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Abstract— We consider a human agent servicing a queue of
homogeneous tasks. The agent can service a task with normal
or high fidelity level, where fidelity refers to the degree of
exactness and precision while servicing the task. We assume
the parameters of the human’s service time distribution depend
on the selected fidelity level and her cognitive state and are
assumed to be unknown a priori. These parameters are learned
online through Bayesian parameter estimation. We formulate a
robust adaptive semi-Markov decision process (SMDP) to solve
our optimal fidelity selection problem and extend the results
on convergence of robust-adaptive Markov decision processes
(MDP) to robust-adaptive SMDPs.

I. INTRODUCTION

Human-in-the-loop systems are pervasive in many safety-
critical systems such as robot-assisted inspection, search
and rescue, and flight control [1]. Often times, supervisory
control environments such as NASA control room, with lack
of personnel, can result in high workload condition for the
human agents [2]. The performance of the human agents
varies with their cognitive load, and hence, it is critical to
efficiently manage their cognitive load. This can be achieved
by providing optimal fidelity level recommendations to the
agent based on her cognitive state and workload. An im-
portant challenge is to learn an accurate model of agent’s
service time, and accordingly adapt the fidelity selection
policy, while ensuring robustness to model uncertainty.

There exist approximate models of the human service-
time distribution that are estimated using data pooled across
multiple human subject experiments [3], [4]. However, due to
individual differences, the agent-specific distribution might
be unknown a priori. The pooled estimate needs to be
adapted online to estimate for the individual. In this paper,
we achieve this adaptation via model-based adaptive SMDPs.
While such a model-based approach is computationally
demanding compared to model-free methods such as Q-
learning [5], it is ideal for human agents due to its less data
intensive nature.

We study optimal fidelity selection problem for a human
agent servicing a stream of homogeneous tasks. The agent’s
cognitive state evolves based on the selected fidelity level
and therefore, impacts her performance in subsequent tasks.
We design our reward structure to encourage high quality
servicing of tasks with high fidelity, while penalizing the
agent for delays in servicing of awaiting tasks. Our previous
work [6] elucidates on this trade-off between high quality
servicing and resulting service time delays, and provide an

This work has been supported by NSF Award IIS-1734272.
Piyush Gupta (guptapi1@msu.edu) and Vaibhav Srivastava (vaib-

hav@egr.msu.edu) are with Department of Electrical and Computer Engi-
neering, Michigan State University, East Lansing, Michigan, 48824, USA.

optimal policy by formulating an uncertainty-free SMDP. We
extend our work in [6] by considering uncertainty in agent’s
service time distribution.

An SMDP accounts for the system uncertainty through
probabilistic state transitions. However, the obtained policy
is sensitive to errors in the stochastic models [7], [8]. The
large uncertainty in the service time models, especially in the
initial stage with limited observation data may lead to sub-
optimal policies. Existing methods for reducing transition
model uncertainty include risk-constrained MDPs [9] that
optimize the Conditional Value-at-Risk, chance-constrained
MDPs [10] that provide a probabilistic framework for han-
dling uncertainty in the transition probabilities, and robust
MDPs [11], [12]. In this work we consider a human agent
with non-memoryless service time distribution, and thus
formulate a robust adaptive SMDP to deal with general
service time distributions [13], [14] and learn a robust policy.

In this work, we show that the solution of the synchronous
and asynchronous value iteration (VI) methods [5] for robust
adaptive SMDP converges to the optimal solution for the
uncertainty-free SMDP. While there exists a convergence
analysis for the robust [15], [16] and adaptive [17] MDPs,
such an analysis is missing for robust adaptive SMDPs to
the best of our knowledge. A key challenge that we address
in comparison to MDPs is the time dependence of the robust
adaptive Bellman operator for SMDPs that requires careful
comparison between optimal value functions for intermediate
SMDPs at different time steps, and the optimal value function
for the uncertainty-free SMDP.

The major contributions of this work are fourfold: (i) we
pose the optimal fidelity selection problem with uncertain
human service time distribution in a robust adaptive SMDP
framework, (ii) we continuously improve the service time
distribution estimates using Bayesian parametric estima-
tion [18] and utilize it to obtain a robust policy, (iii) we
formally show that the solution of both synchronous and
asynchronous VI methods for the robust adaptive SMDP
converge to the optimal solution for the uncertainty-free
SMDP, and (iv) we provide numerical illustrations that show
convergence of the robust adaptive SMDP solution to the
uncertainty-free SMDP.

This manuscript is structured as follows: in Section II,
we provide our problem setup, and formulate it as a robust
adaptive SMDP. In Section III, we provide the convergence
analysis of the robust SMDP to the uncertainty free SMDP
solution. In Section IV, we numerically show that the
policy learned from robust adaptive SMDP converges to
uncertainty-free SMDP solution. We conclude in Section V.



Fig. 1: Schematic of our problem setup. The incoming tasks arrive at a
constant arrival rate λ and gets stored in a queue. The decision support
learns the human service-time distribution based on the online observations
and recommends an optimal fidelity level to the human agent based on the
system state (queue length and cognitive state).

II. BACKGROUND AND PROBLEM FORMULATION

We now present our problem setup, and formulate the op-
timal fidelity selection problem as a robust adaptive SMDP.

A. Problem Setup

We consider a human agent with unknown service time
distribution servicing a queue of homogeneous tasks. We
assume the availability of approximate model for human
service time distribution from human subject experiments,
which we adapt online to estimate the agent’s distribution
using Bayesian parametric estimation.

The homogeneous tasks arrive according to a Poisson
process with a constant arrival rate λ ∈ R>0, and are stored
in a dynamic queue with a maximum capacity L ∈ N,
until serviced by the human agent in a first-come-first-serve
discipline. These tasks continuously lose value at a constant
rate c ∈ R>0 while waiting in the queue. The agent can
choose to service the tasks with normal or high fidelity
level. When the agent services a task with high fidelity, she
meticulously looks into the details, which results in higher-
quality service but leads to larger service times and increased
operator tiredness. We treat the cognitive state of the agent as
a lumped parameter that captures psychological factors such
as fatigue, stress and situational awareness. We assume that
the unknown mean service time of the agent increases with
the fidelity level and is a unimodal function of the cognitive
state, which is inspired from the experimental psychology
literature. For example, according to Yerkes-Dodson law
[19], excessive stress overwhelms the operator and too little
stress leads to reduction in vigilance. Hence, the human
performance is optimal for some intermediate cognitive state.

Fig. 1 shows a schematic of our problem setup. We
are interested in design of a decision support system that
continuously learns the human service-time distribution and
assists the agent by recommending an optimal fidelity level
to service each task. The recommendation is made based on
the robust adaptive policy learned by the decision support for
a given queue length q ∈ Z≥0 and the human cognitive state.
We assume to have real time access to the human cognitive
state using, e.g., Electroencephalogram (EEG) measurements
(see [20] for measures of cognitive load from EEG data).

B. Robust Adaptive SMDP formulation

We now model our problem as a robust adaptive SMDP
ΓRA. We focus on the unknown service time distributions

and refer the interested readers to [6] for more details on
modeling of uncertainty-free distributions.

We consider a finite state space S := {(q, cog)| q ∈
{0, 1, ..., L}, cog ∈ C := {i/N}i∈{0,...,N}, for some N ∈ N,
where cog represents the lumped cognitive state. We consider
five possible actions for the agent given by: (i) Waiting (W),
when the queue is empty, (ii) Resting (R), which provides
the resting time for the human operator to reach the optimal
cognitive state when tired, (iii) Skipping (S), which allows
the operator to skip a task to reduce the queue length and
thereby focus on newer tasks, (iv) Normal Fidelity (N) for
servicing the task with normal fidelity, and (v) High Fidelity
(H) for servicing the task more carefully with high precision.
Hence, a set of admissible actions As for each state s ∈ S
is given by: (i) As := {W | s ∈ S, q = 0} when queue is
empty, (ii) As := {{R, S, N, H }| s ∈ S, q 6= 0} when queue
is non-empty and cog > cog∗, where cog∗ ∈ C is the optimal
cognitive state, and (iii) As := {{S, N, H }| s ∈ S, q 6= 0}
when queue is non-empty and cog ≤ cog∗.

Let τ be the sojourn time spent in state s. The sojourn
time distribution P(τ | s, a) represents the service time while
servicing the task with normal or high fidelity, resting time,
constant time of skip, and time until the next task arrival
while waiting. We model service time distributions in Sec-
tion II-C and refer the readers to [6] for details on resting
and waiting time. We define a state transition distribution
P(s′| τ, s, a) from state s to s′ conditioned on an action
a ∈ As and sojourn time τ spent in state s. This distribution
involves the transition in queue length which is given by
Poisson distribution and the cognitive dynamics which we
model as a Markov chain such that the cognitive state cog
increases with high probability when the operator is busy
(a ∈ {N,H}), and decreases when the operator is idle
(a ∈ {R,W}). For a detailed description of the modeling
of cognitive dynamics, we refer the interested readers to [6].

For each task, the human agent receives a high (low)
immediate reward for servicing the task with high (normal)
fidelity, and no reward for not servicing the task. Further-
more, the agent incurs a penalty at a constant rate c ∈ R>0

for each task waiting in the queue. Hence, it can be shown
that the expected net immediate reward received by the agent
for selecting an action a in state s is given by:

R(s, a) = r(s, a)−
∑
τ

P(τ |s, a)c
(2q + λτ

2

)
τ, (1)

where r : S × As → R≥0 is the reward defined by: (i)
r(s, a) = rH , if a = H; (ii) r(s, a) = rN , if a = N ;
and r(s, a) = 0, if a ∈ {W,R, S}, with rH , rN ∈ R≥0
and rH > rN , and

∑
τ P(τ |s, a)cτ

(
E
[
q+q′

2

∣∣∣ τ, s, a]) is
the expected penalty due to tasks waiting in the queue.

C. Modeling human service time and uncertainity set

There are many approximate models used for modeling
service time distribution P(τ |s, a) for the human agents, most
common being lognormal [3] and inverse Gaussian distri-
bution [4]. We assume that the agent’s service time distri-
bution follows a log-normal distribution Lognormal(µ, σ2)



with unknown parameters µ and σ2, that are the func-
tions of the cognitive state and fidelity-level. We utilize
the Bayesian parameter estimation with a normal-inverse-
chi-squared prior [21] to estimate the distribution parame-
ters using online observations. Using the prior distribution
NIχ2(µ0, κ0, ν0, σ

2
0) = N (µ|µ0, σ

2/κ0) × χ−2(σ2|ν0, σ2
0)

for the parameters µ and σ2, and n ∈ N realizations from
Lognormal(µ, σ2), the posterior distribution of (µ, σ2) is
given by:

p(µ, σ2) = NIχ2(µn, κn, νn, σ
2
n), where (2)

µn =
κ0µ0 + nx

κn
, κn = κ0 + n, νn = ν0 + n,

σ2
n =

1

νn

(
ν0σ

2
0 +

∑
i

(xi − x)2 +
nκ0
κ0 + n

(µ0 − x)2

)
,

xi, i ∈ {1, . . . , n} are the service time samples and x̄ is
the sample mean. Hence, the posterior distribution at any
time t can be computed to recursively estimate the model
parameters µ and σ2 by using the online observations. Let
P̂t(τ |s, a) be the estimate of the service time distribution
at time t. Note that the estimate P̂t(τ |s, a) can be used
to estimate P(s′, τ |s, a) and R(s, a), resulting in estimates
P̂t(s′, τ |s, a) and R̂t(s, a) at time t.

The uncertainty in the human service time models could be
large, especially in the initial stage with limited observation
data, which may lead to suboptimal policies. This can be
mitigated through the use of robust SMDP. The robust SMDP
optimizes the worst-case performance to obtain robust policy
when the joint distribution P(s′, τ |s, a) lies in an uncertainty
set Pa, i.e, P(s′, τ |s, a) ∈ Pa. Note that the robust SMDP
formulation is not inherently adaptive in nature and does not
explicitly use improved transition models that can be learned
using online observations to obtain less conservative policy.
The robust adaptive SMDP utilizes the latest improved
estimates P̂t and R̂t for the joint probability P(s′, τ |s, a)
and reward R(s, a) at time t, respectively.

The choice of uncertainty set Pa is critical for the per-
formance of the robust algorithm. A poor modeling of the
uncertainty set increases the computational complexity and
could lead to highly conservative robust policy. Hence, a
choice of uncertainty set Pa is typically made such that the
robust policy is not overly conservative and the optimization
can be performed in a computationally tractable manner. Let
D be the observation data up to time t. To construct an
uncertainty set Pat at time t, random samples are generated
from the posterior distribution of (µ, σ2) to construct a set
∆t comprised of matrices P̂t(s′, τ |s, a) for each s ∈ S
and a ∈ AS . Finally, a Ψt-confidence level subset of the
transition probabilities ∆t defined by

Pat (Ψt) = {psat ∈ ∆t : ‖psat − psat ‖1 ≤ Ψt, s ∈ S}, (3)

where psat is the nominal transition given by psat = E[psat |D],
is used as a choice for the uncertainty set. We seek to find
Ψt-confidence sets for state transition probability vector for
every state-action pair at time t. We choose Ψt = 6α

|S‖AS |π2t2

such that union bounds applied over each state-action pair
and time yield that all state transition probabilities belong to
respective confidence sets with at least probability α. In the
following we choose α = 0.95.

Using the uncertainty set Pat constructed at time t based on
the latest improved estimates P̂t, the robust adaptive SMDP
solves the following robust Bellman equation (4),

V ∗(s) = max
a∈AS

min
P̂t∈Pat

{
R̂t(s, a) +

∑
τ

∑
s′

γτ P̂t(s′, τ |s, a)V ∗(s′)

}
,

(4)
where 0 < γ < 1 is the discount factor, to obtain a
robust policy π∗ = argmaxa∈AS V (s), which optimizes the
worst-case performance through minimization with respect
to the uncertainty set Pat . In the next section, we show that
the learned policy through robust adaptive SMDP converges
to an optimal policy for the uncertainty-free formulation.

III. CONVERGENCE OF ROBUST ADAPTIVE SMDP
We study the convergence properties of the robust adaptive

SMDP under the following assumptions.
(A1) State space S and actiona space AS are finite.
(A2) P̂t and R̂t remains bounded for any t.
(A3) P̂t and R̂t converges to their true values P and R,

respectively, with probability 1.
(A4) The uncertainty set Pat converges to a singleton esti-

mate P with probability 1.
(A5) Each admissible action is executed from every state

infinitely often.
Since agent’s service time distribution is independent

of the queue length, assumption (A5) can be relaxed to
executing each action at every cognitive state. Furthermore,
assumptions (A3) and (A5) can be satisfied by adopting
exploration strategies such as Gibbs/Boltzman distribution
method for action selection [5], wherein an action is selected
with probability proportional to the current estimate of the
state-action value function divided by a temperature parame-
ter. The temperature parameter is annealed to ensure that the
action selection rule converges over time to a greedy policy
with respect to the value function estimate, while ensuring
each cognitive state-action pair is selected infinitely often.

Let T : R|S| 7→ R|S| be the Bellman operator for an
uncertainty-free SMDP Γ defined by:

T (V (s)) = max
a∈AS

{
R(s, a) +

∑
τ

∑
s′

γτP(s′, τ |s, a)V (s′)

}
.

(5)
We first show the convergence of the adaptive asyn-

chronous VI method followed by the convergence of the
robust approach. In asynchronous VI, an effective approach
to deal with large state spaces, the value of only a subset of
states s ∈ Bt ⊆ S are updated at any time t. The adaptive VI
method adapts to the latest estimates of the model to compute
the control policy, which is continuously improved through
online observations. Hence, the adaptive asynchronous VI
update at time t is given by:

Vt+1(s) =

{
T̂t(Vt), if s ∈ Bt,
Vt(s), otherwise,

(6)



where Bt ⊆ S is the subset of states that are updated at time
t, and T̂t is the Bellman operator for the SMDP estimate Γ̂t
at time t, that utilizes the estimates P̂t and R̂t in (5). The
set Bt can be chosen using prioritized sweeping [22] for
improved computational performance.

Theorem 1: Under Assumptions A1-A5, the adaptive
asynchronous VI converges to the optimal value function V ∗

for the uncertainty-free SMDP Γ with probability 1.
Proof: See Appendix A for the proof.

Let Pa be the uncertainty set for the probability
P(s′, τ |s, a) for a given action a ∈ AS . Then, the robust
adaptive asynchronous VI update at time t is given by:

Vt+1(s) =

{
maxa∈AS minP∈Pa {J a(Vt)} , if s ∈ Bt,
Vt(s), otherwise,

(7)

where for a given a ∈ AS , J a : R|S| 7→ R|S| is given by

J a(V (s)) = R(s, a) +
∑
τ

∑
s′

γτP(s′, τ |s, a)V (s′). (8)

Let Tr : R|S| 7→ R|S| be the robust Bellman operator for
SMDP Γ defined by:

Tr(V (s)) = max
a∈AS

min
P∈Pa

{J a(V (s))} . (9)

Theorem 2: Under Assumptions A1-A5, the robust adap-
tive asynchronous VI converges to the optimal value function
V ∗ for the uncertainty-free SMDP Γ with probability 1. In
addition, for Ψt = 6α

|S‖AS |π2t2 , the union bounds applied
over each state-action pair and time yield that at any time,
the obtained policy is robust with respect to uncertainty in
service time distributions with at least probability α.

Proof: See Appendix B for the proof.

IV. NUMERICAL ILLUSTRATIONS

Fig. 2a and 2b shows an optimal policy and the op-
timal value function obtained using VI algorithm for the
uncertainty-free SMDP Γ with cog∗ = 0.6 as the optimal
cognitive state. The optimal policy selects high fidelity
around the cog∗ for small queue lengths, and then transitions
to normal fidelity as the queue length increases in sub-
optimal cognitive states. The optimal action is to rest when
the queue length is large and cognitive state is high. Simi-
larly, skipping of tasks is an optimal action for large queue
lengths in sub-optimal cognitive states. The corresponding
optimal value function is a decreasing function of q and is a
uni-modal function of the cognitive state, the maximum for
which occurs at cog∗ for each q; see [6] for more details.

Fig. 2c and 2d shows a robust adaptive policy, and
the corresponding optimal value function for the uncertain
SMDP ΓRA obtained from asynchronous VI algorithm. In
our numerical illustrations, we only estimate the parameter
µ of the Lognormal(µ, σ2) distribution using Bayesian esti-
mation. In case when σ2 is unknown, Markov chain Monte
Carlo (MCMC) methods [23] can be used to sample from
the posterior inverse-chi-squared-distribution to create the
uncertainty set Pat at time t. An identical policy and value
function is obtained in case of synchronous VI algorithm.
Hence, the solution of the synchronous and asynchronous VI
converges to the optimal solution of uncertainty-free SMDP.
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Fig. 2: (a) Optimal policy and (b) optimal value function for the uncertainty-
free SMDP Γ. (c) Robust adaptive optimal policy, and corresponding (d)
optimal value function for the uncertain SMDP ΓRA.

Fig. 3 shows the policy updates for the synchronous and
asynchronous robust adaptive algorithm after 4, 8, 32 and
76 iterations, respectively. The synchronous robust adaptive
algorithm performs a VI update at each time step in (6) for all
states, i.e. Bt = S, while in the asynchronous robust adaptive
algorithm, the VI update is performed on a randomly chosen
subset Bt ∈ S at each time step. The asynchronous robust
adaptive algorithm converges (80 iterations) much faster than
the synchronous robust adaptive algorithm (404 iterations),
while both eventually converge to the optimal policy for the
uncertainty-free SMDP Γ as shown in Fig. 2.

V. CONCLUSIONS

We studied optimal fidelity selection problem for a hu-
man agent servicing a stream of homogeneous tasks. The
parameters of the service time distribution for the agent are
unknown a priori which are learned online through Bayesian
parametric estimation. We utilize the robust-adaptive SMDP
approach which adapts to the latest estimates of the dis-
tribution model, while obtaining robust policy towards the
worst-case performance. We formally extend the convergence
results of the robust adaptive MDP to robust adaptive SMDP,
and show that the solution of the robust adaptive SMDP con-
verges to the optimal solution for the uncertainty-free SMDP.
Furthermore, we numerically illustrate the convergence of the
synchronous and asynchronous robust adaptive policy to the
uncertainty-free optimal policy.

APPENDIX

A. Proof of Theorem 1

A key challenge we address is the time-dependence of
the asynchronous adaptive Bellman updates that adapt to the
latest estimates of the service-time distribution. Using Lem-
mas 1 and 2, we upper-bound the difference between optimal
value functions for intermediate SMDPs at subsequent time
steps, and the optimal value function for the uncertainty-free
SMDP, which are used to establish the convergence result.
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Fig. 3: Policy updates for the synchronous ((a)-(d)) and asynchronous ((e)-(h)) robust adaptive algorithm after 4, 8, 32 and 76 iterations, respectively.

Theorem 3 (adapted from [24, Chapter 10]): T is a con-
traction mapping and therefore, there exists a unique fixed
point satisfying T (V ∗) = V ∗, where V ∗ is the optimal value
function for the uncertainty-free SMDP Γ.

Let V ∗t be the optimal value function for SMDP Γ̂t defined
by the estimates P̂t and R̂t. Therefore, V ∗t = T̂t(V

∗
t ). Let ‖·‖

be the max-norm given by ‖v‖ = max{|v1|, |v2| . . . , |vn|},
for any vector v = (v1, v2, . . . , vn). Let τmin ≥ 1 be the
minimum number of time steps spent in any state s ∈ S, for
any action a ∈ AS .

Lemma 1: For any state s ∈ S, following statements hold:
(i) |T̂t(V1(s)) − T̂t(V2(s))| ≤ γτmin‖V1 − V2‖ for any

s ∈ S, where the Bellman operator T̂t at any time t is
applied on value function estimates V1 and V2.

(ii) |Vt+1(s)− V ∗t (s)| ≤ γτmin‖Vt − V ∗t ‖, if s ∈ Bt.
Proof: We prove the first statement. For any

s ∈ S, let V := |T̂t(V1(s)) − T̂t(V2(s))|. Therefore,

V ≤ max
a∈AS

∣∣∣∣∣∑
τ

∑
s′

γτ P̂t(s′, τ |s, a)(V1(s′)− V2(s′))

∣∣∣∣∣
≤ ‖V1 − V2‖

∑
τ

γτ P̂t(τ |s, a) ≤ γτmin‖V1 − V2‖.

The second statement follows from the first by noting that
|Vt+1(s)− V ∗t (s)| = |T̂t(Vt)− T̂t(V ∗t )| if s ∈ Bt.

Lemma 2: Under Assumptions A1-A5, for any given ε >
0, there exists a time t̃, such that for any t ≥ t̃, (i) ‖V ∗t −
V ∗‖ ≤ ε, and (ii) ‖V ∗t+1 − V ∗t ‖ ≤ 2ε with probability 1.

Proof: Since the estimates P̂t and R̂t are assumed to be
bounded at any time t (assumption (A2)), the value function
estimate Vt at any time t also remains bounded. Furthermore,
using assumption (A3), P̂t and R̂t converge to their true
values P and R, respectively, with probability 1, i.e, for any
ε1, ε2 > 0, there exists a time t̃0 such that, for any t ≥ t̃0,
|R̂t − R| ≤ ε1 and |p̂ijt − pij | ≤ ε2, where p̂ijt and pij are
the elements of P̂t and P, respectively. In asynchronous VI,
the value of only the states s ∈ Bt ⊆ S are updated at
any time t, however, each state is assumed to be updated
infinitely often. Therefore, the sequence (6) converges with
probability 1, i.e., for any ε3 > 0, there exists a time t̃1 ≥ t̃0
such that ‖Vt+1 − Vt‖ ≤ ε3, for t ≥ t̃1.

Consider s ∈ Bt such that Vt+1(s) = T̂t(Vt(s)). Let

V∗t := ‖V ∗t −V ∗‖, where we only consider the states s ∈ Bt
in the vectors V ∗t and V ∗. Therefore,

V∗t ≤ ‖V ∗t − Vt+1‖+ ‖Vt+1 − V ∗‖ =: Z1 + Z2. (10)

Z1 = ‖V ∗t − Vt+1‖ is upper bounded by:

Z1 ≤ ‖V ∗t − T̂t(Vt+1)‖+ ‖T̂t(Vt+1)− T̂t(Vt)‖ =: Z1
1 + Z2

1 .
(11)

Since Z1
1 = ‖V ∗t − T̂t(Vt+1)‖ = ‖T̂t(V ∗t ) − T̂t(Vt+1)‖,

from statement (i) of Lemma 1, we get

Z1
1 ≤ γτmin‖V ∗t − Vt+1‖, and Z2

1 ≤ γτmin‖Vt+1 − Vt‖.
(12)

Substituting (12) in (11), we get:

Z1 ≤
γτmin

1− γτmin
‖Vt+1 − Vt‖. (13)

Z2 = ‖V ∗ − Vt+1‖ is upper bounded by:

Z2 ≤ ‖V ∗ − T (Vt+1)‖+ ‖T (Vt+1)− Vt+1‖ =: Z1
2 + Z2

2 .
(14)

Again using statement (i) of Lemma 1, we have

Z1
2 ≤ γτmin‖V ∗ − Vt+1‖ = γτminZ2. (15)

Furthermore, Z2
2 = ‖T (Vt+1)−Vt+1‖ = ‖T (Vt+1)−T̂t(Vt)‖

is upper bounded by:

Z2
2 ≤ max

a∈AS
‖R− R̂t‖+ max

a∈AS

∥∥∥∑
τ

∑
s′

γτP(s′, τ |s, a)Vt+1(s′)−∑
τ

∑
s′

γτ P̂t(s′, τ |s, a)Vt(s
′)
∥∥∥. (16)

Recall that for any t ≥ t̃0, |R̂t−R| ≤ ε1 and |p̂ijt −pij | ≤
ε2. Therefore, for t ≥ t̃0, (16) is upper bounded by:

Z2
2 ≤ ε1 + max

a∈AS

∥∥∥∑
τ

∑
s′

γτ |P(s′, τ |s, a)− P̂t(s′, τ |s, a)|Vt+1(s′)
∥∥∥

+
∥∥∥∑

τ

∑
s′

γτ P̂t(s′, τ |s, a)(Vt+1(s′)− Vt(s′))
∥∥∥

(1∗)

≤ ε1 + ‖Vt+1‖
∑
τ

∑
s′

γτ ε2 + γτmin‖Vt+1 − Vt‖,

= ε1 +
ε2Nγ

τmin‖Vt+1‖
1− γ

+ γτmin‖Vt+1 − Vt‖, (17)

where N is the size of the finite state-space S, and (1∗)



follows from |p̂ijt − pij | ≤ ε2 and statement (i) of Lemma 1.
Substituting (15) and (17) in (14), we get:

Z2 ≤
γτmin

1− γτmin
‖Vt+1 − Vt‖+ f(‖Vt+1‖), (18)

where f(‖Vt+1‖) := 1
1−γτmin

(
ε1 + ε2Nγ

τmin‖Vt+1‖
1−γ

)
is

bounded for bounded ‖Vt+1‖ and f(‖Vt+1‖) 7→ 0, when
ε1, ε2 7→ 0. Substituting (13) and (18) in (10), we get

V∗t ≤
2γτmin

1− γτmin
‖Vt+1 − Vt‖+ f(‖Vt+1‖). (19)

Recall that for any ε3 > 0, there exists t̃1 ≥ t̃0 such that
|Vt+1 − Vt‖ ≤ ε3, for t ≥ t̃1. Choosing ε1, ε2 7→ 0, and
ε3 = ε(1−γτmin )

2γτmin
, we get that there exists t̃1, such that ‖Vt+1−

Vt‖ ≤ ε(1−γτmin )
2γτmin

, and V∗t = ‖V ∗t −V ∗‖ < ε, for any t ≥ t̃1.
Recall that V∗t only considers states s ∈ Bt. However,

since each state is updated infinitely often, there exists t̃
such that ‖V ∗t − V ∗‖ < ε, for any t ≥ t̃. Furthermore, for
t ≥ t̃, ‖V ∗t+1 − V ∗t ‖ ≤ ‖V ∗t+1 − V ∗‖+ ‖V ∗t − V ∗‖ ≤ 2ε.
Proof of Theorem 1: For any state s ∈ S , define a se-
quence {tsi}∞i=1 of times at which state s is updated by
the asynchronous VI, and consider the updates after time
t̃, i.e., consider the sequence {tsi}∞i=k such that tsk ≥ t̃. Let
Vt(s) := |Vt+1(s)−V ∗t (s)|. Therefore, using statement (ii) of
Lemma 1, Vtsi+1

= |Vtsi+1+1(s)− V ∗tsi+1
(s)| ≤ γτmin‖Vtsi+1

−
V ∗tsi+1

‖, and therefore upper-bounded by:

Vtsi+1
(s) ≤ γτmin(‖Vtsi+1

− V ∗tsi ‖+ ‖V ∗tsi − V
∗
tsi+1
‖)

(1∗)

≤ γτmin
(
‖Vtsi ‖+ 2ε)

)
, (20)

for i ≥ k, where (1∗) follows from statement (ii) of
Lemma 2. From (20), we get the following recursion:

‖Vtsi+1
‖ ≤ γτmin

(
‖Vtsi ‖+ 2ε

)
, (21)

for i ≥ k.
Recursively performing (21) to obtain upper-bounds on

‖Vtsj‖, for j = k, . . . i, and substituting in (20), we get:

Vtsi+1
(s) ≤ γ(i+1)τmin‖Vtsk‖+

2γτmin(1− γ(i+1)τmin)

1− γτmin
ε,

In the limit i → ∞, Vtsi+1
= |Vtsi+1+1(s) − V ∗tsi+1

(s)| ≤ ε4,

where ε4 := 2γτmin

1−γτmin
ε, and ε4 7→ 0 for ε 7→ 0. Since for

each s ∈ S , V ∗tsi+1
(s) converges to V ∗(s) (Lemma 2), and ε

is arbitrary, Vt(s) converges to V ∗(s) for any s. �

B. Proof of Theorem 2

We prove Theorem 2 using the following Theorem 4.
Theorem 4: Tr is a contraction mapping, and hence, there

exists a unique fixed point satisfying, Tr(V ) = V .
Proof: The proof follows similar to the case of robust

MDPs [15].
Proof of Theorem 2: Since Tr is a contraction mapping

(Theorem 4), and each state is updated infinitely often, the
robust adaptive asynchronous VI converges to a fixed point
Tr(V ) = V . Furthermore, bounded Pa implies that the value
function at any time t remains bounded. Once Pa converges

to the singleton estimate P, the robust adaptive asynchronous
VI reduces to the adaptive asynchronous VI. Hence, the proof
follows using Theorem 1. �
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