. We now compute an upper bound on the bias.��E [sat(-8, �<)] − `
�� ≤ E [

|-8 | 1{|-8 |>�<}
]
≤ E

[
|-8 |1+n

(�<)n

]
≤ D1+n

(�<)n
,

which concludes the proof. �

2.3.2 Analysis of Robust MOSS

In this section, we analyze Robust MOSS to provide both distribution-free and distribution-

dependent regret bounds.To derive the concentration property of saturated empirical mean, we

use a maximal Bennett type inequality as shown in Lemma 2.7.

Lemma 2.7 (Maximal Bennett’s inequality [75]). Let {-8}8∈{1,...,=} be a sequence of bounded

random variables with support [−�, �], where � ≥ 0. Suppose that E [-8 |-1, . . . , -8−1] = `8 and

Var[-8 |-1, . . . , -8−1] ≤ E. Let (< =
∑<
8=1(-8 − `8) for any < ∈ {1, . . . , =}. Then, for any X ≥ 0

P
(
∃< ∈ {1, . . . , =} : (< ≥ X

)
≤ exp

(
− X
�
k

(
�X

=E

))
,

P
(
∃< ∈ {1, . . . , =} : (< ≤ −X

)
≤ exp

(
− X
�
k

(
�X

=E

))
,

where k(G) = (1 + 1/G) ln(1 + G) − 1.
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Remark 2.2. For G ∈ (0,∞), function k(G) is monotonically increasing in G.

Now, we establish an upper bound on the probability that the UCB underestimates the mean at

arm : by an amount G.

Lemma 2.8. For any arm : ∈ {1, . . . ,  } and any C ∈ { + 1, . . . , )} and G > 0, if [k(2[/0) ≥ 20,

the probability of event
{
6:
=: (C) ≤ `: − G

}
is no greater than

 

)

0

ln(0)Γ
(
1
n
+ 2

) (
k

(
2[/0

)
20

G

D

)− 1+n
n

.

Proof. It follows from Lemma 2.6 that

P
(
6:
=: (C) ≤ `: − G

)
≤P

(
∃< ∈ {1, . . . , )} : ˆ̀:< + (1 + [)2< ≤ `: − G

)
≤P

(
∃< ∈ {1, . . . , )} :

<∑
8=1

3:
8

<
≤ D

1+n

�n<
− (1 + [)2< − G

)
≤P

(
∃< ∈ {1, . . . , )} : 1

<

<∑
8=1

3:8 ≤ −G − [2<
)
,

where 3:
8
is defined similarly to 38 for i.i.d. reward sequence at arm : and the last inequality is due

to
D1+n

�n<
= D

[
q
(
ℎ(<)

) ] n
1+n ≤ D

[
q(<)

] n
1+n = 2< . (2.3)

Recall 0 > 1. We apply a peeling argument [76, Sec 2.2] with geometric grid 0B ≤ < < 0B+1 over

time interval {1, . . . , )}. Since 2< is monotonically decreasing with <,

P

(
∃< ∈ {1, . . . , )} : 1

<

<∑
8=1

3:8 ≤ −G − [2<
)

≤
∑
B≥0
P

(
∃< ∈ [0B, 0B+1) :

<∑
8=1

3:8 ≤ −0B
(
G + [20B+1

) )
.

Also notice that �< = �0B for all < ∈ [0B, 0B+1). Then with properties in Lemma 2.5, we apply
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Lemma 2.7 to get ∑
B≥0
P

(
∃< ∈ [0B, 0B+1) :

<∑
8=1

3:8 ≤ −0B
(
G + [20B+1

) )
≤

∑
B≥0

exp ©«−
0B

(
G + [20B+1

)
2�0B

k

(
2�0B

(
G + [20B+1

)
0D1+n�1−n

0B

)ª®¬(
k(G) is monotonically increasing

)
≤

∑
B≥0

exp

(
−
0B

(
G + [20B+1

)
2�0B

k

(2[�n0B20B+1
0D1+n

))
(
plug in 20B+1 , �0B and use ℎ(0B) = 0B+1)

=
∑
B≥1

exp

(
−0B

(
G

�0B−1
+ [q(0B)

)
k

(
2[/0

)
20

)
.

Plugging in q(0B), with [k(2[/0) ≥ 20 and ln+(H) ≥ ln(H), we have∑
B≥1

exp

(
−0B

(
G

�0B−1
+ [q(0B)

)
k

(
2[/0

)
20

)
≤

∑
B≥1

exp

(
−0B G

�0B−1

k
(
2[/0

)
20

)
 

)
0B .

Let 1 = Gk
(
2[/0

)
/(20D). Since �0B−1 ≤ D0 B

1+n , we have∑
B≥1

exp

(
−0B G

�0B−1

k
(
2[/0

)
20

)
 

)
0B ≤ 

)

∑
B≥1

0B exp
(
−10 n B

1+n
)

≤ 
)

∫ +∞

1
0H exp

(
− 10

(H−1) n
1+n

)
3H

=
 

)
0

∫ +∞

0
0H exp

(
− 10

Hn

1+n
)
3H(

where we set I = 10
Hn

1+n
)

=
 

)

0

ln(0)
1 + n
n

1−
1+n
n

∫ +∞

1

I
1+n
n
−1 exp

(
− I

)
3I

≤ 
)

0

ln(0)Γ
(
1
n
+ 2

)
1−

1+n
n ,

which concludes the proof. �

The following is a straightforward corollary of Lemma 2.8.

Corollary 2.9. For any arm : ∈ {1, . . . ,  } and any C ∈ { + 1, . . . , )} and G > 0, if [k(2[/0) ≥

20, the probability of event
{
6:
=: (C) − 2(1+ [)2=: (C) ≥ `: + G} shares the same bound in Lemma 2.8.
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The distribution-free upper bound for Robust MOSS, which is the main result for the paper, is

presented in this section. We show that the algorithm achieves order optimal worst-case regret.

Theorem 2.10. For the heavy-tailed stochastic MAB problem with  arms and time horizon ) , if

[ and 0 are selected such that [k(2[/0) ≥ 20, then Robust MOSS satisfies

worst'Robust MOSS
) ≤ �D n

1+n ()/4) 1
1+n + 2D ,

where

� =Γ
(
1/n + 2

) [
0/

(
6 + 3[

) ] 1
n
[
3/k

(
6 + 3[

) ] 1+n
n

+ nΓ
(
1/n + 2

) (
6 + 3[

)− 1
n
[
60/k(2[/0)

] 1+n
n 0/ln(0) +

(
6 + 3[

) [
4 + (1 + n)4 −n1+n

]
.

Remark 2.3. Parameter 0 and [ as inputs to Robust MOSS can be selected by minimizing the

leading constant � in the upper bound on the regret in Theorem 2.10. We have found that

selecting 0 slightly larger than 1 and selecting smallest [ that satisfies [k(2[/0) ≥ 20 yields good

performance.

Proof. Since both the UCB and the regret scales with D defined in Assumption 2.1, to simplify the

expressions, we assume D = 1. Also notice that Assumption 2.1 indicates
��`: �� ≤ D, so Δ: ≤ 2 for

any : ∈ {1, . . . ,  }. In the following, any terms with superscript or subscript “∗" and “:" are with

respect to the best and the :-th arm, respectively. The proof is divided into 4 steps.

Step 1: We follow a decoupling technique inspired by the proof of regret upper bound inMOSS [70].

Take the set of X-bad arms as BX as

BX := {: ∈ {1, . . . ,  } | Δ: > X}, (2.4)

where we assign X =
(
6 + 3[

) (
4 /)

) n
1+n . Thus,

') ≤ )X +
 ∑
C=1
Δ: + E

[
)∑

C= +1
1{iC ∈ BX}

(
ΔiC − X

) ]
≤ )X + 2 + E

[
)∑

C= +1
1{iC ∈ BX}

(
ΔiC − X

) ]
. (2.5)

21



Furthermore, we make the following decomposition

)∑
C= +1

1{iC ∈ BX}
(
ΔiC − X

)
=

)∑
C= +1

1
{
iC ∈ BX, 6∗=∗ (C) ≤ `

∗ −
ΔiC

3

} (
ΔiC − X

)
(2.6)

+
)∑

C= +1
1
{
iC ∈ BX, 6∗=∗ (C) > `

∗ −
ΔiC

3

} (
ΔiC − X

)
.

Notice that the first summand (2.6) describes regret from underestimating optimal arm ∗. For the

second summand, since 6iC
=iC (C)

≥ 6∗
=∗ (C) and `

∗ = `iC + ΔiC ,

)∑
C= +1

1
{
iC ∈ BX, 6∗=∗ (C) > `

∗ −
ΔiC

3

} (
ΔiC − X

)
≤

)∑
C= +1

1
{
iC ∈ BX, 6iC=iC (C) > `iC +

2ΔiC
3

}
ΔiC

=
∑
:∈BX

)∑
C= +1

1
{
iC = :, 6

:
=: (C) > `: +

2Δ:
3

}
Δ: , (2.7)

which characterizes the regret caused by overestimating X-bad arms.

Step 2: In this step, we bound the expectation of (2.6). When event
{
iC ∈ BX, 6∗=∗ (C) ≤ `

∗ − ΔiC/3
}

happens, we know

Δi ≤ 3`∗ − 36∗
=∗ (C) and 6

∗
=∗ (C) < `

∗ − X
3
.

Thus, we get

1
{
iC ∈ BX, 6∗=∗ (C) ≤ `

∗ −
ΔiC

3

}
(ΔiC − X) ≤ 1

{
6∗
=∗ (C) < `

∗ − X
3

}
×

(
3`∗ − 36∗

=∗ (C) − X
)

:= .C

Since .C is a positive random variable, its expected value can be computed involving only its

cumulative density function:

E [.C] =
∫ +∞

0
P (.C > G) 3G ≤

∫ +∞

0
P

(
3`∗ − 36∗

=∗ (C) − X > G
)
3G

=

∫ +∞

X

P
(
`∗ − 6∗

=∗ (C) >
G

3

)
3G.

Then we apply Lemma 2.8 at optimal arm ∗ to get

E [.C] ≤
 �1
)

∫ +∞

X

1
n
G−

1+n
n 3G =

 �1

)X
1
n
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where �1 = nΓ
(
1/n + 2

) [
60/k(2[/0)

] 1+n
n 0/ln(0). We conclude this step by

E
[ )∑
C= +1

1
{
iC ∈ BX, 6∗=∗ (C) ≤ `

∗ −
ΔiC

3

} (
ΔiC − X

) ]
≤

)∑
C= +1

.C ≤ �1 X
− 1
n .

Step 3: In this step, we bound the expectation of (2.7). For each arm : ∈ BX,

)∑
C= +1

1
{
iC = :, 6

:
=: (C) ≥ `: +

2Δ:
3

}
=

)∑
C= +1

C− ∑
<=1

1
{
iC = :, =: (C) = <

}
1
{
6:< ≥ `: +

2Δ:
3

}
=

)− ∑
<=1

1
{
6:< ≥ `: +

2Δ:
3

} )∑
C=<+ 

1
{
iC = :, =: (C) = <

}
≤

)∑
<=1

1
{
6:< ≥ `: +

2Δ:
3

}
≤

)∑
<=1

1
{

1
<

<∑
8=1

3:8 ≥
2Δ:

3
− (2 + [)2<

}
, (2.8)

where in the last inequality we apply Lemma 2.6 and use the fact that D1+n/�n< ≤ 2< in (2.3). We

set

;: =


(
6 + 3[
Δ:

) 1+n
n

ln

(
)

 

(
Δ:

6 + 3[

) 1+n
n

) .
With Δ: ≥ X, we get ;: is no less than(

6 + 3[
Δ:

) 1+n
n

ln
(
)

 

(
X

6 + 3[

) 1+n
n

)
=

(
6 + 3[
Δ:

) 1+n
n

.

Furthermore, since 2< is monotonically decreasing with <, for < ≥ ;: ,

2< ≤ 2;: ≤
[
ln+

(
)
 

( Δ:
6+3[

) 1+n
n

)
;:

] n
1+n

≤ Δ:

6 + 3[
. (2.9)

With this result and ;: ≥ 1, we continue from (2.8) to get

E

[ )∑
<=1

1
{

1
<

<∑
8=1

3:8 ≥
2Δ:

3
− (2 + [)2<

}]
≤;: − 1 +

)∑
<=;:

P

{
1
<

<∑
8=1

3:8 ≥
2Δ:

3
− (2 + [)2<

}
≤;: − 1 +

)∑
<=;:

P

{
1
<

<∑
8=1

3:8 ≥
Δ:

3

}
(2.10)
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Therefore by using Lemma 2.7 together with statement (ii) from Lemma 2.5, we get

)∑
<=;:

P

{
1
<

<∑
8=1

3:8 ≥
Δ:

3

}
≤

)∑
<=;:

exp
(
−<Δ:

3�<
k

(
�n<Δ:

) )
≤

)∑
<=;:

exp
(
−<Δ:

3�<
k

(
6 + 3[

) )
,

where the last step is due to thatk(G) ismonotonically increasing and �n<Δ: ≥ (6+3[)�n<2< ≥ 6+3[

from (2.9) and (2.3). Since �< = q
(
ℎ(<)

)− 1
1+n ≤ q(0<)− 1

1+n ≤ (0<) 1
1+n , we have

)∑
<=;:

exp
(
−<Δ:

3�<
k

(
6 + 3[

) )
≤

)∑
<=1

exp
(
−< n

1+n 0−
1

1+n k
(
6 + 3[

) Δ:
3

)
.

≤
∫ +∞

0
exp

(
−VH n

1+n
)
3H

where we set V = 0− 1
1+n k

(
6 + 3[

)
Δ:/3. Taking I = VH

n
1+n , we obtain∫ +∞

0
exp

(
−VH n

1+n
)
3H =

1 + n
n

V−
1+n
n

∫ +∞

0
I

1+n
n
−1 exp (−I) 3H = Γ

(
1
n
+ 2

)
V−

1+n
n .

Plugging it into (2.10),

E

[ )∑
<=1

1
{

1
<

<∑
8=1

3:8 ≥
2Δ:

3
− (2 + [)2<

}]
≤ �2Δ

− 1+n
n

:
+ �3Δ

− 1+n
n

:
ln

( )

 �3
Δ

1+n
n

:

)
where�2 = Γ

(
1/n + 2

)
0

1
n

[
3/k

(
6 + 3[

) ] 1+n
n and�3 =

(
6 + 3[

) 1+n
n . Putting it together withΔ: ≥ X

for all : ∈ BX, the expectation of (2.7) is no greater than∑
:∈BX

�2Δ
− 1
n

:
+ �3Δ

− 1
n

:
ln

(
)

 �3
Δ

1+n
n

:

)
≤ �2 X

− 1
n + (1 + n)4 −n1+n �3 X

− 1
n ,

where we use the fact that G− 1
n ln

(
)G

1+n
n /( �3)

)
takes its maximum at G = X exp(n2/(1 + n)).

Step 4: Plugging the results in step 2 and step 3 into (2.5),

worst'Robust MOSS
) ≤ )X +

[
�1 + �2 + (1 + n)4

−n
1+n �3

]
 X−

1
n + 2 .

Straightforward calculation concludes the proof. �

We now show that robust MOSS also preserves a logarithmic upper bound on the distribution-

dependent regret.
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Theorem 2.11. For the heavy-tailed stochastic MAB problem with  arms and time horizon ) , if

[k(2[/0) ≥ 20, the regret ') for Robust MOSS is no greater than∑
::Δ:>0

(D1+n

Δ:

) 1
n

[
�1 ln

(
)

 �1

(Δ:
D

) 1+n
n

)
+ �2 

]
+ Δ: ,

where �1 =
(
4 + 4[

) 1+n
n and �2 = max

(
4�1, 2Γ(1/n + 2)

(
80/k(2[/0)

) 1+n
n 0/ln(0)

)
.

Proof. Let X =
(
4 + 4[

) (
4 /)

) n
1+n and define BX the same as (2.4). Since Δ: ≤ X for all : ∉ BX,

the regret satisfies

'Robust MOSS
) ≤

∑
:∉BX

)Δ: +
)∑
C=1

1{iC ∈ BX}ΔiC

≤
∑
:∉BX

4 

(
4 + 4[
Δ:

) 1+n
n

Δ: +
∑
:∈BX

)∑
C=1

1{iC = :}Δ: . (2.11)

Pick arbitrary ;: ∈ Z+, thus

)∑
C=1

1{iC = :} ≤ ;: +
)∑

C= +1
1
{
iC = :, =: (C) ≥ ;:

}
≤ ;: +

)∑
C= +1

1
{
6:
=: (C) ≥ 6

∗
=∗ (C) , =: (C) ≥ ;:

}
.

Observe that 6:
=: (C) ≥ 6

∗
=∗ (C) implies at least one of the following is true

6∗
=∗ (C) ≤ `

∗ − Δ:/4, (2.12)

6:
=: (C) ≥ `: + Δ:/4 + 2(1 + [)2=: (C) , (2.13)

(1 + [)2=: (C) > Δ:/4. (2.14)

We select

;: =


(
4 + 4[
Δ:

) 1+n
n

ln

(
)

 

(
Δ:

4 + 4[

) 1+n
n

) .
Similarly as (2.9), =: (C) ≥ ;: indicates 2=: (C) ≤ Δ:/(4 + 4[), so (2.14) is false. Then we apply

Lemma 2.8 and Corollary 2.9,

P
{
6:
=: (C) ≥ 6

∗
=∗ (C) , =: (C) ≥ ;:

}
≤ P ((2.12) or (2.13) is true ) ≤

�′2 

)
Δ
− 1+n

n

:
,
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where �′2 = 2Γ
(
1/n + 2

) (
80/k(2[/0)

) 1+n
n 0/ln(0). Substituting it into (2.11),

'Robust MOSS
) ≤

∑
:∉BX

4�1 

Δ
1
n

:

+
∑
:∈BX


�1

Δ
1
n

:

ln
(
)

 �1
Δ

1+n
n

:

)
+
�′2 

Δ
1
n

:

+ Δ:

 .
Considering the scaling factor D, the proof can be concluded with easy computation. �

2.3.3 Numerical Illustration of Robust MOSS

In this section, we compare Robust MOSS with MOSS and Robust UCB (with truncated empirical

mean or Catoni’s estimator) [18] in a 3-armed heavy-tailed bandit setting. The mean rewards are

`1 = −0.3, `2 = 0 and `3 = 0.3 and sampling at each arm : returns a random reward equals to `:

added by sampling noise a, where |a | is a generalized Pareto random variable and the sign of a has

equal probability to be positive and negative. The PDF of reward at arm : is

5: (G) =
1

2f

(
1 +

b
��G − `: ��
f

)− 1
b
−1

for G ∈ (−∞, +∞),

where we select b = 0.33 and f = 0.32. Thus, for a random reward - from any arm, we know

E [-2] ≤ 1, which means n = 1 and D = 1. We select parameters 0 = 1.1 and [ = 2.2 for Robust

MOSS so that condition [k(2[/0) ≥ 20 is met.

Figure.2.1 shows the mean regret together with quantiles of regret distribution as a function of

time, which are computed using 200 simulations of each policy. On each graph, the bold curve is

the emprical mean regret while light shaded and dark shaded regions correspond respectively to

upper 5% and lower 95% quantile cumulative regrets. The simulation result shows that there is a

chance MOSS loses stability in heavy-tailed MAB and suffers linear regret while other algorithms

work consistently and maintain sub-linear regrets. Robust MOSS slightly outperforms Robust UCB

in this specific problem.

2.4 Summary

We reviewed the stationary stochastic MAB problem and concepts including regret and regret

lower bound. Specially, we studied the heavy-tailed bandit problem and proposed the Robust
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Figure 2.1: Comparison of Robust MOSS with MOSS and other Robust UCB algorithms.

MOSS algorithm. We evaluate it by deriving upper bounds on the associated distribution-free

and distribution-dependent regrets. Our analysis shows that Robust MOSS achieves order optimal

performance in both scenarios. It can be noticed that the saturated mean estimator centers at zero

so that the algorithm is not translation invariant. Exploration of translation invariant robust mean

estimator in this context remains an open problem.

2.5 Bibliographic Remarks

Since the seminal work by Lai and Robbins [15], several subsequent works design simpler al-

gorithms by assuming that the rewards are bounded or more generally, sub-Gaussian. By using

Kullback-Leibler(KL) divergence-based uncertainty estimates, Garivier and Cappé [17] designed

KL-UCB and proved that it strictly dominates UCB1 [16], which uses Hoeffding inequality-based

uncertainty estimates. Aside from the nonBayesian policies mentioned above, Bayesian strategies

have also been proved to be effective for MAB problems. The Bayes-UCB algorithm by Kaufmann

et al. [77] is the first Bayesian algorithm proved to be asymptotic optimal. Thompson sampling [1],
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proposed in 1933, has long been shown to perform very well in practice. Very recently, asymp-

totic and finite-time performance guarantees that are very close to the optimal have been proved

for Thompson sampling [78, 79]. Other effective policies include n-greedy [16]and deterministic

sequencing of exploration and exploitation [25, 40, 41]. However, both these classes of algorithms

require the knowledge of a lower bound on the minimum gap in mean rewards.

In the context of minimizing the worst-case regret, Ménard and Garivier [80] adapted theMOSS

algorithm with KL divergence-based uncertainty estimates and proposed a minimax algorithm kl-

UCB++ that improves the algorithm performance. It also needs to be noticed that MOSS requires

knowing horizon length, so it is not an anytime algorithm. Degenne and Perchet [81] extendMOSS

to an any-time version called MOSS-anytime that can adapt to different horizon lengths.
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CHAPTER 3

PIECE-WISE STATIONARY STOCHASTIC BANDITS

In nonstationary stochasticMABproblem, the reward sequence {- :C })C=1 at each arm : ∈ {1, . . . ,  }

is composed of independent samples from time-varying reward distributions { 5 :C })C=1. Piece-wise

stationary MAB is a special type of the nonstationary bandit problem in which 5 :C switches at

unknown time instants referred as breakpoints. Between consecutive breakpoints, 5 :C remains the

same for any : ∈ {1, . . . ,  }. In this chapter, we assume each 5 :C has bounded support [0, 1], and

the total number of breakpoints until time ) isΥ) ∈ $ () a), where a ∈ [0, 1) and is known a priori.

Similarly as the stationary Stochastic MAB problem, the decision-maker’s objective is to select

arms iC , . . . , i) that maximizes the expected of cumulative reward E
[ ∑)

C=1 -
iC
C

]
. Let the time-

varyingmean reward associatedwith arm : be `:C at time C ∈ {1, . . . , )}. Then, for the nonstationary

MAB problem, the regret for a policy d can be defined by

'
d

)
:=

)∑
C=1

`∗C − E
[
)∑
C=1

-
iC
C

]
= E d

[
)∑
C=1

`∗C − `
iC
C

]
, (3.1)

where `∗C = max:∈{1,..., } `:C and the expectation is with respect to different realization of {iC})C=1

that depends on obtained rewards through policy d.

This chapter is a slightly modified version of our published work on piece-wise stationary

stochastic bandits, and it is reproduced here with the permission of the copyright holder1. In the

following sections, two generic algorithms, namely Limited-Memory DSEE (LM-DSEE) algo-

rithm and the Sliding-Window UCB# (SW-UCB#) algorithm, are presented and analyzed. These

algorithms require parameters to be tuned based on environment characteristics.

3.1 Preliminaries

Wefirst recall twoMABpolicies since algorithms proposed in this chapter are developed based upon

them. The first algorithm isDeterministic Sequencing of Exploration andExploitation (DSEE) [40].
1©2018 IEEE. Reprinted with permission from [82].
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It divides the set of natural numbers N into interleaving blocks of exploration and exploitation.

In the exploration block all arms are played in a round-robin fashion, while in the exploitation

block, the arm with the maximum statistical mean reward is played. For an appropriately defined

F ∈ R>0, the DSEE algorithm at time C exploits if the number of exploration steps until time C − 1

are greater than or equal to  dF log Ce, otherwise it starts a new exploration block. Vakili et al.

showed that the DSEE algorithm achieves efficient performance. It should be noted that tuning F

requires knowledge of a lower bound on the gap between the mean reward from the best arm and

the second-best arm. This requirement can be relaxed at the cost of degraded performance.

The second policy is Sliding-Window UCB (SW-UCB) [20]. It is a variation of UCB1 [16]

that intends to solve the piecewise-stationary bandits. A sliding observation window is used to

erase the outdated sampling history, and the UCB index is computed within it. Since the size of

the sliding observation window in SW-UCB depends on the horizon length, it requires knowledge

of the horizon length of the problem. The SW-UCB# proposed in this chapter intends to relax this

assumption and enable the policy to adapt to different horizon lengths.

3.2 The LM-DSEE Algorithm

The LM-DSEE algorithm comprises interleaving blocks of exploration and exploitation. In the

=-th exploration epoch, each arm is sampled ! (=) = dW ln(=r;1)e number of times. In the =-th

exploitation epoch, the arm with the highest sample mean in the =-th exploration epoch is sampled

d0=r;e −  ! (=) times. Here, the parameters r, W, 0, 1, and ; are tuned based on the environment

characteristics (see Algorithm 1 for details). In the following, we will set 0 and 1 to unity for the

purposes of analysis.

The LM-DSEE algorithm is similar in spirit to the DSEE algorithms [25, 40], wherein the

length of the exploitation epoch increases exponentially with the epoch number, and all the data

collected in the previous exploration epochs are used to estimate mean rewards. However, in a

non-stationary environment using all the rewards from the previous exploration epochs may lead to

a heavily biased estimate of mean rewards. Furthermore, an exponentially increasing exploitation
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Algorithm 1: The LM-DSEE Algorithm
Input : a ∈ [0, 1),Δmin ∈ (0, 1), ) ∈ N,0 ∈ R>0,1 ∈ (0, 1];
Set : W ≥ 2

Δ2
min

, 0; ∈ { dW ln ;1e, . . . , +∞}, and r = 1−a
1+a ;

Output : sequence of arm selection;

% Initialization:
1 Set batch index =← 1 and C ← 1;
2 while C ≤ ) do

% Exploration
3 for : ∈ {1, . . . ,  } do

Pick arm : , ! (=) ← dW ln(=r;1)e times ;
collect rewards {- :

8
(=)}8∈{1,...,! (=) } ;

compute sample mean ¯̀epch
:
(=) ← 1

! (=)
∑! (=)
8=1 - :

8
(=);

% Exploitation
4 Select the best arm i

epch
= = arg max:∈{1,..., } ¯̀epch

:
(=) ;

5 Pick arm i
epch
= , d0=r;e −  ! (=) times ;

6 Update C ← C + d0=r;e and batch index =← = + 1;

epoch length may lead to excessive exploitation based on an outdated estimate of the mean rewards.

To address these issues, we modify the DSEE algorithm by using only the rewards from the current

exploration epoch to estimate the mean rewards, and we increase the length of the exploitation

epoch using a power law instead of an exponential function.

3.3 Analysis of the LM-DSEE Algorithm

Before we analyze the LM-DSEE algorithm, we introduce the following notation for the piece-wise

stationary environment. Let

Δ: = max{`∗C − `:C | C ∈ {1, . . . , )}},

Δmax = max{Δ: | : ∈ {1, . . . ,  }},

and Δmin = min{`∗C − `:C | C ∈ {1, . . . , )}, : ∈ {1, . . . ,  }, `∗C − `:C > 0}.

Theorem 3.1 (Regret Upper Bound for LM-DSEE). For piece-wise stationary environment with
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number of breakpoints Υ) ∈ $ () a) and a ∈ [0, 1), the regret for the LM-DSEE algorithm satisfies

'LM-DSEE
) ∈ $ () 1+a

2 ln)).

Proof. Let # be the index of the epoch containing the time-instant ) , then the length of each epoch

is at most d# r;e. Since breakpoints are located in at most Υ) epochs, we can upper bound the

regret from epochs containing breakpoints by

'b ≤ Υ) d# r;eΔmax.

In the epochs containing no breakpoint, let 'e and 'i denote, respectively, the regret from

exploration and exploitation epochs. Note that in such epochs, the mean reward from each arm

does not change. In the =-th epoch with no breakpoint, we denote the maximum mean reward by

`∗no-break(=) and the set of arms with maximum mean reward by K∗no-break(=). Then, the regret in

exploration epochs 'e satisfies,

'e ≤
#∑
==1

 ∑
:=1
dW ln(=r;)eΔ: ≤ # dW ln(# r;)e

 ∑
:=1

Δ: .

In exploitation epochs, regret is incurred if a sub-optimal arm is selected, and consequently, the

regret in exploitation epochs 'i satisfies

'i ≤
#∑
==1

 ∑
:=1

[
d=r;e −  ! (=)

]
P(iepch= = : ∉ K∗no-break(=))Δ: , (3.2)

where iepch= is the arm selected in the =-th exploitation epoch.

It follows from the Chernoff-Hoeffding inequality [83, Theorem 1] that

P
(

¯̀epch
:
(=) ≥ `epch

:
(=) + X

)
= P

(
¯̀epch
:
(=) ≤ `epch

:
(=) − X

)
= exp(−2X2! (=)),

where `epch
:
(=) is the mean reward of arm : in the =-th epoch and ! (=) is the number of times an

arm is selected in the =-th exploration epoch. Thus, we take 9∗ ∈ K∗no-break(=) and get

P
(
i
epch
= = : ∉ K∗no-break(=)

)
≤P

(
¯̀epch
:
(=) ≥ `epch

:
(=) + Δmin

2
)
+ P

(
¯̀epch
9∗ (=) ≤ `

∗
no-break(:) −

Δmin
2

)
≤2 exp

(
−
Δ2

min
2
W ln(=r;)

)
.
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Since W ≥ 2
Δ2

min
, P

(
i
epch
= = : ∉ K∗no-break(=)

)
≤ 2(=r;)−1. Substituting it into (3.2), we have

'i ≤ 2#
∑ 
:=1 Δ: since d=r;e −  ! (=) < =r;. Furthermore, it can be seen that

;

1 + r (# − 1)1+r − # ≤ ) ≤ ;

1 + r (# + 1)1+r + #,

and consequently # ∈ $ ()
1

1+r ). Therefore, it follows that

'LM-DSEE()) = 'b + 'e + 'i ≤ Υ)# r;Δmax + # (dW ln(# r;)e + 2)
 ∑
:=1

Δ: .

Thus, the regret 'LM-DSEE()) ∈ $ () 1+a
2 ln)), and this establishes the theorem. �

3.4 The SW-UCB# Algorithm

The SW-UCB# algorithm is an adaptation of the SW-UCB algorithm proposed and studied in [20].

At time C, SW-UCB# maintains an estimate of the mean reward ¯̀: (C, U) at each arm : , using only

the rewards collected within a sliding-window of observations. Let the width of the sliding-window

at time C ∈ {1, . . . , )} be g(C, U) = min{d_CUe, C}, where parameters U ∈ (0, 1], b ∈ (1, 2] and

_ ∈ R≥0 ∪{+∞} are tuned based on environment characteristics. Let

=: (C, U) =
C∑

B=C−g(C,U)+1
1{iB = :}

be the number of times arm : has been selected in the time-window at time C, then we have

¯̀: (C, U) =
1

=: (C, U)

C∑
B=C−g(C,U)+1

-
iB
B 1{iB = :}.

Based on the above estimate, the SW-UCB# algorithm at each time selects the arm

iC = arg max
:∈{1,..., }

¯̀: (C − 1, U) + 2: (C − 1, U), (3.3)

where 2: (C, U) =
√
b ln(C)/=: (C, U). The details of the algorithm are presented in Algorithm 2.

In contrast to the SW-UCB algorithm [20], the SW-UCB# algorithm employs a time-varying

width of the sliding-window. The tuning of the fixed window width in [20] requires a priori

knowledge of the time horizon ) which is no longer needed for the SW-UCB# algorithm.
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Algorithm 2: The SW-UCB# Algorithm
Input : a ∈ [0, 1), Δmin ∈ (0, 1), _ ∈ R>0 & ) ∈ N;
Set : U = 1−a

2
Output : sequence of arm selection;

% Initialization:
1 while C ≤ ) do

2 if C ∈ {1, . . . , #} then
Pick arm iC = C;

3 else
Pick arm iC defined in (3.3) ;

3.5 Analysis of the SW-UCB# Algorithm

We analyze the performance of the SW-UCB# algorithm (Algorithm 2) to get the following result.

Theorem 3.2 (Regret Upper Boudn for SW-UCB#). For the piece-wise stationary environment

with number of breakpoints Υ) = $ () a) and a ∈ [0, 1), the regret for the SW-UCB# algorithm

satisfies

'SW-UCB#
) ∈ $ () 1+a

2 ln)).

Proof. We define set T̂ such that for all C ∈ T̂ , C is either a breakpoint or there exists a break point

in its sliding-window of observations {C − g(C − 1, U), . . . , C − 1}. For C ∈ T̂ , the statistical means

are corrupted. Since the maximum sliding-window width is d_() − 1)Ue, it can be shown that

|T | ≤ Υ) d_() − 1)Ue .

Then, the regret can be upper bounded as follows.

'SW-UCB#
) ≤ Υ) d_() − 1)UeΔmax +

 ∑
:=1
E[#̃: ())]Δ: , (3.4)

where #̃: ()) :=
∑)
C=1 1{iC = : ∉ K∗C , C ∉ T̂ }, and K∗C is the set of arms with maximum mean
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reward at C. It can be seen that

#̃: ()) ≤ 1 +
)∑

C= +1
1{iC = : ∉ K∗C , =: (C − 1, U) < �(C − 1)}

+
)∑

C= +1
1{iC = : ∉ K∗C , C ∉ T̂ , =: (C − 1, U) ≥ �(C − 1)},

(3.5)

where �(C) = 4b ln C/Δ2
min.

We first bound the second term on the right side of inequality (3.5). Let � ∈ N be such that

[_(1 − U) (� − 1)] 1
1−U < ) ≤ [_(1 − U)�] 1

1−U . (3.6)

Then, consider the following partition of time indices{{
1 +

⌊
[_(1 − U) (6 − 1)] 1

1−U
⌋
, . . . ,

⌊
[_(1 − U)6] 1

1−U
⌋}}

6∈{1,...,�}
. (3.7)

In the 6-th epoch in the partition, either∑
C∈6-th epoch

1{iC = : ∉ K∗C , =: (C − 1, U) < �(C − 1)} = 0,

or there exist at least one time instant C that iC = : ∉ K∗C and = 9 (C − 1, U) < �(C − 1). Let the last

time instant satisfying these conditions in the 6-th epoch be

C: (6) = max
{
C ∈ 6-th epoch | iC = : ∉ K∗C and =: (C − 1, U) < �(C)

}
.

Wewill now show that there exists at most one time index in the 6-th epoch until C: (6) −1 that is not

covered by the time-window at C: (6). Towards this end, consider the increasing convex function

5 (G) = G 1
1−U with U ∈ (0, 1). It follows that 5 (G2) − 5 (G1) ≤ 5 ′(G2) (G2 − G1) if G2 ≥ G1. Let C̃ be

a time index in the 6-th epoch, and set G1 = 6 − 1 and G2 =
C̃1−U

_(1−U) . Then, substituting G1 and G2 in

the above inequality and simplifying, we get

C̃ − (_(1 − U) (6 − 1)) 1
1−U ≤ _C̃U

( C̃1−U

_(1 − U) − 6 + 1
)
. (3.8)

Since by definition of the 6-th epoch, C̃1−U

_(1−U) ≤ 6, we have

C̃ − b(_(1 − U) (6 − 1)) 1
1−U c ≤ min{C̃ + 1, _dC̃Ue + 1} = g(C̃, U) + 1. (3.9)
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Setting C̃ = C: (6) − 1 in (3.9), we obtain

C: (6) − g
(
C: (6) − 1, U

)
≤ 2 + b_(1 − U) (6 − 1) 1

1−U c,

i.e., the first time instant in the sliding-window at C 9 (6) is located at or to the left of the second time

instant of the 6-th epoch in the partition (3.7). Therefore, it follows that

b_(1−U)6
1

1−U c∑
C=1+b_(1−U) (6−1)

1
1−U c

1{iC = : ∉ K∗C , =: (C − 1, U) < �(C − 1)}

≤ =: (C − 1, U) + 2 ≤ �(C: (6) − 1) + 2.

Now we have

)∑
C= +1

1{iC = : ∉ K∗C , =: (C − 1, U) < �(C − 1)}

≤2� +
�∑
6=1

�(C: (6) − 1) ≤ �
(
2 + 4b ln)

Δ2
min

)
. (3.10)

Next, we upper-bound the expectation of the last term on the right-hand side of inequality (3.5).

Taking 9∗C ∈ K∗C , it can be shown that

1{iC = : ∉ K∗C , C ∉ T̂ , =: (C − 1, g) ≥ �(C − 1)}

≤
d_(C−1)Ue∑
B∗=1

d_(C−1)Ue∑
B=�(C−1)

1{=: (C − 1, U) = B, = 9∗C (C − 1, U) = B∗}

× 1{ ¯̀: (C − 1, U) + 2: (C − 1, U) > ¯̀ 9∗C (C − 1, U) + 2 9∗C (C − 1, U), C ∉ T̂ }.

(3.11)

When C ∉ T̂ , for each arm : ∈ {1, . . . ,  }, `: (B) is a constant for all B ∈ {C − g(C − 1, U), . . . , C}.

Note that if ¯̀: (C − 1, U) + 2: (C − 1, U) > ¯̀ 9∗C (C − 1, U) + 2 9∗C (C − 1, U) is true, at least one of the

following inequalities holds.

¯̀: (C − 1, U) ≥ `:C + 2: (C − 1, U), (3.12)

¯̀ 9∗C (C − 1, U) ≤ ` 9
∗
C

C − 2 9∗C (C − 1, U), (3.13)

`∗C − `:C < 22: (C − 1, U). (3.14)

36



Since =: (C − 1, U) ≥ �(C − 1), (3.14) does not hold. Applying Chernoff-Hoeffding inequality [83,

Theorem 1] to bound the probability of events (3.12) and (3.13), we obtain

P( ¯̀: (C − 1, U) ≥ `: (C) + 2: (C − 1, U)) ≤ (C − 1)−2b ,

P( ¯̀ 9∗C (C − 1, U) ≤ ` 9∗C (C) − 2 9∗C (C − 1, U)) ≤ (C − 1)−2b ,

where b = 1 + U. Applying both probability inequalities in conjuncture with (3.11), we get

E
[ )∑
C= +1

1{iC = : ∉ K∗C , C ∉ T̂ , =: (C − 1, U) ≥ �(C − 1)}
]

≤
)∑

C= +1
2(C − 1)−2b [_(C − 1)U + 1]2

≤
∞∑
C=1

2(_ + 1)2C−2 =
(_ + 1)2c2

3
. (3.15)

Therefore, it follows from (3.4), (3.5), (3.10), and (3.15) that

'SW-UCB#
) ≤ Υ) d_() − 1)UeΔmax +

 ∑
:=1

(
�

(
2 + 4b ln)

Δ2
min

)
+ 1 + (_ + 1)2c2

3

)
Δ: .

From (3.6), we have � = $ ()1−U), and this yields 'SW-UCB#
)

∈ $ () 1+a
2 ln)). �

3.6 Numerical Illustration

In this section, we present simulation results for the SW-UCB# and LM-DSEE algorithms. For each

simulation, we consider a 10-armed bandit in which the reward at each arm is generated using Beta

distribution. The breakpoints are introduced at time instants where the next element of the sequence

{bCac}C∈{1,...,)} is different from the current element. At each breakpoint, the mean rewards at each

arm were randomly selected from the set {0.05, 0.12, 0.19, 0.26, 0.33, 0.39, 0.46, 0.53, 0.6, 0.9}.

We select the parameters (0, 1) equal to (1, 0.25) for LM-DSEE in Algorithm 1. For SW-UCB# in

Algorithm 2, we select _ = 12.3.

The parameters a that describe characteristics of nonstationarity are varied to evaluate the

performance of algorithms. Figure. 3.1 shows that both SW-UCB# and LM-DSEE are effective in

the piece-wise stationary environment.
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Figure 3.1: Comparison of LM-DSEE and SW-UCB#.

It can be seen in Figs. 3.1 that for both algorithms, as expected, the ratio of the empirical regret

to the order of the regret established in Sections 3.3 and 3.5 is upper bounded by a constant. The

regret for the SW-UCB# is relatively smoother than the regret for the LM-DSEE algorithm. The

saw-tooth behavior of the regret for LM-DSEE is attributed to the fixed exploration-exploitation

structure, wherein the regret is certainly incurred during the exploration epochs.

3.7 Summary

We studied the stochastic MAB problem in the piece-wise stationary environment and designed

two novel algorithms, the LM-DSEE and the SW-UCB# for these problems. We analyzed these

algorithms to show that these algorithms incur sublinear regret, i.e., the time average of the regret

asymptotically converges to zero. The theoretical results are verified with numerical illustrations.

While both the algorithms incur the same order of regret, compared with LM-DSEE, SW-

UCB# has a better leading constant. This illustrates the cost of constraining the algorithm to have

a deterministic structure. On the other hand, this deterministic structure can be very useful, for

example, in the context of planning trajectories for a mobile robot performing surveillance or search

using aMAB framework. Though both algorithms can balance the explore-exploit tradeoff, they are

reactive in the sense that they select only one arm at a time, i.e., they only provide information about

the next location to be visited by the robot. Certain motion constraints on the robots such as non-

holonomicity may make such movements energetically demanding. Therefore, the deterministic

and predictable structure of LM-DSEE can be leveraged to design a tour for the robot which can
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be efficiently traversed even under motion constraints.

There are several possible extensions of this work. In the next chapter, we’ll study the multiple

decision-maker version of the problem in this chapter. Besides, extensions of the methodology

developed in this paper to other classes onMABproblems such as theMarkovianMABproblem [84]

and the restless bandits [85] are also of interest.

3.8 Bibliographic Remarks

In a non-stationary environment, achieving logarithmic expected cumulative regret may not be

feasible and the focus is on the design of algorithms that achieve sub-linear regret. Indeed, the

lower bound for the piece-wise stationary stochastic bandit has been shown to be Ω(
√
 Υ)))

in [20]. Thus, both of the proposed algorithms in this chapter are near-optimal. The approaches

to handle nonstationary environments can be classified into active approach and passive approach.

The former actively detects the breakpoints to and accordingly removes the old sampling results,

while the latter follows a predetermined rule and disregards the information about breakpoints.

One of the passive approaches is proposed by Kocsis and Szepesvári [86] which uses a discount-

ing factor to compute the UCB index. In subsequent work, Garivier and Moulines [20] provide

a formal analysis of Discounted UCB (D-UCB) and propose SW-UCB, which is also a passive

approach. They pointed out that if the number of change points Υ) is available, both algorithms

can be tuned to achieve a regret close to the Ω(
√
 Υ))) regret lower bound.

The active approach handles the change of reward distributions in an adaptive manner. Harland

et al. [87] actively detect the change point with the Page-Hinkley test and design two restarting strate-

gies to prevent false alarm, namely W-Restart and Meta-Bandit. The W-Restart triggers discounting

the sampling history when a breakpoint is detected, while the meta-Bandit models preserving or

discarding old information as a new 2-armed bandit. Other change point detection techniques

such as cumulative sum (CUMSUM) and Generalized Likelihood Ratio (GLR) tests are used in

subsequent work to design CUMSUM-UCB [88], GLR-klUCB [89], and M-UCB [90]. Change

point detection has also been implemented together with non-UCBmethods to design EXP3.R [91]
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and Change-Point Thompson sampling [92]. These policies either need the knowledge of Υ) to

tune the parameter or have regret upper bounds with a strong dependence on #) . Very recently,

two parameter-free policies AdSwitch [93] and Ada-ILTCB+ [94] for contextual MAB are proved

to have $̃ (
√
 #))) regret.
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CHAPTER 4

MULTI-PLAYER PIECEWISE STATIONARY STOCHASTIC BANDITS

In a variety of applications including robotic swarming, opportunistic spectrum access, and the

Internet of Things, achieving coordinated behavior of multiple decision-makers in unknown, un-

certain, and non-stationary environments without any explicit communication among them is of

immense interest. This multi-player decision-making in the face of uncertainty is embodied by the

multi-player MAB problem, in which several decision-makers simultaneously play the bandit game

in a decentralized fashion. For such a problem, we follow a common routine to assume a collision

model: the reward from an arm is eliminated or shared when it is selected by multiple agents.

The work in this chapter is slightly modified from our published paper on multi-player piecewise

stationary stochastic bandits, and it is reproduced here with the permission of the copyright holder1.

To formally formulate the problem, we consider a multi-player MAB problem with  arms and

the total number of players is " ∈ {1, . . . ,  }. Similarly as the single-player case in last chapter,

at each time C, there is a random reward - :C ∈ [0, 1] associated with each arm : ∈ {1, . . . ,  }, and

every agent 9 ∈ {1, . . . , "} picks a particular arm iC ( 9) ∈ {1, . . . ,  } and observes -iC ( 9)C . We

assume no communication between agents, so that iC ( 9) is selected based only on agent 9’s own

observation and decision-making history
{
-
iB ( 9)
B , iB ( 9)

}C−1
B=1.

With collision modelM that eliminate rewards, agent 9 receives the reward -iC ( 9)C from arm

iC ( 9) if it is the only player to select arm iC ( 9) at time C. Then, the group reward till time ) is

() =

)∑
C=1

 ∑
:=1

- :C O:C ,

where O:C = 1 if arm : is selected by only one player at time C and is zero otherwise. If the collision

model allows the reward to be shared, O:C = 1 if arm : is selected by a player. Since the algorithm

design and analysis are similar in both cases, the discussion will only be made based on the collision

modelM in this chapter.
1©2018 IEEE. Reprinted with permission from [95].
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We assume the minimum difference in mean rewards between any pair of arms at any time is

lower bounded by Δmin > 0. Let fC be a permutation of {1, . . . ,  } at time C such that the mean

rewards satisfy

`
fC (1)
C > . . . > `

fC ( )
C .

Then, the group regret for a policy d till time ) is defined by

'
d

)
(M) =

)∑
C=1

"∑
:=1

`
fC (:)
C − E d

[
()

]
=

)∑
C=1

"∑
:=1

`
fC (:)
C − E d

[ )∑
C=1

 ∑
:=1

`:C O:C
]
,

where the second expectation is computed over different realizations of O:C under policy d. Our

main purpose here is to design a multi-player policy d that minimizes 'd
)
(M). Like the last

chapter, we study the above MAB problem in a piecewise stationary environment with the number

of breakpoints until time ) to be Υ) ∈ $ () a), where a ∈ [0, 1) is known a priori.

4.1 The RR-SW-UCB# Algorithm

The Round Robin SW-UCB# (RR-SW-UCB#) algorithm is designed based upon SW-UCB# pre-

sented in the last chapter. In the RR-SW-UCB# algorithm, at each time C, every agent 9 maintains

an estimate of the mean reward ¯̀ 9
:
(C, U) at each arm : , using only the rewards collected within

a sliding-window of width g(C, U) = min{d_CUe, C}, where parameter U ∈ (0, 1]. The number of

times arm : has been selected within the time-window at time C is

=
9

:
(C, U) =

C∑
B=C−g(C,U)+1

1{iB ( 9) = :}.

Then, ¯̀ 9
:
(C, U) can be computed by

¯̀ 9
:
(C, U) = 1

=: (C, U)

C∑
B=C−g(C,U)+1

-
iB ( 9)
B 1{iB ( 9) = :}.

Using its own observations, each agent 9 computes upper confidence bounds on the mean rewards

¯̀ 9
:
(C − 1, U) + 2 9

:
(C − 1, U), ∀: ∈ {1, . . . ,  },

where 2 9
:
(C − 1, U) =

√
(1 + U) ln C/= 9

:
(C − 1, U). For initial  iterations, i.e., C ∈ {1, . . . ,  }, the

player 9 selects each arm once. Then, at time instants { + [" + 1}[∈Z≥0 , it computes the set Ω 9
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Algorithm 3: The RR-SW-UCB# Algorithm
Input : a ∈ [0, 1), Δmin ∈ (0, 1), _ ∈ R>0 , ) ∈ N and player number 9 ;
Set : U = 1−a

2 ;
Output : sequence of arm selections for each player 9 ;

% Initialization:
1 Set Ω 9 ← ∅, ordered set G 9 ← (), and C ← 1;
2 while C ≤ ) do

% round-robin selection of each arm starting at arm 9

3 if C ∈ {1, . . . ,  } then
Pick arm iC ( 9) = mod(C + 9 − 2,  ) + 1;

4 else
Compute Ω 9 containing " arms with " largest values in{

¯̀ 9
:
(C − 1, U) + 2 9

:
(C − 1, U) | : ∈ {1, . . . ,  }

}
;

Ascending sort the arm indices in Ω 9 , G 9 ← sort↑(Ω 9);
% round-robin selection of arms in G 9 starting at G 9 ( 9)
for round ∈ {1, . . . , "} do

Pick arm iC ( 9) = G 9 (mod(C −  + 9 − 2, ") + 1);
C ← C + 1;

containing " arms with " largest values in the set{
¯̀ 9
:
(C − 1, U) + 2 9

:
(C − 1, U) | : ∈ {1, . . . ,  }

}
.

Let G9 be the ordered set that contains arms in Ω 9 sorted in ascending value of their indices (not

using the upper confidence bounds), and letG9 (8) denote the 8-th element inG9 . The player 9 selects

arms in G9 in a round-robin fashion starting with the arm G 9C ( 9). It will be shown in the following

section that the estimated set of " best arms, denoted by Ω 9 , will be the same for each player with

high probability. Details of RR-SW-UCB# are shown in Algorithm 3. The free parameter _ in the

algorithm can be used to refine the finite-time performance of the algorithm.

4.2 Analysis of the RR-SW-UCB# Algorithm

Before the analysis, we introduce the following notation. Let Ω"∗ (C) denote the set of " arms with

the " largest mean rewards at time C. Then, the total number of times Ω 9 (C) ≠ Ω"∗ (C) until time )

43



can be defined as

N9 ()) :=
)∑
C=1

1{Ω 9 (C) ≠ Ω"∗ (C)}.

We now upper bound N9 ()) in the following lemma.

Lemma 4.1. For the RR-SW-UCB# algorithm and the multi-player MAB problem with  arms and

" players in the piecewise stationary environment with the number of break points Υ) = $ () a),

a ∈ [0, 1), the total number of times Ω 9 (C) ≠ Ω"∗ (C) until time ) for any player : satisfies

N9 ()) ≤( − ")
[( )1−U

_(1 − U) + 1
)(

1 + 4" (1 + U) ln)
Δ2

min

)
+ c

2

3

(_ + " + 1
"

)2]
+ Υ)

(
d_() − 1)Ue + " − 1

)
+  .

Proof. We begin by separately analyzing windows with and without breakpoints. For the ease of

notation, in the following, superscript 9 is omitted in ¯̀ 9
:
(C, U), = 9

:
(C, U) and 2 9

:
(C, U).

Step 1: Let set T̂ such that for all C ∈ T̂ , C is either a breakpoint or there exists a break point in

its sliding-window of observations {C − g(C − 1, U), . . . , C − 1}. For C ∈ T̂ , the statistical means are

biased. It follows that

|T̂ | ≤ Υ) d_() − 1)Ue .

Consequently, N9 ()) can be upper-bounded as

N9 ()) ≤ Υ)
(
d_() − 1)Ue + " − 1

)
+ Ñ9 ()), (4.1)

where Ñ9 ()) :=
∑)
C=1 1{Ω 9 (C) ≠ Ω"∗ (C), C ∉ T̂ }. The term " − 1 in (4.1) is due to the fact that Ω 9

is computed every " steps. In the following steps, we will bound Ñ9 ()).

Step 2: If Ω 9 (C) ≠ Ω"∗ (C), there exists at least one arm 8 such that 8 ∈ Ω 9 (C) and 8 ∉ Ω"∗ (C). Then,

it follows that

Ñ9 ()) ≤ +
)∑

C= +1

 ∑
8=1

1{8 ∈ Ω 9 (C), 8 ∉ Ω"∗ (C), C ∉ T̂ , =8 (C − 1, U) < ; (C, U)}

+
)∑

C= +1

 ∑
8=1

1{8 ∈ Ω 9 (C), 8 ∉ Ω"∗ (C), C ∉ T̂ , =8 (C − 1, U) ≥ ; (C, U)},
(4.2)
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where we choose ; (C, U) = 4(1 + U) ln C/Δ2
min.

We begin with bounding the second term on the right-hand side of inequality (4.2). First, we

partition time instants into � epochs. Let � ∈ N be such that

[_(1 − U) (� − 1)] 1
1−U < ) ≤ [_(1 − U)�] 1

1−U . (4.3)

Then, we have the following epochs

{1 + q(6 − 1), . . . , q(6)}6∈{1,...,�}, (4.4)

where q(6) =
⌊
[_(1 − U)6] 1

1−U
⌋
. Let C̃ be any time instant other than the first instant in the 6-th

epoch. We will now show that all but one of the time instants in the 6-th epoch until C̃ must be

contained in the time-window at C̃. Towards this end, consider the increasing convex function

5 (G) = G 1
1−U with U ∈ (0, 1). It follows that 5 (G2) − 5 (G1) ≤ 5 ′(G2) (G2 − G1) if G2 ≥ G1. Then,

substituting G1 = 6 − 1 and G2 =
C̃1−U

_(1−U) in the above inequality and simplifying, we get

C̃ − (_(1 − U) (6 − 1)) 1
1−U ≤ _C̃U

( C̃1−U

_(1 − U) − 6 + 1
)
.

Since by definition of the 6-th epoch, C̃1−U

_(1−U) ≤ 6, we have

C̃ − b(_(1 − U) (6 − 1)) 1
1−U c ≤ min{C̃ + 1, _dC̃Ue + 1} = g(C̃, U) + 1.

The only time instant in the 6-th epoch that is possibly not contained in the time window at C̃ is

1 + q(6 − 1). Then for any arm 8 ∈ {1, . . . ,  },

C̃∑
2+q(6−1)

1{8 ∈ Ω 9 (C)} ≤ "=8 (C̃, U). (4.5)

Furthermore, in the 6-th epoch in the partition, either∑
C∈6-th epoch

 ∑
8=1

1{8 ∈ Ω 9 (C), 8 ∉ Ω"∗ (C), C ∉ T̂ , =8 (C − 1, U) < ; (C, U)} = 0,

or there exist at least one time-instant C in the 6-th epoch such that

 ∑
8=1

1{8 ∈ Ω 9 (C), 8 ∉ Ω"∗ (C), C ∉ T̂ , =8 (C − 1, U) < ; (C, U)} > 0.
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Let the last time instant satisfying this condition in the 6-th epoch be

C (6) = max
{
C ∈ 6-th epoch

��  ∑
8=1

1{8 ∈ Ω 9 (C), 8 ∉ Ω"∗ (C), C ∉ T̂ , =8 (C − 1, U) < ; (C, U)} > 0
}
.

Note that C (6) ∉ T̂ indicates, for each 8 ∈ {1, . . . ,  }, `8 (B) is a constant for all B ∈ {C (6) −g(C (6) −

1, U), . . . , C (6)}. Then, it follows from (4.5) that∑
C∈6-th epoch

 ∑
8=1

1{8 ∈ Ω 9 (C), 8 ∉ Ω"∗ (C), C ∉ T̂ , =8 (C − 1, U) < ; (C, U)}

≤  − " +
C (6)∑

C=q(6−1)+2

 ∑
8=1

1{8 ∈ Ω 9 (C), 8 ∉ Ω"∗ (C), C ∉ T̂ , =8 (C − 1, U) < ; (C, U)}

≤  − " +
∑

8∉Ω"∗ (C (6))
"; (C8 (6), U)

≤ ( − ")
(
1 + 4" (1 + U) ln)

Δ2
min

)
, (4.6)

where C8 (6) = max{C ∈ 6-th epoch | 8 ∈ Ω 9 (C), 8 ∉ Ω"∗ (C), C ∉ T̂ , =8 (C − 1, U) < ; (C, U)} and

C8 (6) ≤ C (6) for all 8 ∈ {1, . . . ,  }. Therefore, from (4.4) and (4.6), we have

)∑
C=#+1

 ∑
8=1

1{8 ∈ Ω 9 (C), 8 ∉ Ω∗(C), =8 (C − 1, U) < ; (C, U)}

≤� ( − ")
(
1 + 4" (1 + U) ln)

Δ2
min

)
. (4.7)

Step 3: In this step, we bound the expectation of the last term in (4.2). It can be shown that

 ∑
8=1

1{8 ∈ Ω 9 (C), 8 ∉ Ω"∗ (C), C ∉ T̂ , =8 (C − 1, U) ≥ ; (C, U)}

≤
∑

8∉Ω"∗ (C)

∑
Z∈Ω"∗ (C)

ℎ(C)∑
BZ =1

ℎ(C)∑
B8=; (C,U)

1{=Z (C − 1, U) = BZ , =8 (C − 1, U) = B8, C ∉ T̂ }

× 1{ ¯̀Z (C − 1, U) + 2Z (C − 1, U) ≤ ¯̀8 (C − 1, U) + 28 (C − 1, U), =8 (C − 1, U) ≥ ; (C, U)},

(4.8)

where ℎ(C) :=
⌈
d_(C − 1)Ue/"

⌉
is the maximum number of times an arm can be selected within

the time window at C − 1. Note that ¯̀Z (C − 1, U) + 2Z (C − 1, U) ≤ ¯̀8 (C − 1, U) + 28 (C − 1, U) means
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at least one of the following holds.

¯̀8 (C − 1, U) ≥ `8 (C) + 28 (C − 1, U), (4.9)

¯̀Z (C − 1, U) ≤ `Z (C) − 2Z (C − 1, U), (4.10)

`Z (C) − `8 (C) < 228 (C − 1, U). (4.11)

Since =8 (C − 1, U) ≥ ; (C, U), (4.11) does not hold. Applying Chernoff-Hoeffding inequality [83,

Theorem 1] to bound the probability of events (4.9) and (4.10), we obtain

P( ¯̀8 (C − 1, U) ≥ `8 (C) + 28 (C − 1, U)) ≤ C−2(1+U) , (4.12)

P( ¯̀Z (C − 1, U) ≤ `Z (C) − 2Z (C − 1, U)) ≤ C−2(1+U) . (4.13)

Since Ω 9 is only computed at time instants { + [" + 1}[∈Z≥0 , it follows from (4.8), (4.12) and

(4.13) that

E
[ )∑
C= +1

 ∑
8=1

1{8 ∈ Ω 9 (C), 8 ∉ Ω"∗ (C), C ∉ T̂ , =8 (C − 1, U) ≥ ; (C, U)}
]

≤ ( − ")"
ℎ( 5 ([))∑
BZ =1

ℎ( 5 ([))∑
B8=; (C,U)

d) −#
"
e∑

[=0
2" 5 ([)−2(1+U)

≤ ( − ")"2
d) −#
"
e∑

[=0
2 5 ([)−2(1+U)ℎ( 5 ([))2

≤ ( − ")
(_ + " + 1

"

)2 ∞∑
[=1

2[−2

=
c2

3
( − ")

(_ + " + 1
"

)2
, (4.14)

where 5 ([) :=  + [" + 1. Therefore, it follows from (4.1), (4.2), (4.7), and (4.14) that

N9 ()) ≤  + ( − ")
[
�

(
1 + 4" (1 + U) ln)

Δ2
min

)
+ c

2

3

(_ + " + 1
"

)2]
+ Υ)

(
d_() − 1)Ue + " − 1

)
.

From (4.3), we have � ≤ )1−U/(_ − _U) + 1, and this yields the desired result. �

Based on Lemma 4.1, we now establish the order of expected cumulative group regret of

RR-SW-UCB# in the abruptly changing environment.
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Theorem4.2. For the RR-SW-UCB# algorithm and themulti-playerMAB problemwith # arms and

" players in the piecewise stationary environment with the number of break points Υ) = $ () a),

a ∈ [0, 1), under collision modelM, the expected cumulative group regret satisfies

'RR-SW-UCB#
) (M) ∈ $

(
)

1+a
2 ln)

)
.

Proof. If all player identify Ω"∗ (C) correctly at time C, no expected regret is accrued. It follows

from Lemma 4.1 that N9 ()) ∈ $ ()
1+a

2 ln)) for all 9 ∈ {1, . . . , "}. The total number of times

that any player misidentifies Ω"∗ (C) until time ) can be upper bounded by
∑"
9=1N9 ()). Thus, we

conclude the proof. �

4.3 The SW-DLP Algorithm

Distributed Learningwith Prioritization (DLP) [23] is designed for themulti-player stochasticMAB

problem in a stationary environment. The idea of DLP is to assign player 9 to collect rewards from

9-th best arm for most of circumstances. In a piecewise stationary environment, we extend the DLP

algorithm to design SW-DLP using a sliding observation window. The upper confidence bounds

on the mean rewards in SW-DLP are computed the same as SW-UCB#. SW-DLP employes an

identical allocation rule as DLP, i.e., at each time instant C, player 9 computes a set � 9 (C) containing

9 arms with 9 largest values in the set{
¯̀ 9
:
(C − 1, U) + 2 9

:
(C − 1, U) | : ∈ {1, . . . ,  }

}
,

and selects arm

iC ( 9) = arg min
:∈� 9 (C)

{ ¯̀ 9
:
(C − 1, U) − 2 9

:
(C − 1, U)}.

Details of the SW-DLP is shown in Algorithm 4. The parameters in the SW-DLP algorithm are the

same as in the RR-SW-UCB# algorithm. In the following, we will refer to ¯̀ 9
:
(C−1, U) −2 9

:
(C−1, U)

as the lower confidence bound on the estimate reward from arm : .

4.4 Analysis of the SW-DLP Algorithm

We analyze the performance of the SW-DLP algorithm (Algorithm 4) to get the following result.
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Algorithm 4: The SW-DLP Algorithm
Input, output, and parameters are the same as RR-SW-UCB#

1 while C ≤ ) do

2 if C ∈ {1, . . . ,  } then
Pick arm iC ( 9) = mod(C + 9 − 2, #) + 1;

3 else
Compute � 9 (C) containing 9 arms with 9 largest values in{

¯̀ 9
:
(C − 1, U) + 2 9

:
(C − 1, U) | : ∈ {1, . . . ,  }

}
;

Pick arm
iC ( 9) = arg min

:∈� 9

{ ¯̀ 9
:
(C − 1, U) − 2 9

:
(C − 1, U)};

Theorem 4.3. For the SW-DLP algorithm and the multi-player MAB problem with  arms and

" players in the piecewise stationary environment with the number of break points Υ) = $ () a),

a ∈ [0, 1), under collision modelM, the expected cumulative group regret satisfies

'SW-DLP
) (M) ∈ $

(
)

1+a
2 ln)

)
.

Proof. The proof is similar to the proof of Theorem 4.2 and we only present a sketch. Let \C ( 9) be

the 9-th best arm at time C. The total number of time instants that \C ( 9) is not selected by player 9

with SW-DLP satisfies

N̂9 =

)∑
C=1

1{iC ( 9) ≠ \C ( 9)} ≤ Υ)
⌈
_() − 1)U

⌉
+

)∑
C=1

1{iC ( 9) ≠ \C ( 9), C ∉ T̂ }. (4.15)

We partition the time horizon as in (4.4). Then, similarly to (4.5) in the proof of Lemma 4.1, it can

be shown that
C̃∑

C=2+q(6−1)
1{iC ( 9) = 8} ≤ = 98 (C̃, U), (4.16)

for any arm 8 ∈ {1, . . . ,  } and C̃ ∈ 6-th epoch.

We study the event that player 9 does not select arm \C ( 9) at time C under two scenarios: (i)

� 9 (C) ≠ Ω 9
∗ (C), and (ii) � 9 (C) = Ω:∗ (C), where Ω:∗ (C) is the set with : best arms at time C. Then, we
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have

)∑
C=1

1{iC ( 9) ≠ \C ( 9), C ∉ T̂ } ≤
)∑
C=1

1{� 9 (C) ≠ Ω 9
∗ (C), C ∉ T̂ }

+
)∑
C=1

1{iC ( 9) ≠ \C ( 9), � 9 (C) = Ω:∗ (C), C ∉ T̂ }. (4.17)

Note that unlike RR-SW-UCB#, in SW-DLP, after initialization, �: (C) is computed every time

instead of only at time instants {# + [" + 1}[∈Z≥0 . However, this difference does not change the

order of the total number of times that Ω:∗ (C) is misidentified. Therefore, using (4.16), it follows

similarly to the proof of Lemma 4.1 that

)∑
C=1

1{� 9 ≠ Ω 9
∗ (C)} ∈ $

(
)

1+a
2 ln)

)
. (4.18)

The Chernoff-Hoefding inequality is symmetric about the estimated mean and the upper tail

bound is identical to the lower tail bound. Hence, the second term on the right-hand side of

inequality (4.17) that involves selecting iC ( 9) using lower confidence bounds can be bounded

similarly to the first term. Thus, we have

)∑
C=1

1{iC ( 9) ≠ \C ( 9), � 9 = Ω 9
∗ (C), C ≠ T̂ } ∈ $

(
)

1+a
2 ln)

)
. (4.19)

Substituting (4.18) and (4.19) into (4.17), and substituting (4.17) into (4.15), we conclude that

N̂: ∈ $
(
)

1+a
2 ln)

)
.

The number of times the group does not receive a reward from arm \C ( 9) is upper bounded by

the number of times player 9 does not receive a reward from arm \C ( 9). Player 9 does not receive

a reward from arm \C ( 9) if one of the following conditions is true (i) arm \C ( 9) is not selected by

player 9 , and (ii) arm \C ( 9) is selected by another player 9 ′ ≠ 9 . The total number of times either

one of these events occurs at any arm \C ( 9), for all 9 ∈ {1, . . . , "}, can be upper bounded by∑"
:=1 2N̂9 . Since N̂9 ∈ $

(
)

1+a
2 ln)

)
for all 9 ∈ {1, . . . , "}, we conclude the proof. �

Remark 4.1 (Comparison of RR-SW-UCB# and SW-DLP). In multi-player MAB algorithms,

the assignment of a player to a targeted arm is crucial to avoid collisions. In RR-SW-UCB#,

50



0 2 4 6 8 10

105

0

0.5

1

1.5

2

 = 0.15
 = 0.30
 = 0.45

(a) RR-SW-UCB#

0 2 4 6 8 10

10
5

0

5

10

15

 = 0.15

 = 0.30

 = 0.45

(b) SW-DLP and RR-SW-UCB#

Figure 4.1: Simulation of RR-SW-UCB# and SW-DLP in a piecewise stationary environment.

the indices of arms and the indices of players are employed for this assignment. A round-robin

policy ensures all players select "-best arms persistently and accurately estimate the associated

mean rewards. While in SW-DLP, such accurate estimation by all players is driven by the lower

confidence bound-based assignment of players to the arms. �

4.5 Numerical Illustration

In this section, we present simulation results for RR-SW-UCB# and SW-DLP in abruptly changing

environments. In the simulations, we consider a multi-player MAB problem with 6 arms and

3 players. We consider three different values {0.15, 0.3, 0.45} of parameter a that describes the

number of breakpoints to show the performance the both algorithms. The breakpoints are introduce

at time instants where the next element of sequence {bCac}C∈{1,...,)} is different from current element.

We pick them at these time instants to make number of breakpoints ΥC ∈ $ (Ca) uniformly for all

C ∈ {1, . . . , )}. At each break point, the mean rewards at each arm is randomly selected from

{0.05, 0.22, 0.39, 0.56, 0.73, 0.90}. In both algorithms, we select _ = 12.3.

As shown in Figure. 4.1, with either algorithm, the ratio of the empirical cumulative group

regret to the order of C 1+a
2 ln C is upper bounded by a constant. The dashed lines in Figure. 4.1 (b)

are taken directly from (a). The comparison shows that the cumulative regret of RR-SW-UCB#

is much lower than SW-DLP. However, if the cost of switching between arms is considered, then
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the round-robin structure of RR-SW-UCB# would incur significant cost, and in such a scenario

SW-DLP might be preferred.

4.6 Summary

We studied the multi-player stochastic MAB problem in abruptly changing environments under

a collision model in which a player receives a reward by selecting an arm if it is the only player

to select that arm. We designed two novel algorithms, RR-SW-UCB# and SW-DPL to solve this

problem. We analyzed these algorithms and characterized their performance in terms of group

regret. In particular, we showed that these algorithms incur sublinear expected cumulative regret,

i.e., the time average of the regret asymptotically converges to zero. It would be of interest to

extend this work to a more general nonstationary environment in which the reward distributions can

change at each time step. Another avenue of future research is the extension of these algorithms to

the multi-player Markovian MAB problem.

4.7 Bibliographic Remarks

Most of the studies on the multi-player MAB problem deal with a stationary environment. In [22],

a lower bound on the expected cumulative group regret for a centralized policy is derived and

algorithms that asymptotically achieve this lower bound are designed. Some works assume no

communication among players in [4, 5, 23–25], whereas other works allow agents to communicate

to improve their arm selection in [26–28].

One of the major generalizations in the multi-player MAB problem is to consider player-

dependent rewards, i.e., an arm has different mean rewards for different players [24]. The optimal

allocation of the players to arms can be computed using approaches for a famous combinatorial

optimization problem known as the assignment problem [96]. To achieve a sublinear regret in a

distributed manner, a distributed solution to the assignment problem is required [97]. Assuming

collision results in no reward, implicit communication can be generated through collision. In [24],

the distributed MAB problem is solved using distributed auction [97] and collision-based implicit
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communication. The idea of implicit communication is used broadly in different distributed

protocols for multi-player MAB problems [98, 99].

More recently, game-theoretic techniques have been used to design fully distributedmulti-player

MAB algorithms without implicit communication [100]. Specifically, using the payoff dynamics

introduced in [101], the authors in [100] design an algorithm that plays, for a sufficiently large

portion of time, a strategy profile that optimizes the sum of player-specific mean rewards.
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CHAPTER 5

GENERAL NONSTATIONARY BANDITS WITH VARIATION BUDGET

In this chapter, we study a more general non-stationary stochastic MAB problem proposed in [21].

The reward distributions are allowed to either change abruptly like the piece-wise stationary bandits

or drift slowly. The nonstationarity of the environment is characterized by the cumulative maximum

variation in mean rewards, which subjects to a variation budget.

In order to minimize clutter, we denote the set of arms as K := {1, . . . ,  } and the sequence

of time slots as T := {1, . . . , )}. The reward sequence {- :C }C∈T for each arm : ∈ K is composed

of independent samples from potentially time-varying probability distribution function sequence

5 :T := { 5 :C (G)}C∈T . We refer to the set FK
)

= { 5 :T | : ∈ K} containing reward distribution

sequences at all arms as the environment. Then, the total variation of mean rewards in FK
)

is

defined by

E
(
FK)

)
:=

)−1∑
C=1

max
:∈K

���`:C+1 − `:C ��� , (5.1)

which captures the non-stationarity of the environment. We focus on the class of non-stationary

environments that have the total variation within a variation budget +) ≥ 0 which is defined by

E(+) , ),  ) :=
{
FK) | E

(
FK)

)
≤ +)

}
.

The objective is still to design a policy d to minimize the regret in a nonstationary environment

'
d

)
defined in (3.1). Note that the performance of a policy d differswith differentFK

)
∈ E(+) , ),  ).

For a fixed variation budget +) and a policy d, the worst-case regret is the regret with respect to

the worst possible choice of environment, i.e.,

'
d
worst(+) , ),  ) = sup

F K
)
∈E(+) ,), )

'
d

)
.

In this work, we aim at designing policies tominimize the worst-case regret. The optimal worst-case

regret achieved by any policy is called the minimax regret, and is defined by

inf
d

sup
F K
)
∈E(+) ,), )

'
d

)
.
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We study the nonstationary MAB problem under the following two classes of reward distributions:

Assumption 5.1 (Sub-Gaussian reward). For any : ∈ K and any C ∈ T , distribution 5 :C (G) is 1/2

sub-Gaussian, i.e.,

∀_ ∈ R : E
[
exp(_(- :C − `))

]
≤ exp

(
_2

8

)
.

Moreover, for any arm : ∈ K and any time C ∈ T , E
[
- :C

]
∈ [0, 0 + 1], where 0 ∈ R and 1 > 0.

Assumption 5.2 (Heavy-tailed reward). For any arm : ∈ K and any time C ∈ T , E
[
(- :C )2

]
≤ 1.

5.1 Lower Bound on Minimax Regret in Nonstationary Environment

In this section, we review existing minimax regret lower bounds and minimax policies from

literature. These results apply to both sub-Gaussian and heavy-tailed rewards. When +) = 0, the

minimax regret lower bound is the same as the one for stochastic stationary bandit (2.1). We show

how the minimax regret lower bound for +) = 0 can be extended to establish the minimax regret

lower bound for +) > 0. In the later sections, we design a variety of policies that match with the

minimax regret lower bound for +) > 0.

In the setting of +) > 0, we recall here the minimax regret lower bound for nonstationary

stochastic MAB problems.

Lemma 5.1 (Minimax Lower Bound: +) > 0 [21]). For the non-stationary MAB problem with  

arms, time horizon ) and variation budget +) ∈ [1/ ,)/ ],

inf
d

sup
F K
)
∈E(+) ,), )

'
d

)
≥ � ( +) )

1
3)

2
3 ,

where � ∈ R>0 is some constant.

To understand this lower bound, consider the following non-stationary environment. The

horizon T is partitioned into epochs of length g =
⌈
 

1
3 ()/+) )

2
3
⌉
. In each epoch, the reward

distribution sequences are stationary and all the arms have identical mean rewards except for the

unique best arm. Let the gap in the mean be Δ =
√
 /g. The index of the best arm switches at
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the end of each epoch following some unknown rule. So, the total variation is no greater than

Δ)/g, which satisfies the variation budget +) . Besides, for any policy d, we know from (2.1) that

worst-case regret in each epoch is no less than �2
√
 g. Summing up the regret over all the epochs,

minimax regret is lower bounded by )/g × �2
√
 g, which is consistent with Lemma 5.1.

5.2 UCB Algorithms for Sub-Gaussian Nonstationary Stochastic Bandits

In this section, we extendUCB1 andMOSS to design nonstationary UCB policies for scenarios with

+) > 0. Three different techniques are employed, namely periodic resetting, sliding observation

window and discount factor, to deal with the remembering-forgetting tradeoff. The proposed

algorithms are analyzed to provide guarantees on theworst-case regret. We show their performances

match closely with the lower bound in Lemma 5.1.

The following notations are used in later discussions. Let # =
⌈
)/g

⌉
, for some g ∈ {1, . . . , )},

and let {T1, . . . ,T# } be a partition of time slots T , where each epoch T8 has length g except possibly

T# . In particular,

T8 =
{
1 + (8 − 1)g , . . . , min (8g, ))

}
, 8 ∈ {1, . . . , #}.

Let the maximum mean reward within T8 be achieved at time g8 ∈ T8 and arm ^8, i.e., `^8g8 =

maxC∈T8 `∗C . We define the variation within T8 as

E8 :=
∑
C∈T8

max
:∈K

���`:C+1 − `:C ��� ,
where we trivially assign `:

)+1 = `
:
)
for all : ∈ K. Let 1 {·} denote the indicator function and |·|

denote the cardinality of the set, if its argument is a set, and the absolute value if its argument is a

real number.

5.2.1 Resetting MOSS Algorithm

Periodic resetting is an effective technique to preserve the freshness and authenticity of the informa-

tion history. It has been employed in [21] to modify Exp3 to design Rexp3 policy for nonstationary
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Algorithm 5: The R-MOSS Algorithm
Input : +) ∈ R≥0 and ) ∈ N
Set : g =

⌈
 

1
3
(
)/+)

) 2
3
⌉

Output : sequence of arm selection

1 while C ≤ ) do
2 if mod (C, g) = 0 then
3 Restart the MOSS policy;

stochastic MAB problems. We extend this approach to MOSS and propose a nonstationary policy

Resetting MOSS (R-MOSS). In R-MOSS, after every g time slots, the sampling history is erased

and MOSS is restarted. The pseudo-code is provided in Algorithm 5 and the performance in terms

of the worst-case regret is established below.

Theorem 5.2. For the sub-Gaussian nonstationary MAB problem with  arms, time horizon ) ,

variation budget +) > 0, and g =
⌈
 

1
3
(
)/+)

) 2
3
⌉
, the worst case regret of R-MOSS satisfies

sup
F K
)
∈E(+) ,), )

'R-MOSS
) ∈ O(( +) )

1
3)

2
3 ).

Sketch of the proof. Note that one run of MOSS takes place in each epoch. For epoch T8, define the

set of bad arms for R-MOSS by

BR
8 := {: ∈ K | `^8g8 − `

:
g8
≥ 2E8}. (5.2)

Notice that for any C1, C2 ∈ T8, ���`:C1 − `:C2 ��� ≤ E8, ∀: ∈ K . (5.3)

Therefore, for any C ∈ T8, we have

`∗C − `
iC
C ≤ `^8g8 − `

iC
C ≤ `^8g8 − `

iC
g8 + E8 .

Then, the regret from T8 can be bounded as the following,

E

[∑
C∈T8

`∗C − `
iC
C

]
≤ |T8 | E8 + E

[∑
C∈T8

`^8g8 − `
iC
g8

]
≤ 3|T8 | E8 + (8, (5.4)
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where (8 = E
[∑
C∈T8

∑
:∈BR

8

1
{
iC = :

} (
`^8g8 − `

iC
g8 − 2E8

) ]
.

Now, we have decoupled the problem, enabling us to generalize the analysis of MOSS in the

stationary environment [70] to bound (8. We will only specify the generalization steps and skip the

details for brevity.

First notice inequality (5.3) indicates that for any : ∈ BR
8
and any C ∈ T8,

`
^8
C ≥ `^8g8 − E8 and `

:
C ≤ `:g8 + E8 .

So, at any C ∈ T8, ˆ̀^8 ,=^8 (C) concentrate around a value no smaller than `^8g8 −E8, and ˆ̀:,=: (C) concentrate

around a value no greater than `:g8 + E8 for any : ∈ �
R
8
. Also `^8g8 − E8 ≥ `:g8 + E8 due to the definition

in (5.2).

In the analysis of MOSS in stationary environment [70], the UCB of each suboptimal arm is

compared with the best arm and each selection of suboptimal arm : contribute Δ: in regret. Here,

we can apply a similar analysis by comparing the UCB of each arm : ∈ �R
8
with ^8 and each

selection of arm : ∈ �R
8
contributes (`^8g8 − E8) − (`:g8 + E8) in (8. Accordingly, we borrow the upper

bound in Lemma 2.3 to get (8 ≤ 49
√
 |T8 |.

Substituting the upper bound on (8 into (5.4) and summarizing over all the epochs, we conclude

that

sup
F K
)
∈E(+) ,), )

'R-MOSS
) ≤ 3g+) +

#∑
8=1

49
√
 g,

which implies the theorem. �

The upper bound in Theorem 5.2 is in the same order as the lower bound in Lemma 5.1. So,

the worst-case regret for R-MOSS is order optimal.

5.2.2 Sliding-Window MOSS Algorithm

We have shown that periodic resetting coarsely adapts the stationary policy to a nonstationary

setting. However, it is inefficient to entirely remove the sampling history at the restarting points

and the regret accumulates quickly close to these points. In [20], a sliding observation window
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Algorithm 6: The SW-MOSS Algorithm
Input : +) ∈ R>0, ) ∈ N and [ > 1/2
Set : g =

⌈
 

1
3
(
)/+)

) 2
3
⌉

Output : sequence of arm selection

1 Pick each arm once.
2 while C ≤ ) do

Compute statistics withinWC =
{
min(1, C − g), . . . , C − 1

}
:

ˆ̀:
=: (C) =

1
=: (C)

∑
B∈WC

-B1{iB = :}, =: (C) =
∑
B∈WC

1{iB = :}

Pick arm iC = arg max
:∈K

ˆ̀:
=: (C) +

√√√
[

max
(

ln
(

g
 =: (C)

)
, 0

)
=: (C)

;

is used to erase the outdated information smoothly and more efficiently utilize the information

history. The authors proposed the SW-UCB algorithm that intends to solve the MAB problem with

piece-wise stationary mean rewards. We show that a similar approach can also deal with the general

nonstationary environment with a variation budget. In contrast to SW-UCB, we integrate the sliding

window technique with MOSS instead of UCB1 and achieve the order optimal worst-case regret.

Let the sliding observation window at time C beWC :=
{
min(1, C − g), . . . , C − 1

}
. Then, the

associated mean estimator is given by

ˆ̀:
=: (C) =

1
=: (C)

∑
B∈WC

-B1{iB = :}, =: (C) =
∑
B∈WC

1{iB = :}.

For each arm : ∈ K, define the UCB index for SW-MOSS by

6:C = ˆ̀:
=: (C) + 2=: (:) , 2=: (C) =

√√√
[

max
(

ln
(

g
 =: (C)

)
, 0

)
=: (C)

,

where [ > 1/2 is a tunable parameter. With these notations, SW-MOSS is defined in Algorithm 6.

To analyze it, we will use the following concentration bound for sub-Gaussian random variables.

Fact 5.1 (Maximal Hoeffding inequality[83]). Let -1, . . . , -= be a sequence of independent 1/2
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sub-Gaussian random variables. Define 38 := -8 − `8, then for any X > 0,

P

(
∃< ∈ {1, . . . , =} :

<∑
8=1

38 ≥ X
)
≤ exp

(
−2X2/=

)
,

and P
(
∃< ∈ {1, . . . , =} :

<∑
8=1

38 ≤ −X
)
≤ exp

(
−2X2/=

)
.

At time C, for each arm : ∈ K define

" :
C :=

1
=: (C)

∑
B∈WC

`:B 1{iB=:} .

Now, we are ready to present concentration bounds for the sliding window empirical mean ˆ̀:
=: (C) .

Lemma 5.3. For any arm : ∈ K and any time C ∈ T , if [ > 1/2, for any G > 0 and ; ≥ 1, the

probability of event � :=
{

ˆ̀:
=: (C) + 2=: (C) ≤ "

:
C − G, =: (C) ≥ ;

}
is no greater than

(2[) 3
2

ln(2[)
 

gG2 exp
(
−G2;/[

)
. (5.5)

The probability of event � :=
{

ˆ̀:
=: (C) − 2=: (C) ≥ "

:
C + G, =: (C) ≥ ;

}
is also upper bounded by (5.5).

Proof. For any C ∈ T , let D:C
8

be the 8-th time slot when arm : is selected within WC and let

3:C
8
= - :

D:C
8

− `:
D:C
8

. Note that

P (�) ≤ P
(
∃< ∈ {;, . . . , g} : 1

<

<∑
8=1

3:C8 ≤ −G − 2<
)
,

Let 0 =
√

2[ such that 0 > 1. We now apply a peeling argument [76, Sec 2.2] with geometric grid

0B; < < ≤ 0B+1; over {;, . . . , g}. Since 2< is monotonically decreasing in <,

P

(
∃< ∈ {;, . . . , g} : 1

<

<∑
8=1

3:C8 ≤ −G − 2<
)

≤
∑
B≥0
P

(
∃< ∈ [0B;, 0B+1;) :

<∑
8=1

3:C8 ≤ −0B;
(
G + 20B+1;

) )
.
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According to Fact 5.1, the above summand is no greater than∑
B≥0
P

(
∃< ∈ [1, 0B+1;) :

<∑
8=1

3:C8 ≤ −0B;
(
G + 20B+1;

) )
≤

∑
B≥0

exp

(
−2

02B;2⌊
0B+1;

⌋ (
G2 + 22

0B+1;

))
≤

∑
B≥0

exp

(
−20B−1;G2 − 2[

02 ln
(

g

 0B+1;

))
=
∑
B≥1

 ;0B

g
exp

(
−20B−2;G2

)
.

Let 1 = 2G2;/02. It follows that∑
B≥1

 ;0B

g
exp

(
−10B

)
≤ ;
g

∫ +∞

0
0H+1 exp

(
− 10H

)
3H

=
 ;0

g ln(0)

∫ +∞

1
exp(−1I)3I

(
where we set I = 0H

)
=
 ;04−1

g1 ln(0) ,

which concludes the bound for the probability of event �. By using upper tail bound, similar result

exists for event �. �

We now leverage Lemma 5.3 to get an upper bound on the worst-case regret for SW-MOSS.

Theorem 5.4. For the nonstationary MAB problem with  arms, time horizon ) , variation budget

+) > 0 and g =
⌈
 

1
3
(
)/+)

) 2
3
⌉
, the worst-case regret of SW-MOSS satisfies

sup
F K
)
∈E(+) ,), )

'SW-MOSS
) ∈ O(( +) )

1
3)

2
3 ).

Proof. The proof consists of the following five steps.

Step 1: Recall that E8 is the variation within T8. Here, we trivially assign T0 = ∅ and E0 = 0. Then,

for each 8 ∈ {1, . . . , #}, let

Δ:8 := `^8g8 − `
:
g8
− 2E8−1 − 2E8, ∀: ∈ K .

Define the set of bad arms for SW-MOSS in T8 as

BSW
8 := {: ∈ K | Δ:8 ≥ n},
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where we assign n = 4
√
4[ /g.

Step 2: We decouple the regret in this step. For any C ∈ T8, since
���`:C − `:g8 ��� ≤ E8 for any : ∈ K, it

satisfies that

`∗C − `
iC
C ≤ `^8g8 − `

iC
C ≤ `^8g8 − `

iC
g8 + E8

≤ 1
{
iC ∈ BSW

8

}
(ΔiC

8
− n) + 2E8−1 + 3E8 + n .

Then we get the following inequalities,∑
C∈T

`∗C − `
iC
C ≤

#∑
8=1

∑
C∈T8

1
{
iC ∈ BSW

8

}
(ΔiC

8
− n) + 2E8−1 + 3E8 + n

≤5g+) + )n +
#∑
8=1

∑
C∈T8

1
{
iC ∈ BSW

8

}
(ΔiC

8
− n). (5.6)

To continue, we take a decomposition inspired by the analysis of MOSS in [70] below,∑
C∈T8

1
{
iC ∈ BSW

8

} (
Δ
iC
8
− n

)
≤

∑
C∈T8

1
{
iC ∈ BSW

8 , 6
^8
C > "

^8
C −

Δ
iC
8

4

}
Δ
iC
8

(5.7)

+
∑
C∈T8

1
{
iC ∈ BSW

8 , 6
^8
C ≤ "

^8
C −

Δ
iC
8

4

} (
Δ
iC
8
− n

)
, (5.8)

where summands (5.7) describes the regret when arm ^8 is fairly estimated and summand (5.8)

quantifies the regret incurred by underestimating arm ^8.

Step 3: In this step, we bound the expectation of (5.7). Since 6iCC ≥ 6
^8
C ,∑

C∈T8
1
{
iC ∈ BSW

8 , 6
^8
C > "

^8
C −

Δ
iC
8

4

}
Δ
iC
8
≤

∑
C∈T8

1
{
iC ∈ BSW

8 , 6
iC
C > "

^8
C −

Δ
iC
8

4

}
Δ
iC
8

=
∑
:∈BSW

8

∑
C∈T8

1
{
iC = :, 6

:
C > "

^8
C −

Δ:
8

4

}
Δ:8 . (5.9)

Notice that for any C ∈ T8−1 ∪ T8,���`:C − `:g8 ��� ≤ E8−1 + E8, ∀: ∈ K .
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It indicates that an arm : ∈ BSW
8

is at least Δ:
8
worse in mean reward than arm ^8 at any time slot

C ∈ T8−1 ∪ T8. SinceWC ⊂ T8−1 ∪T8, for any C ∈ T8

"
^8
C − " :

C ≥ Δ:8 ≥ n, ∀: ∈ BSW
8 .

It follows from (5.9) that∑
:∈BSW

8

∑
C∈T8

1
{
iC = :, 6

:
C > "

^8
C −

Δ:
8

4

}
Δ:8 ≤

∑
:∈BSW

8

∑
C∈T8

1
{
iC = :, 6

:
C > "

:
C +

3Δ:
8

4

}
Δ:8 . (5.10)

Let C8:B be the B-th time slot when arm : is selected within T8. Then, for any : ∈ BSW
8

,∑
C∈T8

1
{
iC = :, 6

:
C > "

:
C +

3Δ:
8

4

}
=
∑
B≥1

1
{
6:
C8:B
> " :

C8:B
+

3Δ:
8

4

}
≤;:8 +

∑
B≥;:

8
+1

1
{
6:
C8:B
> " :

C8:B
+

3Δ:
8

4

}
, (5.11)

where we set ;:
8
=

⌈
[

(
4
Δ:
8

)2
ln

(
g
[ 

(
Δ:
8

4

)2
)⌉
. Since Δ:

8
≥ n , for : ∈ BSW

8
, we have

;:8 ≥
⌈
[

(
4/Δ:8

)2
ln

(
g

[ 

(
n/4

)2
)⌉
≥ [

(
4/Δ:8

)2
,

where the second inequality follows by substituting n = 4
√
4[ /g. Additionally, since C8:1 , . . . , C

8:
B−1 ∈

WC8:B
, we get =: (C8:B ) ≥ B − 1. Furthermore, since 2< is monotonically decreasing with <,

2=: (C:B ) ≤ 2;:8 ≤

√√√
[

;:
8

ln

(
g

[ 

(
Δ:
8

4

)2
)
≤
Δ:
8

4
,

for B ≥ ;:
8
+ 1. Therefore, we continue from (5.11) to get

;:8 +
∑
B≥;:

8
+1

1
{
6:
C8:B
> " :

C8:B
+

3Δ:
8

4

}
≤ ;:8 +

∑
B≥;:

8
+1

1
{
6:
C8:B
− 22=: (C8:B ) > "

:

C8:B
+
Δ:
8

4

}
.
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By applying Lemma 5.3, considering =: (C8:B ) ≥ B − 1,∑
B≥;:

8
+1

P

{
6:
C8:B
− 22=: (C8:B ) > "

:

C8:B
+
Δ:
8

4

}
≤

∑
B≥;:

8

(2[) 3
2

ln(2[)
 

g

(
4
Δ:
8

)2
exp

(
− B
[

(
Δ:
8

4

)2
)

≤
∫ +∞

;:
8
−1

(2[) 3
2

ln(2[)
 

g

(
4
Δ:
8

)2
exp

(
− H
[

(
Δ:
8

4

)2
)
3H

≤ (2[)
3
2

ln(2[)
[ 

g

(
4
Δ:
8

)4
. (5.12)

Let ℎ(G) = 16[/G ln
(
gG2/16[ 

)
which achievesmaximumat44

√
[ /g. Combining (5.12), (5.11), (5.10),

and (5.9), we obtain

E [(5.7)] ≤
∑
:∈B8

(2[) 3
2

ln(2[)
[ 

g

256(
Δ:
8

)3 + ;
:
8 Δ

:
8

≤
∑
:∈B8

(2[) 3
2

ln(2[)
[ 

g

256(
Δ:
8

)3 + ℎ(Δ
:
8 ) + Δ:8

≤
∑
:∈B8

(2[) 3
2

ln(2[)
[ 

g

256
n3 + ℎ

(
44

√
[ /g

)
+ 1

≤
(

2.6[
ln(2[) + 3√[

) √
 g +  1.

Step 4: In this step, we bound expectation of (5.8). When event
{
iC ∈ BSW

8
, 6

^8
C ≤ "

^8
C − Δ

iC
8
/4

}
happens, we know

Δ
iC
8
≤ 4" ^8

C − 46^8C and 6^8C ≤ "
^8
C −

n

4
.

Thus, we have

1
{
iC ∈ BSW

8 , 6
^8
C ≤ "

^8
C −

Δ
iC
8

4

} (
Δ
iC
8
− n

)
≤1

{
6
^8
C ≤ "

^8
C −

n

4

}
×

(
4" ^8

C − 46^8C − n
)

:= . .
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Since . is a nonnegative random variable, its expectation can be computed involving only its

cumulative density function:

E [. ] =
∫ +∞

0
P (. > G) 3G

≤
∫ +∞

0
P
(
4" ^8

C − 46^8C − n ≥ G
)
3G

=

∫ +∞

n

P
(
4" ^8

C − 46^8C > G

)
3G

≤
∫ +∞

n

16(2[) 3
2

ln(2[)
 

gG2 3G =
16(2[) 3

2

ln(2[)
 

gn
.

Hence, E [(5.8)] ≤ 16(2[) 3
2 |T8 | /

(
ln(2[)gn

)
.

Step 5: With bounds on E [(5.7)] and E [(5.8)] from previous steps,

E [(5.6)] ≤5g+) + )n + #
(

2.6[
ln(2[) + 3√[

) √
 g + # 1 + 16(2[) 3

2

ln(2[)
 )

gn
≤ � ( +) )

1
3)

2
3 ,

for some constant �, which concludes the proof. �

We have shown that SW-MOSS also enjoys order optimal worst-case regret. One drawback of

the sliding window method is that all sampling history within the observation window needs to be

stored. Since window size is selected to be g =
⌈
 

1
3 ()/+) )

2
3
⌉
, large memory is needed for large

horizon length ) . The next policy resolves this problem.

5.2.3 Discounted UCB Algorithm

The discount factor is widely used in estimators to forget old information and put more attention on

recent information. In [20], such an estimation is used together with UCB1 to solve the piecewise

stationary MAB problem, and the policy designed is called Discounted UCB (D-UCB). Here, we

tune D-UCB to work in the nonstationary environment with variation budget +) . Specifically, the

mean estimator used is discounted empirical average given by

ˆ̀:W,C =
1
=:W,C

C−1∑
B=1

WC−B1{iB = :}-B, =:W,C =

C−1∑
B=1

WC−B1{iB = :},
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Algorithm 7: The D-UCB Algorithm
Input : +) ∈ R>0, ) ∈ N and b > 1

2

Set : W = 1 −  − 1
3 ()/+) )−

2
3

Output : sequence of arm selection

1 for C ∈ {1, . . . ,  } do
Pick arm iC = C and set =C ← W −C and ˆ̀C ← - CC ;

2 while C ≤ ) do

Pick arm iC = arg max
:∈K

ˆ̀: + 2
√
b ln(g)
=:

;

For each arm : ∈ K, set =: ← W=: ;

Set =iC ← =iC + 1 & ˆ̀iC ← ˆ̀iC + 1
=iC
(-iCC − -̄iC );

where W = 1− − 1
3 ()/+) )−

2
3 is the discount factor. Besides, the UCB is designed as 6:C = ˆ̀:C +22:C ,

where 2:W,C =
√
b ln(g)/=:W,C for some constant b > 1/2. The pseudo code for D-UCB is reproduced

in Algorithm 7. It can be noticed that the memory size is only related to the number of arms, so

D-UCB requires small memory.

To proceed the analysis, we review the concentration inequality for discounted empirical average,

which is an extension of Chernoff-Hoeffding bound. Let

" :
W,C :=

1
=:W,C

C−1∑
B=1

WC−B1{iB = :}`:B .

Then, the following fact is a corollary of [20, Theorem 18].

Fact 5.2 (A Hoeffding-type inequality for discounted empirical average with a random number of

summands). For any C ∈ T and for any : ∈ K, the probability of event � =
{

ˆ̀:W,C − " :
W,C ≥ X/

√
=:W,C

}
is no greater than ⌈

log1+_ (g)
⌉

exp
(
−2X2 (1 − _2/16

) )
(5.13)

for any X > 0 and _ > 0. The probability of event � =
{

ˆ̀:W,C − " :
W,C ≤ −X/

√
=:W,C

}
is also upper

bounded by (5.13).
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Theorem 5.5. For the nonstationary MAB problem with  arms, time horizon ) , variation budget

+) > 0, and W = 1 −  − 1
3 ()/+) )−

2
3 , if b > 1/2, the worst case regret of D-UCB satisfies

sup
F K
)
∈E(+) ,), )

'D-UCB
) ≤ � ln()) ( +) )

1
3)

2
3 .

Proof. We establish the theorem in four steps.

Step1: In this step, we analyze
��`:W,C − " :

W,C

�� at some time slot C ∈ T8. Let g′ = logW
(
(1 − W)b ln(g)/12)

and take C − g′ as a dividing point, then we obtain���`:g8 − " :
W,C

��� ≤ 1
=:W,C

C−1∑
B=1

WC−B1{iB = :}
���`:g8 − `:B ���

≤ 1
=:W,C

∑
B≤C−g′

WC−B1{iB = :}
���`:g8 − `:B ��� (5.14)

+ 1
=:W,C

C−1∑
B≥C−g′

WC−B1{iB = :}
���`:g8 − `:B ��� . (5.15)

Since `:C ∈ [0, 0 + 1] for all C ∈ T , we have (5.14) ≤ 1. Also,

(5.14) ≤ 1
=:W,C

∑
B≤C−g′

1WC−B ≤ 1Wg
′

(1 − W)=:W,C
=
b ln(g)
1=:W,C

.

Accordingly, we get

(5.14) ≤ min

(
1,
b ln(g)
1=:W,C

)
≤

√
b ln(g)
=:W,C

.

Furthermore, for any C ∈ T8,

(5.15) ≤ max
B∈[C−g′,C−1]

���`:g8 − `:B ��� ≤ 8∑
9=8−=′

E 9 ,

where =′ = dg′/ge and E 9 is the variation within T9 . So we conclude that for any C ∈ T8,���`:^8 − " :
W,C

��� ≤ 2:W,C + 8∑
9=8−=′

E 9 , ∀: ∈ K . (5.16)

Step 2: Within partition T8, let

Δ̂:8 = `
^8
g8
− `:g8 − 2

8∑
9=8−=′

E 9 ,
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and define a subset of bad arms as

BD
8 =

{
: ∈ K | Δ̂:8 ≥ n′

}
,

where we select n′ = 4
√
bW1−g ln(g)/g. Since

���`:C − `:g8 ��� ≤ E8 for any C ∈ T8 and for any : ∈ K∑
C∈T

`∗C − `
iC
C ≤

#∑
8=1

∑
C∈T8

`^8g8 − `
iC
g8 + E8

≤g+) +
#∑
8=1

∑
C∈T8

[
1
{
iC ∈ BD

8

}
Δ̂
iC
8
+ 2

8∑
9=8−=′

E 9 + n′
]

≤(2=′ + 3)g+) + #n′g+
#∑
8=1

∑
:∈BD

8

Δ̂:8

∑
C∈T8

1
{
iC = :

}
. (5.17)

Step 3: In this step, we bound E
[
Δ̂:
8

∑
C∈T8 1

{
iC = :

} ]
for an arm : ∈ BD

8
. Let C:

8
(;) be the ;-th

time slot arm : is selected within T8. From arm selection policy, we get 6iCC ≥ 6
^8
C , which result in∑

C∈T8
1
{
iC = :

}
≤ ;:8 +

∑
C∈T8

1
{
6:C ≥ 6

^8
C , C > C

:
8 (;:8 )

}
, (5.18)

where we pick ;:
8
=

⌈
16bW1−g ln(g)/

(
Δ̂:
8

)2
⌉
. Note that 6:C ≥ 6

^8
C is true means at least one of the

followings holds,

ˆ̀:W,C ≥ " :
W,C + 2:W,C , (5.19)

ˆ̀^8W,C ≤ "
^8
W,C − 2

^8
W,C , (5.20)

"
^8
W,C + 2

^8
W,C < "

:
W,C + 32:W,C . (5.21)

For any C ∈ T8, since every sample before C within T8 has a weight greater than Wg−1, if C > C:
8
(;:
8
),

2:W,C =

√
b ln(g)
=:W,C

≤
√
b ln(g)
Wg−1;:

8

≤
Δ̂:
8

4
.

Combining it with (5.16) yields

"
^8
W,C − " :

W,C ≥ `^8g8 − `
:
g8
− 2^8W,C − 2:W,C − 2

8∑
9=8−=′

E 9

≥ Δ̂:8 − 2
^8
W,C − 2:W,C ≥ 32:W,C − 2

^8
W,C ,
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which indicates (5.21) is false. As b > 1/2, we select _ = 4
√

1 − 1/(2b) and apply Fact 5.2 to get

P((5.19) is true) ≤
⌈
log1+_ (g)

⌉
g−2b (1−_2/16) ≤

⌈
log1+_ (g)

⌉
g

.

The probability of (5.20) to be true shares the same bound. Then, it follows from (5.18) that

E
[
Δ̂:
8

∑
C∈T8 1

{
iC = :

} ]
is upper bounded by

Δ̂:8 ;
:
8 + Δ̂:8

∑
C∈T8
P ((5.19) or (5.20) is true)

≤16bW1−g ln(g)
Δ̂:
8

+ Δ̂:8 + 2Δ̂:8
⌈
log1+_ (g)

⌉
≤16bW1−g ln(g)

n′
+ 1 + 21

⌈
log1+_ (g)

⌉
, (5.22)

where we use n′ ≤ Δ̂:
8
≤ 1 in the last step.

Step 4: From (5.17) and (5.22), and plugging in the value of n′, an easy computation results in

'D-UCB
) ≤(2=′ + 3)g+) + 8#

√
bW1−g g ln(g)

+ 2#1 + 2#1 log1+_ (g) ,

where the dominating term is (2=′ + 3)g+) . Considering

g′ =
ln

(
(1 − W)b ln(g)/12)

ln W
≤
− ln

(
(1 − W)b ln(g)/12)

1 − W ,

we get =′ ≤ �′ ln()) for some constant �′. Hence there exists some absolute constant � such that

'D-UCB
) ≤ � ln()) ( +) )

1
3)

2
3 .

�

Although the discount factor method requires less memory, there exists an extra factor ln()) in

the upper bound on the worst-case regret for D-UCB comparing with the minimax regret. This is

due to the fact that the discount factor method does not entirely cut off outdated sampling history

like periodic resetting or sliding window techniques.
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5.3 UCB Policies for Heavy-tailed Nonstationary Stochastic MAB Problems

In this section, we propose and analyze UCB algorithms for the non-stationary stochastic MAB

problem with heavy-tailed rewards defined in Assumption 5.2. For the stationary heavy-tailed

MAB problem, we have shown Robust MOSS in chapter 2 achieve order optimal worst-case

regret. We extend it to the nonstationary setting and design resetting robust MOSS algorithm and

sliding-window robust MOSS algorithm.

5.3.1 Resetting robust MOSS for the non-stationary heavy-tailed MAB problem

Like R-MOSS, Resetting Robust MOSS (R-RMOSS) restarts Robust MOSS after every g time

slots. For a stationary heavy-tailed MAB problem, it has been shown in theorem 2.10 that the

worst-case regret of Robust MOSS belongs to O(
√
 )). This result along with an analysis similar

to the analysis for R-MOSS in Theorem 5.2 yield the following theorem for R-RMOSS. For brevity,

we skip the proof.

Theorem 5.6. For the nonstationary heavy-tailed MAB problem with  arms, horizon ) , variation

budget +) > 0 and g =
⌈
 

1
3
(
)/+)

) 2
3
⌉
, if k(2Z/0) ≥ 20/Z , the worst-case regret of R-RMOSS

satisfies

sup
F K
)
∈E(+) ,), )

'R-RMOSS
) ∈ O(( +) )

1
3)

2
3 ).

5.3.2 SW-RMOSS for the non-stationary heavy-tailed MAB problem

In Sliding-Window Robust MOSS (SW-RMOSS), =: (C) and ¯̀=: (C) are computed from the sampling

history withinWC , and 2=: (C) =
√

ln+
(

g
 =: (C)

)
/=: (C). To analyze SW-RMOSS, we want to establish

a similar property as Lemma 5.3 to bound the probability about an arm being under or over

estimated. Toward this end, we need the following properties for truncated random variable.
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Lemma 5.7. Let - be a random variable with expected value ` and E [-2] ≤ 1. Let 3 :=

sat(-, �) − E [sat(-, �)]. Then for any � > 0, it satisfies (i) |3 | ≤ 2� (ii) E [32] ≤ 1 (iii)��E [sat(-, �)] − `
�� ≤ 1/�.

Proof. Property (i) follows immediately from definition of 3 and property (ii) follows from

E [32] ≤ E
[

sat2(-, �)
]
≤ E

[
-2] .

To see property (iii), since

` = E
[
-

(
1
{
|- | ≤ �

}
+ 1

{
|- | > �

})]
,

one have��E [sat(-, �)] − `
�� ≤ E [ (

|- | − �
)
1
{
|- | > �

}]
≤ E

[
|- | 1

{
|- | > �

}]
≤ E

[
-2

�

]
.

�

Moreover, we will also use a maximal Bennett type inequality as shown in the following.

Lemma 5.8 (Maximal Bennett’s inequality [75]). Let {-8}8∈{1,...,=} be a sequence of bounded

random variables with support [−�, �], where � ≥ 0. Suppose that E [-8 |-1, . . . , -8−1] = `8 and

Var[-8 |-1, . . . , -8−1] ≤ E. Let (< =
∑<
8=1(-8 − `8) for any < ∈ {1, . . . , =}. Then, for any X ≥ 0

P
(
∃< ∈ {1, . . . , =} : (< ≥ X

)
≤ exp

(
− X
�
k

(
�X

=E

))
,

P
(
∃< ∈ {1, . . . , =} : (< ≤ −X

)
≤ exp

(
− X
�
k

(
�X

=E

))
.

Now, we are ready to establish a concentration property for saturated sliding window empirical

mean.

Lemma 5.9. For any arm : ∈ {1, . . . ,  } and any C ∈ { + 1, . . . , )}, if k(2Z/0) ≥ 20/Z ,

the probability of either event � =
{
6:C ≤ " :

C − G, =: (C) ≥ ;
}
or event � =

{
6:C − 22=: (C) ≥

" :
C + G, =: (C) ≥ ;

}
, for any G > 0 and any ; ≥ 1, is no greater than

20
V2 ln(0)

 

gG2 (VG
√
ℎ(;)/0 + 1) exp

(
−VG

√
ℎ(;)/0

)
,

where V = k
(
2Z/0

)
/(20).
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Proof. Recall that D:C
8

is the 8-th time slot when arm : is selected within WC . Since 2< is a

monotonically decreasing in <, 1/�< = 2ℎ(<) ≤ 2< due to ℎ(<) ≥ <. Then, it follows from

property (iii) in Lemma 5.7 that

P(�) ≤ P
(
∃< ∈ {;, . . . , g} : ¯̀:< ≤

<∑
8=1

`:
D:C
8

<
− (1 + Z)2< − G

)
≤ P

(
∃< ∈ {;, . . . , g} :

<∑
8=1

3̄:C
8<

<
≤ 1
�<
− (1 + Z)2< − G

)
≤ P

(
∃< ∈ {;, . . . , g} : 1

<

<∑
8=1

3̄:C8< ≤ −G − Z2<
)
, (5.23)

where 3̄:C
8<
= sat

(
- :
D:C
8

, �<
)
−E

[
sat

(
- :
D:C
8

, �<
) ]
. Recall we select 0 > 1. Again, we apply a peeling

argument with geometric grid 0B ≤ < < 0B+1 over time interval {;, . . . , g}. Let B0 =
⌊
log0 (;)

⌋
.

Since 2< is monotonically decreasing with <, we continue from (5.23) to get

P(�) ≤
∑
B≥B0

P

(
∃< ∈ [0B, 0B+1) :

<∑
8=1

3̄:C8< ≤ −0B
(
G + Z20B+1

) )
. (5.24)

For all < ∈ [0B, 0B+1), since �< = �0B , from Lemma 5.7 we know
���3̄:C8< ��� ≤ 2�0B and Var

[
3̄:C
8<

]
≤ 1.

Continuing from (5.24), we apply Maximal Bennett’s inequality in Lemma 2.7 to get

P(�) ≤
∑
B≥B0

exp

(
−
0B

(
G + Z20B+1

)
2�0B

k

(
2�0B
0

(
G + Z20B+1

) ))
(
since k(G) is monotonically increasing

)
≤

∑
B≥B0

exp

(
−
0B

(
G + Z20B+1

)
2�0B

k

(
2Z
0
�0B20B+1

))
(substituting 20B+1 , �0B and using ℎ(0B) = 0B+1)

=
∑
B≥B0+1

exp

(
−0B

(
G

�0B−1
+ Z22

0B

)
k

(
2Z/0

)
20

)
(
since Zk(2Z/0) ≥ 20

)
≤ 
g

∑
B≥B0+1

0B exp

(
−0B G

�0B−1

k
(
2Z/0

)
20

)
.
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Let 1 = Gk
(
2Z/0

)
/(20). Since ln+(G) ≥ 1 for all G > 0,

 

g

∑
B≥B0+1

0B exp

(
−0B G

�0B−1

k
(
2Z/0

)
20

)
≤ 
g

∑
B≥B0+1

0B exp
(
−1
√
0B

)
≤ 
g

∫ +∞

B0+1
0H exp

(
− 1

√
0H−1)3H

=
 

g
0

∫ +∞

B0

0H exp
(
− 1
√
0H

)
3H

=
 

g

20
ln(0)12

∫ +∞

1
√
0B0
I exp

(
− I

)
3I (where I = 1

√
0H)

≤ 
g

20
ln(0)12 (1

√
0B0 + 1) exp(−1

√
0B0),

which concludes the proof. �

With Lemma 5.9, the upper bound on the worst-case regret for SW-RMOSS in the nonstationary

heavy-tailed MAB problem can be analyzed similarly as Theorem 5.4.

Theorem 5.10. For the nonstationary heavy-tailed MAB problem with  arms, time horizon ) ,

variation budget +) > 0 and g =
⌈
 

1
3
(
)/+)

) 2
3
⌉
, if k(2Z/0) ≥ 20/Z , the worst-case regret of

SW-RMOSS satisfies

sup
F K
)
∈E(+) ,), )

'SW-RMOSS
) ≤ � ( +) )

1
3)

2
3 .

Sketch of the proof. The procedure is similar as the proof of Theorem 5.4. The key difference is

due to the nuance between the concentration properties on mean estimator. Neglecting the leading

constants, the probability upper bound in Lemma 5.3 has a factor exp(−G2;/[) comparing with

(VG
√
ℎ(;)/0 + 1) exp

(
−VG

√
ℎ(;)/0

)
in Lemma 5.9. Since both factors are no greater than 1, by

simply replacing [with (1+Z)2 and taking similar calculation in every step except inequality (5.12),

comparable bounds that only differs in leading constants can be obtained. Applying Lemma 5.9,
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we revise the computation of (5.12) as the following,∑
B≥;:

8
+1

P

{
6:CB − 22=: (CB) > "

:
CB
+
Δ:
8

4

}
≤

∑
B≥;:

8

�′
(
VΔ:

8

4

√
ℎ(;)
0
+ 1

)
exp

(
−
VΔ:

8

4

√
ℎ(;)
0

)
≤

∫ +∞

;:
8
−1
�′

(
VΔ:

8

4

√
H

0
+ 1

)
exp

(
−
VΔ:

8

4

√
H

0

)
3H

≤60
V2

20
V2 ln(0)

 

g

(
4
Δ:
8

)4
. (5.25)

where �′ = 20 
(
4/Δ:

8

)2/
(
V2 ln(0)g

)
.The second inequality is due to the fact that (G + 1) exp(−G)

is monotonically decreasing in G for G ∈ [0,∞) and ℎ(;) > ;. In the last inequality, we change

the lower limits of the integration from ;:
8
− 1 to 0 since ;:

8
≥ 1 and plug in the value of �′.

Comparing with (5.12), this upper bound only varies in constant multiplier. So is the worst-regret

upper bound. �

Remark 5.1. The benefit of the discount factor method is that it is memory-friendly. This advantage

is lost if the truncated empirical mean is used. As =: (C) could both increase and decrease with time,

the truncated point could both grow and decline, so all sampling history needs to be recorded. It

remains an open problem how to effectively use the discount factor in a nonstationary heavy-tailed

MAB problem.

5.4 Numerical Experiments

We complement the theoretical results in the previous section with two Monte-Carlo experiments.

For the light-tailed setting, we compare R-MOSS, SW-MOSS, and D-UCB with other state-of-art

policies. For the heavy-tailed setting, we test the robustness of R-RMOSS and SW-RMOSS against

both heavy-tailed rewards and nonstationarity. Each result in this section is derived by running

designated policies 500 times. And parameter selections for compared policies are strictly coherent

with referred literature.
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5.4.1 Bernoulli Nonstationay Stochastic MAB Experiment

To evaluate the performance of different policies, we consider two nonstationary environments as

shown in Figs. 5.1a and 5.1b, which both have 3 arms with nonstationary Bernoulli rewards. The

success probability sequence at each arm is a Brownian motion in environment 1 and a sinusoidal

function of time C in environment 2. And the variation budget +) is 8.09 and 3 respectively.

(a) Environment 1 (b) Environment 2

(c) Regrets for environment 1 (d) Regrets for environment 2

Figure 5.1: Comparison of different policies.

The growths of regret in Figs. 5.1c and 5.1d show that UCB based policies (R-MOSS, SW-

MOSS, and D-UCB) maintain their superior performance against adversarial bandit-based policies

(Rexp3 and Exp3.S) for stochastic bandits even in nonstationary settings, especially for R-MOSS

and SW-MOSS. Besides, DTS outperforms other policies when the best arm does not switch. While

each switch of the best arm seems to incur larger regret accumulation for DTS, which results in
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larger regret compared with SW-MOSS and R-MOSS.

5.4.2 Heavy-tailed Nonstationary Stochastic MAB Experiment

Again we consider the 3-armed bandit problem with sinusoidal mean rewards. In particular, for

each arm : ∈ {1, 2, 3},

`:C = 0.3 sin
(
0.001cC + 2:c/3

)
, C ∈ {1, . . . , 5000}.

Thus, the variation budget is 3. Besides, mean reward is contaminated by additive sampling noise

a, where |a | is a generalized Pareto random variable and the sign of a has equal probability to be

“+" and “−". So the probability distribution for - :C is

5 :C (G) =
1

2f
©«1 +

b

���G − `:C ���
f

ª®®¬
− 1
b
−1

for G ∈ (−∞, +∞).

We select b = 0.4 and f = 0.23 such that Assumption 5.2 is satisfied. We select 0 = 1.1 and

Z = 2.2 for both R-RMOSS and SW-RMOSS such that condition k(2Z/0) ≥ 20/Z is met.

(a) Regret (b) Histogram of ')

Figure 5.2: Performances with heavy-tailed rewards.

Figure. 5.2a show RMOSS based polices and slightly outperform MOSS-based polices in

heavy-tailed settings. While by comparing the estimated histogram of ') for different policies in

Figure. 5.2b, R-RMOSS and SW-RMOSS have a better consistency and a smaller possibility of a

particular realization of the regret deviating significantly from the mean value.
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5.5 Summary

We studied the general nonstationary stochastic MAB problem with variation budget and provided

three UCB based policies for the problem. Our analysis showed that the proposed policies enjoy the

worst-case regret that is within a constant factor of the minimax regret lower bound. Besides, the

sub-Gaussian assumption on reward distributions is relaxed to define the nonstationary heavy-tailed

MAB problem. We show the order optimal worst-case regret can be maintained by extending the

previous policies to robust versions.

There are several possible avenues for future research. In this work, we relied on passive

methods to balance the remembering-versus-forgetting tradeoff. The general idea is to keep taking

in new information and removing outdated information. Parameter-free active approaches that

adaptively detect and react to environment changes are promising alternatives and may result in

better experimental performance. Also, extensions from the single decision-maker to distributed

multiple decision-makers are of interest. Another possible direction is the nonstationary version of

rested and restless bandits.

5.6 Bibliographic Remarks

The adversarial MAB [19] is a paradigmatic nonstationary problem. In this model, the bounded

reward sequence at each arm is arbitrary. The performance of a policy is evaluated using the

weak regret, which is the difference in the cumulated reward of a policy compared with the best

single action policy. A Ω(
√
 )) lower bound on the weak regret and a near-optimal policy Exp3

is also presented in [19]. While being able to capture the nonstationarity, the generality of the

reward model in the adversarial MAB makes the investigation of globally optimal policies very

challenging.

The nonstationary stochastic MAB can be viewed as a compromise between the stationary

stochastic MAB and the adversarial MAB. It maintains the stochastic nature of the reward sequence

while allowing some degree of nonstationarity in reward distributions. Instead of the weak regret

analyzed in adversarial MAB, a strong notion of regret defined with respect to the best arm at
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each time step is studied in these problems. As a result, this problem can be studied from two

perspectives by extending ideas from adversarial bandits or stochastic bandits.

After formulating the nonstationary stochastic MAB problem in [21], the authors tune the

Exp3.S policy for adversarial bandits [19] to achieve a near-optimal worst-case regret in their

subsequent work [102]. Discounted Thomson Sampling (DTS) [103] has also been shown to have

a good experimental performance within this general framework. However, we are not aware of any

analytic regret bounds for the DTS algorithm. The variation budget idea has already been extended

to more general problem settings such as nonstationary linear contextual bandits, and the ideas of

using periodic resetting, discounting factor, and sliding observation windows have been shown to

be applicable therein [104–106]. Nevertheless, to achieve exact order optimal worst-case regret

remains unsolved for those generalized problem setups
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CHAPTER 6

MULTI-TARGET SEARCH VIA MULTI-FIDELITY GAUSSIAN PROCESSES

The robotic target search problems have a natural connection with MAB problems discussed in

the previous section. In particular, the class of robotic search problems in which a robot team

searches for a target from a set of view-points (arms), or monitors an environment from a set of

viewpoints, maps directly to the MAB problems. In this chapter, we focus on a class of search

problems involving the search of an unknown number of targets in a large or continuous space

instead of a small number of viewpoints.

We consider a scenario in which an autonomous vehicle equipped with a downward-facing

camera operates in a 3D environment, and the task is to search for an unknown number of sta-

tionary targets on the 2D floor of the environment. For such a problem, there exists an intrinsic

fidelity-vs-coverage trade-off: sensing at a higher altitude provides more global but less accurate

information compared with sensing at a lower altitude. To capture this phenomenon, we model the

sensing information available at different altitudes from the floor using a multi-fidelity Gaussian

process [12]. The key idea to address the fidelity-vs-coverage trade-off is to use the low fidelity

information to remove regions unlikely to contain targets. This enables the robot to quickly transit

its focus to areas likely to contain targets, thus expedite the search process.

This chapter is a slightly modified version of our published work on multi-target search with

multi-fidelity Gaussian process sensing model, and it is reproduced here with the permission of

the copyright holder1. The proposed multi-target search strategy leverages information-theoretic

techniques to efficiently explore the environment, and employ Bayesian techniques to accurately

identify targets and construct an occupancy map. The target search accuracy and efficiency are

proved with theoretical analysis, and also verified by simulation results.
1©2020 IEEE. Reprinted with permission from [107].
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6.1 Multi-target Search Problem Description

We consider an autonomous vehicle that moves in a 3D environment, e.g., an aerial or an underwater

vehicle. We assume that the vehicle either moves with unit speed or hovers at a location. The

vehicle is tasked with searching for multiple targets on the 2D floor of the environment. Let

� ⊂ R2 be the area of the floor in which the targets may be present. The vehicle is equipped with a

fixed camera that points towards the floor. The vehicle travels across the environment and collects

images/videos of the floor (samples) from different sampling points. These sampling points may

be located at different altitudes relative to the floor of the environment. We assume that no sample

is collected during the movement between sampling points to avoid misleading low-quality sensing

information. The collected samples are processed with a computer vision algorithm that outputs a

score, which corresponds to the likelihood of a target being present, for each frame. An example

of such a computer vision algorithm is the state of art deep neural network YOLOv3 [108]. The

score will be used to update the estimate of the sensing output, i.e., the estimated score function

5 : � → [0, 1] which will be used to determine the location of the targets. The stochastic model

for 5 is introduced below.

6.1.1 Multi-fidelity Sensing Model

GPs are widely used models for spatially distributed sensing outputs. In [52], a GP is used to model

the target detection output of a computer vision algorithm. While target presence is a binary event,

the computer vision algorithms such as YOLOv3 yield a score which is a function of the saliency

and location of the target in the image. GPs are appropriate models for such score functions.

So far in the literature, GPs have been used in the context of single-fidelity measurements. To

characterize the inherent fidelity-coverage trade-off in sensing the floor scene by an autonomous

vehicle operating in 3D space, we employ a novel multi-fidelity GP model. The two key physical

sensing characteristics the model seeks to capture are: (i) there is some information that can only be

accessed at lower altitudes, (ii) the sensing outputs are more spatially correlated at higher altitudes,
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since the fields of view at neighboring locations have higher overlaps in their field of views.

We assume that the vehicle can collect samples of the floor from " possible heights from the

floor I1 > I2 > · · · > I" . We refer to these heights as the fidelity level of the measurement, with

" (resp. 1) corresponding to the highest (resp. lowest) level of fidelity. Let the score function

6< : � → [0, 1] be defined by the output of the computer vision algorithm for an ideal noise-free

image collected at fidelity level < ∈ {1, . . . , "} with the field of view of the camera centered

at x ∈ �. We assume that the score functions for a location x obtained from different altitudes

(fidelity levels) are related to each other in an autoregressive manner as follows

6< (x) = 0<−16
<−1(x) + 1< (x), (6.1)

where 0<−1 is a scale parameter and 1< is the bias term that captures the information that can

be only be accessed at fidelities levels greater than <. Let 5 < (x) =
(∏"−1

8=< 08

)
6< (x) and

ℎ< (x) =
(∏"−1

8=< 08

)
1< (x). Then, equation (6.1) reduces to

5 < (x) = 5 <−1(x) + ℎ< (x), (6.2)

where 5 0(x) = 0 and 5 (x) := 5 " (x) is the score function at the highest fidelity level which

we treat as ground truth. We model the influence of systemic errors in sample collection and

environmental uncertainty on the output of the computer vision algorithm for an input at fidelity level

< through an additive zeromeanGaussian randomvariable n< with variance B2
<, i.e., n< ∼ # (0, B2

<).

Consequently, the (scaled) score obtained by collecting a sample at location x is a random variable

H = 5< (x) + n<.

We assume that each ℎ< is a realization of a Gaussian process with a constant mean `< and a

squared exponential kernel function :< (x, x′) expressed as

:< (x, x′) = E2
< exp

(
−‖x − x

′‖2

2;2<

)
, (6.3)

where ;< is the length scale parameter, and E< is the variance parameter that satisfies E1 > E2 >

· · · > E" . This kernel function describes the spatial correlation of score function at neighboring
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locations at each fidelity level. Since the fields of view are more overlapped at lower fidelity levels,

it results in ;1 > ;2 > · · · > ;" .

We make the following assumptions about the highest-fidelity sample. If the target is not in

the field of view at (x, I"), the mean score of the computer vision algorithm 5 (x) is smaller than

a threshold th. If a target is at the center of image collected at (x, I"), 5 (x) ≥ th + Δ, for some

constant Δ > 0. Here, 1/Δ can be viewed as a measure of detection difficulty that depends both on

the quality of the computer vision algorithm and the environment complexity.

6.1.2 Objective of the Multi-target Search Algorithm

Our objective is to design an algorithm for sequentially determining sampling points that lead to

expedited detection and localization of targets within desired misclassification rate X ∈ (0, 1/2).

In particular, the algorithm should estimate the region containing targets �C ⊆ � such that (i)

∀x ∈ �C : P
(
5 (x) < th

)
≤ X and (ii) ∀x ∈ � \ �C : P

(
5 (x) ≥ th + Δ

)
≤ X. The requirements

about both false alarm and mis-detection rate are set by above two conditions.

Let C (Δ, X) be the total (traveling and sampling) time to finish the search task with misclassi-

fication rate smaller than X. Then, the objective of the algorithm is to determine the sequence of

sampling points that minimize C (Δ, X).

6.2 Expedited Multi-target Search Algorithm

The proposed Expedited Multi-target Search (EMTS) algorithm is illustrated in Figure. 6.1. It

operates using an epoch-based structure. In each epoch, the sampling and fidelity planner computes

a set of sampling points and the path planner optimizes a TSP tour going through those points.

The vehicle follows the TSP tour to collect measurements at sampling points and the inference

algorithm uses these measurements to update the estimate of the score function 5 . Then, the

Bayesian classification uses these estimates to compute an occupancy map of the floor and the

region elimination module removes regions with no target with sufficiently high probability from

the search space. In the following, we describe each of these modules in detail.
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Figure 6.1: Architecture of EMTS.

6.2.1 Inference Algorithm for Multi-fidelity GPs

The Bayesian inference method for multi-fidelity GPs discussed in this section is an extension of

the inference procedure in [12] for the case of no sampling noise. Let the set of sampling location-

score-fidelity tuples after = observations be P= = {
(
x8, H8, <8

)
| 8 ∈ {1, . . . , =}}. For each fidelity

<, define a subset of P=,

%<= = {
(
x8, H8, <8

)
∈ P= | <8 = <},

and |%<= | denote the cardinality of %<= . Recall that : 8 (x, x′) is the kernel function for the GP ℎ8 at 8-th

fidelity level. Let Q80
(
%<= , %

<′
=

)
be a |%<= | × |%<

′
= | matrix with entries : 8 (x, x′), x ∈ %<= , x′ ∈ %<

′
=

and Q80(%<= , x) be a |%<= | dimensional vector with entries : 80(x
′, x), x′ ∈ %<= . Let Q be a " × "

block matrix with (<, <′) block submatrix

Q<,<′ =

min(<,<′)∑
8=1

Q8
(
%
(<)
= , %

(<′)
=

)
.

Let k (x) be a |P= | dimensional vector constructed by concatenating " sub-vectors k (x) =(
k1(x), . . . , k" (x)

)
, where

k< (x) =
<∑
8=1

Q8 (%<= , x), ∀< ∈ {1, . . . , "}. (6.4)

Denoted by� is the " ×" diagonal matrix with the variance of sampling noise at diagonal entries

� = diag
{
B2
< O |%<= |

}
<={1,...,"}

.
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Let .= = [a1, . . . , a=] be the a priori mean of the sample y= =
(
H1, . . . , H=

)
. In particular, if

H 9 is a sample at fidelity <, then a 9 =
∑<
8=1 `8. The a priori covariance of y= is Q +�. In the

training process with training dataset P=, the hyperparameters {`<, E<, ;<, B<}"<=1 and {0<}"−1
<=1

in the multi-fidelity GP can be learned by maximizing a log marginal likelihood function

−1
2

log
(
det

(
2c (Q +�)

) )
− 1

2
(
y − .=

)) (Q +�)−1 (
y − .=

)
.

Such training can be performed using the GP toolbox [109].

Due to the multi-fidelity structure described in (6.1) and (6.2), the prior mean and covariance

of 5 are

`0(x) =
"∑
<=1

`<, :0(x, x′) =
"∑
<=1

:< (x, x′).

When running EMTS with learned hyperparameters, it can be shown that the posterior mean and

covariance functions of 5 after = measurements are

`= (x) = `0(x) + k) (x) (Q +�)−1 (
y − .=

)
:=

(
x, x′

)
= :0

(
x, x′

)
− k) (x) (Q +�)−1 k (x′).

(6.5)

Note that the posterior variance f2
= (x) = := (x, x) is a measure of uncertainty that will be utilized

to classify x. It should be noted that the measurements collected at different fidelity levels are

appropriately scaled in inference (6.5).

6.2.2 Multi-fidelity Sampling & Path Planning

For each epoch 9 , we seek to design an efficient sampling tour through sampling locations

{(x= 9+1, I= 9+1), . . . , (x= 9+1 , I= 9+1)} to ensure

max
x∈�

f= 9+1 (x)
/

max
x∈�

f= 9 (x) ≤ U,

where = 9 is the number of samples collected before the beginning of the 9-th epoch and the selection

of uncertainty reduction threshold U is discussed in Section 6.2.3.

Notice that the posterior variance update in (6.5) depends only on the location of the observations

y=, but not on the realized value of y=. Therefore, the sequence of sampling location-fidelity
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tuples can be computed before physically visiting the locations. Such deterministic evolution of

the variance has also been leveraged within the context of single-fidelity GP planning to design

efficient sampling tours [110].

Sampling Point Selection. The vehicle follows a greedy sampling policy at each fidelity level, i.e.,

at each sampling round the vehicle selects the most uncertain point as the next sampling point

x= = arg max
x∈�

f=−1(x). (6.6)

In the information theoretic view [58], the greedy policy is near-optimal in terms of maximizing

an appropriate measure of uncertainty reduction.

Fidelity Selection. For each sampling point x=, a fidelity level (or sampling altitude) needs to be

assigned. We let the vehicle start at fidelity level 1 and successively visit all fidelity levels from the

lowest to the highest. Since sampling 5 < is not able to reduce the uncertainty about 5 introduced

by the subsequent bias terms ℎ<+1, . . . , ℎ" , we define the inaccessible uncertainty at fidelity level

< as b< =
∑"
8=<+1 E

2
8
. Accordingly, we define the accessible uncertainty about 5 at fidelity level <

by A<= = maxx∈� f2
= (x) − b<. The assigned fidelity level to sample point x= is designed to change

from fidelity < to < + 1 when

A<= ≤ E2
<+1;

2
<+1/;

2
< .

Notice that before the vehicle begins to sample at fidelity level <, A<= ≥ E2
< ≥ E2

<+1;
2
<+1/;

2
<, where

the second inequality is due to the assumption that E< > E<+1 and ;< > ;<+1. This ensures that all

fidelity levels are visited from the lowest to the highest successively.

Path Planning. Since the order of sampling locations does not influence the eventual posterior

mean and variance, the path going through the sampling location can be optimized by computing an

approximate TSP tour using packages, such as Concorde [111]. Such a tour-based sampling policy

allows for energy and time efficient operation of the vehicle. If all measurements within epoch 9

are collected at the same fidelity level, the vehicle traverses the TSP tour TSP(x= 9+1, . . . , x= 9+1) to

collect measurements from sampling points and update posterior distribution of 5 . Otherwise, a

TSP tour is designed at each fidelity level.
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6.2.3 Classification and Region Elimination

The classification and elimination of regions follow a confidence-bound-based rule, which has

been widely used in pure exploration multi-armed bandit algorithms [112] and robotic source

seeking [113]. We extend these ideas to the case of multi-fidelity GP setting.

Conditioned on P=, the distribution of 5 (x) is Gaussian with mean function `= (x) and vari-

ance f2
= (x). Let (!= (x, Y),*= (x, Y)) be the Bayesian confidence interval containing 5 (x) with

probability greater than (1 − 2Y). Here, the lower confidence bound != and upper confidence

bound *= are defined by != (x, Y) = `= (x) − 2(Y)f= (x) , *= (x, Y) = `= (x) + 2(Y)f= (x) , with

2(Y) =
√

2 ln
(
1/(2Y)

)
.

Given the desired maximum misclassification rate X, at the end of epoch 9 , a location x is

classified as target, if != 9
(
x, X/2 9

)
≥ th, and is added to �C ; while it is classified as empty, if

*= 9

(
x, X/2 9

)
< th, and is added to the set �4. Note that the confidence parameter Y = X/2 9

defining the lower and upper bounds is decreased exponentially with epochs, and we will show that

it ensures a misclassification rate smaller than X. The locations in the set �4 are removed from

sampling space � at the end of each epoch. EMTS is terminated if maxx∈� 2f= 9 (x) ≤ Δ/2(X/2 9 ).

The selection of U depends on the balance between the efficiency of the TSP path planer and

region elimination. TSP path planer is more effective with smaller U since each exploration tour

includes more sample points. While region elimination favors bigger U so that regions not likely

to contain targets are removed more frequently.

6.3 An Illustrative Example

In this section, we illustrate EMTS using the Unmanned Underwater Vehicle Simulator [114],

which is a ROS package designed for Gazebo robot simulation environment. We integrate it with

YOLOv3 [108] for image classification and Concorde solver [111] to compute TSP tours. We use 2

fidelity levels situated at 11mand 5m from the water floor, respectively. In Figure. 6.2, the left figure

shows our simulation setup, where an underwater vehicle is equipped with a downward camera and

a flashlight to facilitate the searching task in a dark underwater environment. The middle figure
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Figure 6.2: Underwater victim search simulation setups.

and right figure in Figure 6.2 are the detection results with YOLOv3 at a high fidelity level and

a low fidelity level, respectively. There are 3 victims located at different unknown locations on a

40m × 40m water floor. At each sampling point, the vehicle takes 20 images and YOLOv3 returns

an average score about the confidence level of the existence of victims in the view.

The first three subplots of Figure. 6.3 show the classification of regions before each epoch,

the sampling points selected by the greedy policy and the planned path. Classifications of the

environment are represented by 3 colors: red means target exist, blue means no target, and green

means uncertain. The dark green points and lines are the planned sampling locations and paths at

the low fidelity level and red points and lines are sampling locations and paths at the high fidelity

level. At the beginning of epoch 1, all regions are classified as uncertain. After each epoch, the

region of targets is narrowed down. The search task is terminated after three epochs. Notice that

the vehicle switches to the high fidelity level at epoch 2. The tours at low and high fidelity levels

are plotted using two different colors. The vehicles do not sample in blue regions since they have

been classified as empty. In the final result, the regions with target are successfully found. A video

of the simulation is available online2.

Figure. 6.4a shows the heat map of posterior variance for the whole region at the end of

simulations. It reflects the nature of uncertainty reduction with EMTS, i.e., the posterior variance

is low only at areas that likely contain a target. The regions classified as empty have larger posterior

variance since they have been eliminated from sampling space in the early phase. This shows that
2 https://mediaspace.msu.edu/media/EMTS/1_phbul7ui
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(a) Epoch 1 (b) Epoch 2

(c) Epoch 3 (d) Final result

Figure 6.3: Simulation result of EMTS.

EMTS is able to put more focus on areas likely to contain victims. The uncertainty reduction,

i.e. the decrease in maximum posterior variance, for multi-fidelity greedy sampling and single-

fidelity greedy sampling, are compared in Figure. 6.4b. It shows that greedy multi-fidelity sampling

can reduce uncertainty much faster at the beginning stage, which will enable EMTS to eliminate

unoccupied regions quickly, and hence, accelerate target search.

(a) Final posterior variance (b) Convergence of f2
=

Figure 6.4: Uncertainty reduction results.
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6.4 Analysis of the EMTS Algorithms

In this section, we analyze the modules of the EMTS algorithm and use these analyses to derive an

upper bound on the expected detection time for the overall algorithm.

6.4.1 Analysis of the classification algorithm

We first characterize the Bayesian confidence interval for 5 (x), and then use this result to establish

that the EMTS algorithm ensures the desired classification accuracy.

Lemma 6.1 (Bayesian confidence interval). For 5 (x) | P= ∼ #
(
`= (x), f2

= (x)
)
and Y ∈ (0, 1/2),

P
(
5 (x) ≤ != (x, Y)

)
= P

(
5 (x) ≥ *= (x, Y)

)
≤ Y.

Proof. To normalize 5 (x), let A =
(
5 (x) − `(x)

)
/f(x) and 2(Y) =

√
2 ln

(
1/(2Y)

)
. Now A ∼

# (0, 1), and from tail-inequality for standard normal distribution [115]

P (A ≥ 2) ≤ 1
2

exp

(
−2

2

2

)
= Y,

which prove the P
(
5 (x) ≥ *= (x, Y)

)
≤ Y. Similar result holds for lower confidence bound. �

Theorem 6.2 (Misclassification Rate). For the classification strategy in the EMTS algorithm, a

location x ∈ � is misclassified with probability at most equal to X.

Proof. Consider a location x such that 5 (x) ≤ th, i.e., the true classification of x is empty. Since at

the end of epoch 9 , the lower and upper confidence bounds used for classification employ Y = X/2 9 ,

we apply a union bound to show the probability of classifying x as a target satisfies

∞∑
9=1
P

(
!= 9 (x, X/2 9 ) > th

)
≤
∞∑
9=1
P

(
!= 9 (x, X/2 9 ) > 5 (x)

)
.

Then, it follows fromLemma6.1 that themisclassification probability is no greater than
∑∞
9=1 X/2 9 =

X. The case of location x being occupied by a target follows similarly. �
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6.4.2 Analysis of the Sampling and Fidelity Planner

We now analyze the information gain and uncertainty reduction properties for our sampling and

fidelity planner. We first recall some results for the single fidelity planner and then extend them to

the case of the multi-fidelity planner.

Consider a single-fidelity GP 5 that is sampled with additive Gaussian noise with variance B2.

Let -= be the set of first = sampling points and let the vector of associated observations be y-= . It

is shown in [44, Lemma 5.3] that the mutual information between y-= and 5 is

�

(
y-= ; 5

)
=

1
2

=∑
8=1

log
(
1 + B−2f2

8−1 (x8)
)
, (6.7)

where f -= is the vector of 5 (x) calculated at points in -=. Let the maximal mutual information

gain with = samples be

W= := max
/∈�:|/ |==

�
(
y/ ; 5

)
.

Let �greedy be the total mutual information gain using a greedy policy that maximizes the summand

in (6.7) at each sampling step. It follows, due to submodularity [116] of �
(
y-= ; 5

)
, that(

1 − 1
4

)
W= ≤ �greedy

(
y-= ; 5

)
≤ W=,

While giving an exact value of W= is difficult, an upper bound on W= for squared exponential kernel

derived in [44] is presented in the following Lemma 6.3.

Lemma 6.3 (Information gain for squared exp. kernel). Let a GP 5 be defined on domain � ⊂ R2.

If 5 has squared exponential kernel with length scale ;, then the maximum mutual information

satisfies

W= (;) ∈ $ (;−2(log =)3).

Proof. For a GP defined on � ∈ [0, 1]2 with squared exponential kernel function : (x, x′) =

exp(−‖x − x′‖2/2), W= ∈ $ ((log =)3) [44]. It is shown in [117] that W= scales with the area of �.

Thus, if the diameter of � is 3, then W= ∈ $
(
32(log =)3

)
. Note that having length scale ; in kernel

function is equivalent to scale � by 1/;. Accordingly, W= ∈ $
(
32;−2(log =)3

)
. For fixed �, we

omit diameter 3 from the order notation and write W= (;) ∈ $ (;−2(log =)3). �
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Lemma 6.3 provides a bound on the mutual information gain at the first fidelity level. For

higher fidelity levels, the Gaussian process is composed of the summation of independent GPs.

We now establish that the information gained by sampling the sum of GPs is smaller than the

information gained by sampling them independently. and then use this result to establish the bound

on information gain for multi-fidelity GPs.

Lemma 6.4 (Information gain for sum of GPs). Let ℎ1 ∼ �%(`1(x), :1(x, x′)) and ℎ2 ∼

�%(`2(x), :2(x, x′)) be independent GPs. Consider a measurement H = ℎ1(x) + ℎ2(x) + n at

point x, where n is additive measurement noise independent of ℎ1 and ℎ2. Let y- = h1,- + h2,- + &

be the vector of such measurements at sampling points in a set - , where & is the vector of i.i.d.

measurement noise. Then,

� (y- ; ℎ1 + ℎ2) ≤ � (h1,- + & ; ℎ1) + � (h2,- + & ; ℎ2).

Proof. The data processing inequality [118, Theorem 2.8.1] indicates

� (y- ; ℎ1 + ℎ2) ≤ � (y- ; ℎ1, ℎ2) = � (y- ; ℎ1) + � (y- ; ℎ2 | ℎ1).

Applying the data processing inequality again, we get

� (y- ; ℎ1) ≤ � (h1,- + & , h2,- ; ℎ1)

= � (h2,- ; ℎ1) + � (h1,- + & ; ℎ1 | h2,-)

= � (h1,- + & ; ℎ1),

where in the last step follows due to the independence of ℎ1, ℎ2 and & . Similarly, it can be shown

� (y- ; ℎ2 | ℎ1) = � (h1,- + h2,- + & ; ℎ2 | ℎ1) = � (h2,- + & ; ℎ2).

This establishes the lemma. �

Let W<= be the maximal mutual information gain at fidelity <. It follows from Lemma 6.4

and the multi-fidelity GP model in (6.2) that W<= ≤
∑<
8=1 W= (;8). Combining this inequality with

Lemma 6.3, we obtain the following result.
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Corollary 6.5 (Information gain for multi-fidelity GPs). The maximal mutual information gain at

fidelity < satisfies

W<= ∈ $
( <∑
8=1

;−2
8 (log =)3

)
.

This corollary gives us an insight on the size of W<= at different fidelity levels. It follows that

W
(<)
= grows faster at higher fidelity levels.

We now derive a bound on the posterior variance for the multi-fidelity GP in terms of the

maximum mutual information gain.

Lemma 6.6 (Uncertainty reduction for multi-fidelity GPs). Let 5 ∼ �%
(
`0(x), :0(x, x′)

)
and

f2
0 (x) ≤ f

2, for each x ∈ �. An additive sampling noise n ∼ # (0, B2) is incurred every time

5 is accessed. Under the greedy sampling policy the posterior variance after = sampling rounds

satisfies

max
x∈�

f2
= (x) ≤

2f2

log
(
1 + B−2f2) W== .

Proof. For any x ∈ �, f2
= (x) is monotonically non-increasing in =. So we get

max
x∈�

f2
= (x) = f2

= (x=+1) ≤ f2
=−1(x=+1) ≤ f

2
=−1(x=), (6.8)

where the second inequality is due to the fact x= = arg max x∈� f
2
=−1(x). Again since x=+1 =

arg max x∈� f
2
= (x), inequality (6.8) also indicates that f2

=−1(x=) is monotonically non-increasing.

Hence, from (6.7), log
(
1 + B−2f2

=−1 (x=)
)
≤ 2�greedy

(
y- ; 5

)
/= ≤ 2W=/=. Since B2/log

(
1 + B2

)
is

an increasing function on [0,∞),

f2
=−1 (x=) ≤

f2

log
(
1 + B−2f2) log

(
1 + B−2f2

=−1 (x=)
)
.

Substituting (6.8) into it, we conclude that

max
x∈�

f2
= (x) ≤ f2

=−1 (x=) ≤
2f2

log
(
1 + B−2f2) W== .

�

Lemma 6.6 indicates that the smaller and themore slowly growing W= is, the fastermaxx∈� f= (x)

converges. This result explains our idea of using a multi-fidelity model.
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6.4.3 Analysis of Expected Detection Time

We now derive an upper bound on the number of samples needed to classify a location using the

EMTS algorithm and then use this result to compute the total sampling and travel time required for

classification.

Lemma 6.7 (Sample complexity for uncertainty reduction). In the autoregressive multi-fidelity

model (6.3), if each ℎ(<) has a squared exponential kernel, then

min{= ∈ N | max
x∈�

f= (x) ≤ Δ} ∈ $
(
f2

0
Δ2

(
ln
f0
Δ

)3
)
.

Proof. It follows from Lemma 6.6 that

=

W=
≤

2f2
0

maxx∈� f2
= (x)

.

Since E<, B< and ;< for all fidelity levels are finite, it follows fromCorollary 6.5 that W= ∈ $ ((ln =)3).

Combining these results, the lemma follows by inspection. �

Lemma 6.8 (Sample complexity for EMTS). For a given misclassification tolerance X, let =(x, X)

be the number of samples required to classify x ∈ �. Then, the expected number of samples

satisfies

E [=(x, X) | Δ(x)] ∈ $
(
i(Δ(x), X)

(
ln i(Δ(x), X)

)3
)
,

where Δ(x) =
�� 5 (x) − th�� and i(Δ(x), X) = f2

0
Δ2 (x) ln

(
3f0
XΔ(x)

)
.

Proof. Since X < 1/2, function 2(X/2 9 )
(
3/4

) 9+1 is monotonically decreasing for 9 ≥ 2. We define

� =

log4/3
©« 3f0
Δ(x)

√
2 ln

(
3f0
XΔ(x)

)ª®¬
 + 1.

It can be shown that the choice of � ensures, for 9 ≥ �,

* (x, X/2 9 ) − ! (x, X/2 9 ) ≤22(X/2 9 )
(
3/4

) 9+1
f0 ≤ 22(X/2�)

(
3/4

) �+1
f0

≤ Δ(x)
2

√√√√√√√U ln
(

3f
XΔ(x)

√
2 ln 3f

XΔ(x)

)
ln 3f

XΔ(x)
< Δ(x) (6.9)
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where U = log4/3 2 and the second inequality is due to the fact ln(G ln(G))/ln(G) ≤ (1 + 4)/4. For

a point x at which 2∗(x) = 1 and Δ(x) > 0, based on (6.9), the number of sampling rounds to

classify x satisfies

=(x, X) ≤ =� +
∞∑

9=�+1
1! (x, X/2 9 ) < th ≤ * (x, X/2 9 )

≤ =� +
∞∑

9=�+1
1! (x, X/2 9 ) < th

≤ =� +
∞∑

9=�+1
1* (x, X/2 9 ) < 5 (x),

where =� is the number of samples collected in the first � epochs. Then the expected sampling

rounds can be bounded as

=̄(x, X) ≤ =� +
∞∑

9=�+1
P

(
! (x, X/2 9 ) ≥ th

)
≤ =� +

∞∑
9=�+1

P
(
! (x, X/2 9 ) ≥ th

)
≤ =� +

∞∑
9=1

= 9

2 9
.

From Lemma 6.7, we has =8 ∈ $̃ ((16/9) 9 ). Therefore ∑∞
9=1 = 9/2 9 is finite. So we conclude

=̄(x, X) ∈ $
(
i(Δ(x), X)

(
ln i(Δ(x), X)

)3
)
.

�

Remark 6.1 (Comparison with sample complexity of multiarmed bandits). Notice that

E [=(x, X) | Δ(x)] ∈ $̃
(

1
Δ2(x)

)
describes the complexity to of classification of x, i.e., for a point with 5 (x) close to th more time

is needed. This term is similar to the sampling complexity [73] in a pure-exploration multi-armed

bandit problem. This result is based on the assumption that GPs all have squared exponential

kernel. For kernels characterizing less correlations, e.g. Matérn kernels, more sampling rounds

are expected. �
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We now derive an upper bound on detection time for EMTS.

Theorem6.9 (Target search time for EMTS). For a givenmisclassification tolerance X and detection

difficulty measure 1/Δ, the target search time satisfies

C (Δ, X) ∈ $
(
32i(Δ, X)

(
ln i(Δ, X)

)3
)
.

Proof. Since we assume unit sampling time, the total sampling time is in the same order as =(x, X).

Then we consider the traveling time spent in order to collected those samples. Since EMTS requires

the vehicle to search from lowfidelity level to high fidelity level, the total number of altitude switches

is no greater than"−1. As presented in [119], for = points in [0, 1]2, the length of the shortest TSP

Tour < 0.984
√

2= + 11. Therefore, the expected traveling time belongs to $
(
3
√
=̄(x, X)

)
, where 3

is the diameter of �. Thus, the expected traveling time belongs to >(=̄(x, X)). Considering both

sampling and traveling time, we conclude C (Δ, X) ∈ $
(
32i(Δ, X)

(
ln i(Δ, X)

)3
)
. �

Theorem 6.9 illustrates the efficiency of the EMTS algorithm, we conjecture it to be near-

optimal. This upper bound has a natural implication that the target search time increases with the

detection difficulty 1/Δ and the desired classification accuracy 1 − X.

6.5 Summary

We studied the autonomous robotic search of an unknown number of targets located at the 2D floor

in an unknown and uncertain 3D environment. The novelty of this work lies in using autoregressive

multi-fidelity GPs [12, 117] to model the likelihood of the presence of a target at a location, which

is computed by a computer vision algorithm using the sample collected at that location at a given

altitude. The multi-fidelity GPs sensing model captures the fact that a high altitude (low fidelity)

sample provides more global but less accurate information compared with a low altitude (high

fidelity) sample. We designed a multi-target search algorithm EMTS that leverages multi-fidelity

Gps to capture the fidelity-coverage trade-off, information-theoretic techniques to efficiently explore

the environment, and Bayesian techniques to accurately identify targets and construct an occupancy
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map. With rigorous analysis, we establish formal guarantees of the target detection accuracy and

expected detection time.

6.6 Bibliographic Remarks

Autonomous multi-target search requires the autonomous system to quickly and accurately locate

multiple targets of interest in an unknown and uncertain environment. Examples include search

and rescue missions, mineral exploration, and tracking natural phenomena. To improve the target

search efficiency, the trajectory should be designed to balance the explore-exploit tension—the

robot should spend more time at target locations while learning target locations. There have

been some efforts to address such explore-exploit tension within the context of informative path

planning [9, 11, 36, 45–53].

Gaussian processes (GPs) are the most widely usedmodels for capturing spatiotemporal sensing

fields in robotics [42, 43]. Informative path planning using such models of the environment has

been studied [51, 53, 58, 120–122]. In a broader class of search problems, robot trajectories

are designed to maximize the information collected along the way-points while ensuring that the

distance traveled is within a prescribed budget. Such informative path planning problems are

studied in [54–58]. While GP-based approaches have been used extensively, most of them rely on

single-fidelity measurements. Besides, most of these works focus on maximizing the reduction in

uncertainty of the estimates instead of the efficiency of the target search.

The multi-target search can also be viewed as a hot-spot identification problem in which, instead

of the global maximum of the field, all locations with values greater than a threshold need to be

identified. Such problems have been studied in themultiarmed bandit literature [123, 124]; however,

we are not aware of any such studies in the GP setting. Furthermore, all these works focus on single

fidelity measurements, while we focus on multiple fidelities of measurements. The multi-target

search policy in this chapter can be viewed as a combination of informative path planning and the

MAB methods in an environment with multi-fidelity sensing information.
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CHAPTER 7

ONLINE ESTIMATION AND COVERAGE CONTROL

An intuitive idea to extend the single robot search policy to # robots is to partition the environment

into # regions and allocate each robot to one partition. Ideally, the workload needs to be equitably

distributed across all regions to maximize time efficiency. The coverage control focuses on such

equitable partitioning problems for a team of robots to provide service to a large or continuous

environment. The workload is typically referred to as serving demand in coverage control literature.

In the coverage problem [13], a particular demand function q is defined over an environment that

specifies the degree to which a robot is “needed”. The team of agents aims to partition an

environment and achieve a configuration that minimizes the coverage cost defined by the sum of the

q-weighted distances from every point in the environment to the nearest agent. Intuitively, more

robots should concentrate at the regions with higher demands in order to reduce the coverage cost.

This chapter is a slightly modified version of our published work on adaptive coverage control,

and it is reproduced here with the permission of the copyright holder.1 Unlike the classic coverage

control with assume demand function q to be known, we model it as a realization of a Gaussian

process that can be learned by taking samples.

7.1 Online Estimation and Coverage Problem

We consider a team of # agents tasked with providing coverage to a finite set of points in an

environment represented by an undirected graph. The team is required to navigate within the

graph to learn an unknown demand function while maintaining near-optimal configuration. In this

section, we present the preliminaries of the estimation and coverage problem.
1©2021 IEEE. Reprinted with permission from [125].
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7.1.1 Graph Representation of Environment

We consider a discrete environment modeled by an undirected graph � = (+, �), where the vertex

set + contains the finite set of points to be covered and the edge set � ⊆ + × + is the collection of

physically adjacent pairs of vertices that can be reached from each other without passing through

other vertices. Let the weight map F : � → R>0 indicate the distance between connected vertices.

We assume � is connected. Following the standard definition of weighted undirected graph, a path

in � is an ordered sequence of vertices where there exists an edge between consecutive vertices.

The distance between vertices E8 and E 9 in �, denoted by 3� (E8, E 9 ), is defined by the minimum of

the sums of the weights in the paths between E8 and E 9 .

Suppose there exists an unknown demand function q : + → R>0 that assigns a nonnegative

weight to each vertex in �. Intuitively, q(E8) could represent the intensity of signal of interest such

as brightness or column of sound. A robot at vertex E8 is capable of measuring q(E8) by collecting

a sample H = q(E8) + n , where n ∼ N(0, f2) is an additive zero mean Gaussian noise.

7.1.2 Nonparametric Estimation

Let 5 be a vector with the 8-th entry q(E8), 8 ∈ {1, . . . , |+ |}, where | · | denotes set cardinality.

We assume a multivariate Gaussian prior for 5 such that 5 ∼ N(-0,�
−1
0 ), where -0 is the mean

vector and �0 is the inverse covariance matrix. Let =8 (C) be the number of samples and B8 (C) be the

summation of sampling results from E8 until time C. Then, the posterior distribution of 5 at time C

is N
(
-(C),�−1(C)

)
[126, Chapter 10], where

�(C) = �0 +
|+ |∑
8=1

=8 (C)
f2 e8e

T
8

-(C) = �−1(C)
(
�0-0 +

|+ |∑
8=1

e8
B8 (C)
f2

)
.

(7.1)

Here, e8 is the standard unit vector with 8-th entry to be 1.
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7.1.3 Voronoi Partition and Coverage Problem

We define the #-partition of graph � as a collection % = {%8}#8=1 of # nonempty subsets of + such

that ∪#
8=1%8 = + and %8 ∩ % 9 = ∅ for any 8 ≠ 9 . % is said to be connected if the subgraph induced by

%8 denoted by � [%8] is connected for each 8 ∈ # . � [%8] being induced subgraph means its vertex

set is %8 and its edge set includes all edges in � whose both end vertices are included in %8.

The configuration of the robot team is a vector of # vertices ( ∈ +# occupied by the robot

team, where the 8-th entry [8 corresponds to the position of the 8-th robot. The 8-th robot is tasked

to cover vertices in %8. Then, the coverage cost corresponding to configuration ( and connected

#-partition % can be defined as

H((, %) =
#∑
8=1

∑
E′∈%8

3� [%8] ([8, E′)q(E′). (7.2)

In a coverage problem, the objective is to minimize this coverage cost by selecting appropri-

ate configuration ( and connected #-partition %. However, how to efficiently find the optimal

configuration-partition pair in a large graph with arbitrary demand function q remains an open

problem. There are two intermediate results about the optimal selection of configuration or parti-

tion when the other is fixed [127].

Optimal Partition with Fixed Configuration For a fixed configuration ( with distinct entries, a

optimal connected #-partition % minimizing coverage cost is called Voronoi partition denoted by

V((). Formally, for each %8 ∈ V(() and any E′ ∈ %8,

3� (E′, [8) ≤ 3� (E′, [ 9 ), ∀ 9 ∈ {1, . . . , #}.

Optimal Configuration with Fixed Partition For a fixed connected #-partition %, the centroid of

the 9-th partition % 9 ∈ % is defined by

28 := arg min
E∈%8

∑
E′∈%8

3� [%8] (E, E′)q(E′),

and the optimal configuration is to place one robot at the centroid of each %8 ∈ %. We denote the

vector of centroid of % by c(%) with 28 as its 8-th element.
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Building upon the above two properties, the classic Lloyd algorithm iteratively places the robot

to the centroid of the current Voronoi partition and computes the new Voronoi partition using the

updated configuration. It is known that the robot team eventually converges to a class of partition

called centroidal Voronoi partition defined below.

Definition 7.1 (Centroidal Voronoi Partition, [128]). An #-partition % is a centroidal Voronoi

partion of � if % is a Voronoi partition generated by some configuration with distinct entries (, i.e.

% = V((), and c
(
V(()

)
= (.

It needs to be noted that an optimal partition and configuration pair minimizing the coverage

cost H((, %) is of the form ((∗,V((∗)), where (∗ has distinct entries and V((∗) is a centroidal

Voronoi partition. A configuration-partition pair ((′,V((′)) is considered to be an efficient

solution to the coverage problem if V((′) is a centroidal Voronoi partition, even though it is

possibly suboptimal [128].

7.1.4 Coverage Performance Evaluation

To achieve efficient coverage, the agents need to balance the trade-off between sampling the

environment to learn 5 (exploration) and achieving centroidal Voronoi configuration defined using

the estimated q (exploitation). To characterize this trade-off, we introduce a notion of coverage

regret.

Definition 7.2 (Coverage Regret). At each time C, let the team configuration be (C and the connected

#-partition be %C . The coverage regret until time ) is defined by
∑)
C=1 'C (q), where 'C (q) is the

instantaneous coverage regret with respect to demand function q, and is defined by

'C (q) = 2H((C , %C) − H (c(%C), %C) − H ((C ,V((C)),

which is the sum of two terms H((C , %C) − H (c(%C), %C) and H((C , %C) − H ((C ,V((C)). The

former (resp., latter) term is the regret induced by the deviation of the current configuration

(resp., partition) from the optimal configuration (resp., partition) for the current partition (resp.,
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Algorithm 8: Deterministic Sequencing of Learning and Coverage (DSLC)
Input : Environment graph �, -0 , �0 ;
Set : U ∈ (0, 1) and V > 1;

for epoch 9 = 1, 2, . . . do
Exploration phase:

1 The robot team sample at vertices in + to make

max
8∈{1,...,|+ | }

f2
8 (C) ≤ U 9f2

0 .

Information propagation phase:
2 Each robot agent propagates its sampling result to the team.
3 Each robot update estimated demand function q̂.

Coverage phase:
4 for C 9 = 1, 2, . . . ,

⌈
V 9

⌉
do

Based on q̂, run pairwise partitioning algorithm.

configuration). Accordingly, no regret is incurred at time C if and only if %C is a centroidal Voronoi

#-partition and (C = c(%C).

There are two sources contributing to the coverage regret. First, the estimation error in the

demand function q. Second, the deviation from centroidal Voronoi partition while sampling

environment to learn q.

7.2 Deterministic Sequencing of Learning and Coverage Algorithm

In this section, we describe the Deterministic Sequencing of Learning and Coverage (DSLC)

algorithm (Algorithm 8). It operates with an epoch-wise structure and each epoch consists of an

exploration (learning) phase and an exploitation (coverage) phase. The exploration phase comprises

two sub-phases: estimation and information propagation.

7.2.1 Estimation Phase

Let f2
8
(C) be the marginal posterior variance of q(E8) at time C, i.e., the 8-th diagonal entry of

�−1(C). Suppose the marginal prior variance f2
8
(0) ≤ f2

0 , for each 8. Within each epoch 9 , agents
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first determine the points to be sampled in order to reduce max8∈{1,...,|+ |} f2
8
(C) below a threshold

U 9f2
0 , where U ∈ (0, 1) is a prespecified parameter.

Note that the posterior covariance computed in (7.1) depends only on the number of samples

at each vertex, and does not require actual sampling results. Therefore, the sequence of sampling

locations can be computed before physically visiting the locations. Leveraging this deterministic

evolution of the covariance, we take a greedy sampling policy that repeatedly selects the point E8C

with maximum marginal posterior variance, i.e.,

8C = arg max
8∈{1,...,|+ |}

f8 (C), (7.3)

for C ∈ {C
9
, . . . , C 9 }, where C 9 and C 9 are the starting and ending time of estimation phase in the 9-th

epoch. It has been shown that the greedy sampling policy is near-optimal in terms of maximizing

the mutual information of the sampling results and demand function q [58].

Let the set of points to be sampled during epoch 9 be - 9 and let - 9
A = - 9 ∩ %C 9 ,A be the set

of sampling points that belong to %C 9 ,A , the partition assigned to agent A at time C
9
. Each agent A

computes a path through the sampling points in - 9
A and collects noisy measurements from those

points. The traveling path can be optimized by solving a Traveling Salesperson Problem (TSP).

Remark 7.1. With �0 as the common knowledge, the set of sampling points - 9 for each epoch 9

can be computed independently by each robot following the greedy sampling policy. If the same

tie-breaking rule is followed, the computed - 9 and the number of samples at each sampling point

are the same for all agents.

7.2.2 Information Propagation Phase

After the estimation phase, sampling results from each agent must be passed to all other agents.

There are several mechanisms to accomplish this in a finite number of steps. For example, agents

can communicate with their neighboring agents and use flooding algorithms [129] to relay their

sampling results to every agent. Alternatively, the agents may be able to send their sampling results
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to a cloud and receive global estimates after a finite delay. Another possibility for the agents is to

use finite time consensus protocols [130] in the distributed inference algorithm discussed in [28].

For any of the above mechanisms, the sampling results from the entire robot team can be

propagated to each robot agent in finite time. Then, each agent has an identical posterior distribution

N
(
-(C),�−1(C)

)
of 5, and q̂ := -(C) will be used as the estimate of the demand function.

7.2.3 Coverage Phase

After the estimation and information propagation phases, agents have the same estimate of the

demand function q̂. The coverage phase involves no environmental sampling and its length is

designed to grow exponentially with epochs, i.e., the number of time steps in the coverage phase of

the 9-th epoch is
⌈
V 9

⌉
for some V > 1. We use a distributed coverage algorithm, proposed in [127],

called pairwise partitioning with the estimated demand function q̂.

In an connected #-partition %, %8 and % 9 is said to be adjacent if there exists a vertex pair E ∈ %8

and E′ ∈ % 9 such that there exist an edge in � connecting E and E′. At each time, a random pair of

agents (8, 9), with %8 and % 9 adjacent, compute an optimal pair of vertices (0∗, 1∗) within %8 ∪ % 9

that minimize ∑
E′∈%8∪% 9

q̂(E′)min
(
3� [%8∪% 9 ] (0, E′), 3� [%8∪% 9 ] (1, E′)

)
.

Then, agents 8 and 9 move to 0∗ and 1∗. Subsequently, %8 and % 9 are updated to

%8 ← {E ∈ %8 ∪ % 9 | 3� [%8∪% 9 ] ([8, E) ≤ 3� [%8∪% 9 ] ([ 9 , E)},

% 9 ← {E ∈ %8 ∪ % 9 | 3� [%8∪% 9 ] ([8, E) > 3� [%8∪% 9 ] ([ 9 , E)}.

7.3 Analysis of the DSLC Algorithm

In this section, we analyze DSLC to provide a performance guarantee about the expected cumulative

coverage regret. To this end, we leverage the information gain from the estimation phase to analyze

the convergence rate of uncertainty. Then, we recall the convergence properties of the pairwise
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partitioning algorithm used in DSLC. Based on these results, we establish the main result of this

paper, i.e., an upper bound on the expected cumulative coverage regret.

7.3.1 Mutual Information and Uncertainty Reduction

Let -6 = (E81 , . . . , E8=) be a sequence of = vertices selected by the greedy policy. With a slight

abuse of notation, we denote the marginal posterior variance of q(E8) after sampling at E81 . . . E8: by

f2
8
(:). We now present a bound on the maximal posterior variance after sampling at vertices within

-6. The following Lemma is adapted from Lemma 6.6 to incorporate the discrete environment.

Since the proof steps are similar, we skip them for brevity.

Lemma 7.1 (Uncertainty reduction). Under the greedy sampling policy, the maximum posterior

variance after = sampling rounds satisfies

max
8∈{1,...,|+ |}

f2
8 (=) ≤

2f2
0

log
(
1 + f−2f2

0

) W=
=
,

where W= is the maximal mutual information gain that can be achieved with = samples.

Typically, it is hard to characterize W= with a general �0. Therefore, we assume a squared

exponetial kernel for 5.

Assumption 7.1. Vertices in + lie in a convex and compact set � ∈ R2 and the covariance of any

pair q(E8) and q(E 9 ) is determined by a squared exponential kernel function

: (q(E8), q(E 9 )) = f2
E exp

(
−
32
eu(E8, E 9 )

2;2

)
,

where 3eu(E8, E 9 ) is the Euclidean distance between E8 and E 9 , ; is the length scale, and f2
E is the

variability parameter.

We now recall an upper bound on W= from [44].

Lemma 7.2 (Information gain for squared exp. kernel). With Assumption 7.1, the maximum mutual

information satisfies W= ∈ $ ((log|+ | =)3).
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Remark 7.2. If the correlation information is ignored, i.e., q(8), 8 ∈ {1, . . . ,|+ |} are treated

to be independent, it can be seen that max8∈{1,...,|+ |} f2
8
(=) ∈ $ (|+ | /=) with greedy sampling

policy. In contrast, if correlation information is considered, by substituting the result in Lemma 7.2

into Lemma 7.1, max8∈{1,...,|+ |} f2
8
(=) ∈ $ ((log(|+ | =))3/=), which shows great advantage about

reducing uncertainty when |+ | is large (the environment is finely discretized).

7.3.2 Convergence within Coverage Phase

Before each coverage phase, since the sampling results of each agent are relayed to the entire team,

the agents have a consensus estimate of the demand function q̂. It has been shown in [127] that

using the pairwise partitioning algorithm, the #-partition % for the team converges almost surely

to a class of near-optimal partitions defined below.

Definition 7.3 (Pairwise-optimal Partition). A connected #-partition % is pairwise-optimal if for

each pair of adjacent regions %8 and % 9 ,∑
E′∈%8

3� (2(%8), E′)q(E′) +
∑
E′∈% 9

3� (2(% 9 ), E′)q(E′)

= min
0,1∈%8∪% 9

∑
E′∈%8∪% 9

q(E′)min
(
3� (0, E′), 3 (1, E′)

)
.

It means that, within the induced subgraph generated by any pair of adjacent regions, the 2-

partition is optimal. It is proved in [127] that if a connected #-partition % is pairwise-optimal

then it is also a centroidal Voronoi partition. The following result on the convergence time of the

pairwise partitioning algorithm is established in [127].

Lemma7.3 (ExpectedConvergence Time). Using the pairwise partitioning algorithm, the expected

time to converge to a pairwise-optimal #-Partition is finite.

For each coverage phase, Lemma 7.3 implies that the expected time for the instantaneous regret

'C (q̂) to converge to 0 is finite.
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7.3.3 An Upper Bound on Expected Coverage Regret

We now present the main result for this paper.

Theorem 7.4. For DSLC and any time horizon ) , if Assumption 7.1 holds and U = V−2/3, then the

expected cumulative coverage regret with respect to demand function q satisfies

E

[
)∑
C=1

'C (q)
]
∈ $

(
)2/3(log()))3

)
.

Proof. We establish the theorem using the following four steps.

Step 1 (Regret from estimation phases): Let the total number of sampling steps before the end

of the 9-th epoch be B 9 . By applying Lemma 7.1, we get

B 9 ∈ $ ((log()))3/U 9 ).

Thus, the coverage regret in the estimation phases until the end of the 9-th epoch belongs to

$ ((log()))3/U 9 ).

Step 2 (Regret from information propagation phases): The sampling information by each robot

propagates to all the team members in finite time. Thus, before the end of the 9-th epoch, the

coverage regret from information propagation phases can be bounded by 21 9 for some constant

21 > 0.

Step 3 (Regret from coverage phases): According to Lemma 7.3, in each coverage phase, the

expected time before converging to a pairwise-optimal partition is finite. Thus, before the end of

the 9-th epoch, the expected coverage regret from converging steps can be upper bounded by 22 9

for some constant 22 > 0.

Also note that the robot team converge to pair-wise optimal partition with respect estimated

demand function q̂ which may deviate from the actual q. Then, the instantaneous coverage regret

'C (q) caused by estimation error can be expressed as

2H((C , %C) − H (c(%C), %C) − H ((CV((C)) := �T
C 5,
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for some �C ∈ R|+ |. Moreover, the posterior distribution of 'C (q) is N(�T
C -(C), �T

C �(C)�C), where

�(C) = �−1(C) is the posterior covariance matrix. Since a pairwise-optimal partition % is also

a centroidal Voronoi partition and q̂ = -(C), 'C (q̂) = 0 indicates �T
C -(C) = 0. Now, we get

'C (q) ∼ N (0, �T
C �(C)�C) and

E ['C (q)] ≤ E
[��'C (q)��] = √

2
c
�T
C �(C)�C .

Note that �T
C �(C)�C is weighed summation of eigenvalues of �(C). At any time C in the coverage

phase of the :-th epoch, max8∈{1,...,|+ |} f2
8
(C) ≤ U:f2

0 , and its follows that the summation of

eigenvalues of �(C) equals trace(�(C)) ≤ |+ | U:f2
0 . Thus, we get

E

[ ∑
C∈T cov

:

'C (q)
]
≤ 23(V

√
U): ,

for some constant 23 > 0, where T cov
:

are the time slots in the coverage phase of the :-th epoch

and we have used the fact that |T cov
:
| = dV:e.

Step 4 (Summary): Summing up the expected coverage regret from the above steps, the expected

cumulative coverage regret at the end of the 9-th epoch )9 satisfies

E

[
) 9∑
C=1

'C (q)
]
≤ �1 9 + �2B 9 +

9∑
:=1

23(V
√
U): , (7.4)

where �1, �2 > 0 are some constants. The theorem statement follows by plugging in U = V−2/3,

using 9 ∈ $ (log)) and some simple calculations. �

7.4 Simulation Results

To illustrate the empirical performance of the proposed algorithm, we simulate its execution on a

uniform grid graph superimposed on the unit square. We present numerical results which show

that DSLC achieves sublinear regret and compare our algorithm to those proposed in [13] and [68].

Motivated by environmental applications, we construct the demand function q over a discrete

21 × 21 point grid in [0, 1]2 by performing kernel density estimation on a subset of the geospatial

distribution of Australian wildfires observed by NASA in 2019 [131]. Intuitively, q represents the
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probability that a wildfire may occur at a particular point of the unit square, and it is used to model

the demand for an autonomous sensing agent at that point. The ground truth q is shown on the

right in Figure 7.1.

Figure 7.1: Distributed implementation of DSLC.

In each simulation, nine agents are placed uniformly at random over the grid and execute 3

epochs of length 16, 46, and 128 to achieve adaptive coverage of the environment. Partitions are

initialized by iterating over the grid and assigning each point to the nearest agent. During the

exploration phase of each epoch, partitions are fixed; during the exploitation phase of each epoch,

partitions are updated according to the protocol established in [127], where pairwise gossip-based

repartitioning occurs between randomly selected neighbors. Coverage cost, regret and maximum

variance are computed throughout using (7.2), Definition 7.2, and the maximum diagonal entry of

�−1(C) from (7.1), respectively. From left to right in turn, Figure 7.1 shows (i) agent positions (C

and partitions %C (ii) TSP sampling tours (iii) posterior mean (iv) variance of q̂. Pairwise partition

updates between gossiping agents are denoted by magenta lines in the leftmost column of panels.

Points along TSP tours in the second-from-leftmost column of panels are plotted in magenta prior
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Figure 7.2: Comparison of DSLC, Todescato and Cortes.

to sampling, and in black after sampling. A simulation video is available online.2

The demand function q is normalized in the range [0, 1] and sampled by agents with Gaussian

noise parameterized by mean and standard deviation ` = 0, f = 0.1. A global Gaussian Process

model is assumed to simplify the estimation of q̂ throughout the simulation, though in practice

estimation of q̂ could be implemented in a fully distributed manner by assuming each agent

maintains its ownmodel of q̂ and employing an information propagation phase described in Section

7.2. Setting the parameter U = 0.5 to reduce uncertainty by half within each epoch, V = U−3/2 is

fully determined by Theorem 7.4. Figure 7.1 visualizes the simulation of DSLC.

Figure 7.2 compares the evolution of the coverage regret, coverage cost, and uncertainty reduc-

tion in DSLC with that of algorithms proposed in [13] and [68], denoted Cortes and Todescato,

respectively. Agents in [13] are assumed to have perfect knowledge of q and simply go to the cen-

troid of their cell at each iteration; in [68], agents follow a stochastic sampling approach with the

probability of exploration proportional to posterior variance in the estimate q̂ at each iteration. All
2https://youtu.be/nalwrZC6GiI
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results are averaged over 16 simulations of 190 iterations, aligned with the three-implementation

of DSLC with epoch lengths 16, 46, and 128. It can be noticed that DSLC empirically achieves

sublinear regret. Spikes in regret occur during the exploration phase of each epoch, before agents

converge to a pairwise-optimal coverage configuration with respect to q̂ during the exploitation

phase.

Thoughwe do not include the algorithm in our simulations, it is worth noting thatDSLCoperates

in a manner similar to that proposed in [64] where agents spend a number of iterations sampling

q to reduce maximum posterior variance max8∈{1,...,|+ |} f2
8
(=) below a prespecified threshold, then

transition to perform coverage for all remaining iterations. Indeed, this algorithm is essentially a

special case of DSLC with one epoch and can therefore be expected to perform similarly from an

empirical perspective.

7.5 Summary

We propose an adaptive coverage algorithm DSLC that balances the exploration versus exploitation

trade-off in learning q and achieving environmental coverage. Our algorithm schedules learning and

coverage epochs such that its emphasis gradually shifts from exploration to exploitation while never

fully ceasing to learn. Most importantly, we introduce a novel coverage regret that characterizes

the deviation of agent configurations and partitions from a centroidal Voronoi partition and derive

analytic bounds on the expected cumulative regret for DSLC. In particular, we prove that DSLC

will achieve sublinear expected cumulative regret under minor assumptions. The efficacy of DSLC

is illustrated through extensive simulation and comparison with existing state-of-the-art approaches

to adaptive coverage.

7.6 Bibliographic Remarks

Classical approaches to coverage control [13, 61–63] assume a priori knowledge of q and em-

ploy Lloyd’s algorithm [132] to drive agents to a local minimum of the coverage cost. In these

algorithms, each agent communicates with the agents in the neighboring partitions at each time
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and updates its partition. Distributed gossip-based coverage algorithms [133] address potential

communication bottlenecks in classical approaches by updating partitions pairwise between the

agents in neighboring partitions.

While much of the work in coverage considers continuous convex environments, the global

convergence property remains an open problem. The asymptotic convergence to a local minimum

is normally based on an unproven assumption that there exist finite local optimal points [13, 134].

A discrete graph representation of the environment is considered in [127], which not only enables

finite time convergence but also allows for non-convex environments. As has been mentioned

earlier in this chapter, the gossip-based coverage algorithm in the graph environment has been

proved to converge almost surely to pairwise-optimal partitions in finite time [127].

Recent works have put more focus on the problem of adaptive coverage, in which agents are

not assumed to know q a priori. Parametric estimation approaches to adaptive coverage [135, 136]

model q as a linear combination of some basis functions and propose algorithms to learn the

weights of basis functions; while non-parametric approaches [64–69] model q as the realization of

a Gaussian Process and make predictions by conditioning on observed values of q sampled over

the operating environment. Alternative approaches to adaptive coverage [137, 138] have also been

considered.

A non-parametric adaptive coverage algorithm with provable regret guarantees was presented

in this chapter. Similar adaptive coverage algorithms with formal performance guarantees are also

developed in [68, 69]. Todescato et al. [68] use a Bernoulli random variable for each robot to

decide between learning and coverage steps. The distribution of this random variable is designed

to ensure the convergence of the algorithm. In contrast, we leverage the so-called “doubling trick"

from the MAB literature to design a deterministic schedule of learning and coverage. This allows

us to derive formal regret bounds on our adaptive coverage algorithm.

The most closely related work to the ideas presented in this chapter is by Benevento et al. [69],

which uses a Gaussian process optimization-based [44] approach to design an adaptive coverage

algorithm. They derived an upper bound on a notion of coverage regret different fromDefinition 7.2
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in this chapter. Their result is based on a strong assumption that the coverage control algorithm can

drive the system to the global minimum of the coverage cost. In contrast, our coverage regret is

defined with respect to the local minima which can be achieved by many state-of-the-art coverage

control policies including the classic Lloyd’s algorithm. By analyzing the coverage regret defined in

this chapter, the convergence of the adaptive coverage control can still be shown without requiring

the global optimal assumption.
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CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation has focused upon optimal decision-making in the face of uncertainty. In particular,

we address the exploration versus exploitation dilemma in the MAB setup as well as in robotic

problems including target search and adaptive coverage control. All proposed algorithms are

accompanied by rigorous analysis to indicate their convergence properties.

Since the MAB problem provides a concise mathematical formulation of the exploration versus

exploitation dilemma, we have investigated a variety of MAB problem variations that capture

different properties of the stochastic environment in real-world problems. For the heavy-tailed

bandit, we proposed the Robust MOSS algorithm, which is the first to achieve order optimal worst-

case regret while maintaining a logarithm asymptotic regret. For the nonstationary bandits, we

studied both the piece-wise stationary bandit and the more general nonstationary bandits with a

variation budget. Exact order optimal or near order optimal algorithms for these problem setups are

proposed, analyzed, and compared extensively in simulations. As an extension of the single-player

MAB, we studied the distributed multi-player bandit in a piece-wise stationary environment. By

modifying the single-player policy, novel multi-player policies are designed and proved to maintain

group regrets matching with the standard single-player regret even without communication between

agents.

For the robotic target search problem, we have considered a scenario in with a robot operates in

a 3D environment to search targets on a 2D floor. The target search task is modeled as a hot-spots

identification problem in which sensing information is compromised by measurement noise. Since

sensing at a location farther from the floor provides better coverage of the environment but less

accurate results, we have modeled the sensing field with a multi-fidelity Gaussian process that

captures the coverage-accuracy trade-off. Leveraging this novel sensing model, we established a

new informative path planning strategy that allows for jointly planning for sampling locations and

associated fidelity levels, and thus reduces target search time.
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For the adaptive coverage problem, the demand for robotic service within the environment is

modeled as a realization of the Gaussian process. With Bayesian techniques, we have devised a

policy that balances the tradeoff between learning the demand and covering the environment. To

provide analytical rigor, we have defined the coverage regret, and based on it, we have analyzed the

convergence property of the proposed online estimation and coverage algorithm.

There are several possible avenues of future studies on problems addressed in this dissertation.

The distributed multi-player MAB problem in a general nonstationary environment is a challenging

problem and is expected to be applied in the opportunistic spectrum access wherein the stochastic

nature of the channel vacancy changes with time. We intend to design a multi-player policy

that actively detects the drift in stochastic reward processes such that the players require no prior

information about the nonstationary environment. It can be foreseen that the nonstationarity could

bring more difficulty in reward estimation so that achieving coordinate behavior to reduce collisions

is a trickier task. To deal with it, we can allow communication among agents. For example, the

agents can do cooperative reward estimation through a bi-directional communication network by

running consensus algorithms as in [27]. Since communicating sampling results may require

relatively large bandwidth, to reduce the communication requirement, it is also possible to only

require the player to share the ranking of arms as mentioned in [139]. Other issues for such a

problem include privacy and defense against adversarial attacks.

We are also interested in extending the single-robot target search policy to cooperative multi-

robot search scenarios. As has been mentioned, coverage control is a potential method that can

balance the workload. Note that the workload distribution in the environment changes as the search

mission progresses, so the robots need to cover the dynamic demands of service. For such a

problem, providing analytical rigor would be of interest. Other workload-balancing ideas include

using multi-robot path planning methods that solve a vehicle routing problem [140] or orienteering

problem [141]. Also of interest would be the implementation of target search algorithms in

underwater multi-target search testbeds.

It would beworthwhile to pursue the adaptive coverage problem from a variety of newdirections.
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The proposed online estimation and coverage algorithm requires an information propagation phase

to maintain uniform estimation of demands among agents, while we envision a fully distributed

policy that allows for small differences in demand estimates. Besides, the problem setup can be

generalized by considering heterogeneous agents that can provide multiple types of services. The

quality of service could depend on both the servicing agent and the service type. Considering both

inter-service dependencies and the spatial correlations, the multi-task Gaussian process might be a

good fit to model demands of different service types. Another interesting direction could be to use

the time-varying Gaussian process to model a dynamic environment in which the demands change

with time.

Like adaptive coverage control, adaptive multi-robot patrolling is also an interesting problem

with the explore-exploit tradeoff. In the multi-robot patrolling problem [142], a team of robots

circling around a set of important locations (viewpoints) with different known priorities. The

objective is to minimize the weighted refresh time, which is the longest time interval between

any two visits of a viewpoint, weighted by the viewpoint’s priority. We envision addressing this

problem by considering the priorities of viewpoints to be unknown and time-varying so that they

need to be learned. Since the LM-DSEE algorithm for the piece-wise stationary MAB problem has

a block allocation structure that benefits path planning, its multi-player extension and associated

distributed control methods could be promising to solve the problem.
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