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Abstract: We study Susceptible-Infected-Recovered (SIR) epidemic model under mobility on
multi-layer networks. We consider a scenario in which each individual within the population
belong to one of the multiple classes and the population is distributed over multiple environ-
mental patches. Individuals within a patch interact according to the SIR epidemic model and
move across patches according to a class-dependent continuous time Markov chain. This yields
a multi-layer network in which each layer is associated with a class and the connectivity in each
layer corresponds to the digraph and transition rates of the associated Markov chain. For this
multi-layer SIR model, we establish stability properties of equilibria using Lyapunov techniques,
and derive simple conditions for the epidemic outbreak.
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1. INTRODUCTION

The classic SIR epidemic model has been applied to sev-
eral infectious diseases including smallpox, polio, measles,
rubella, chickenpox, and influenza (Hethcote, 2000). Vari-
ations of the classic SIR model have also been used for
predicting and designing mitigation strategies for the novel
Coronavirus disease (Calafiore et al., 2020; Franco, 2020;
Morris et al., 2020). Within the context of engineered
systems, these models have been used to understand the
spread of computer viruses (Kleinberg, 2007; Wang et al.,
2009), routing in mobile communication networks (Zhang
et al., 2007), and spread of rumors (Jin et al., 2013).

In this paper we focus on an environment comprised of
multiple spatially distributed regions (patches) and study
a model in which individuals within each patch inter-
act with each other according to the SIR model and
move across different patches according to a Continuous
Time Markov Chain (CTMC). Individuals are clustered
into classes and their mobility depends on the class. In
the context of disease modeling, such mobility represents
movement of individuals across highly populated neighbor-
hoods, and different classes may correspond to age groups
or socio-economic status. In the context of communica-
tion networks, the mobility may capture the movement of
robots across sub-groups and different classes may capture
the heterogeneity in robots.

The classic epidemic models consider well-mixed popula-
tion (Hethcote, 2000). Network epidemic models relax the
well-mixed assumption by considering interaction between
sub-populations (Fall et al., 2007; Khanafer et al., 2016;
Mei et al., 2017; Nowzari et al., 2016; Ogura and Preciado,
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2016; Pagliara and Leonard, 2020; Paré et al., 2018). In
these models, sub-populations are represented by nodes in
the interaction graph and the infectious sub-population in
neighboring nodes instantaneously influence the epidemic
spread dynamics at a node.

In contrast, we focus on epidemic spread with mobility
and use the class of models studied in (Jin and Wang,
2005; Li and Shuai, 2009; Wang and Zhao, 2004), wherein
the interaction between neighboring nodes is due to the
physical movement of individuals between them. In these
works, the mobility or dispersal patterns depend on the
state (susceptible or infected) of the individuals, and con-
ditions for stability of equilibria are derived. These models
have been extended in the context of SEIR models to
capture the influence of multiple species (classes) in (Arino
et al., 2005), wherein conditions for the global stability of
a disease-free equilibrium are derived.

In this paper, we consider a patchy environment in which
individuals within each patch may belong to different
classes and their mobility across patches is determined
by their class. This leads to a multi-layer mobility model
and we study its interaction with SIR epidemic propaga-
tion. We extend the results for the deterministic network
model (Abhishek and Srivastava, 2020; Fall et al., 2007;
Khanafer et al., 2016; Mei et al., 2017) to the proposed
model and characterize its steady state and stability prop-
erties.

The major contributions of this paper are threefold. First,
we derive a deterministic continuum limit model describ-
ing the interaction of the SIR dynamics with the multi-
layer Markovian mobility dynamics. The obtained model
is similar to the model studied in (Arino et al., 2005);
however, our presentation derives the model from first



principles. Second, we rigorously characterize the stability
properties of the equilibrium point. Third, we provide
some simple conditions for epidemic outbreak.

Mathematical notation: For any two real vectors x, y €
R"™, we denote:

x>y, ifx; >y forallie{1,...,n},

x>y, ifx; >y; forallie{l,... n},

x>y, ifa; >y forallie{l,...,n} and ¢ # y.

For any vector * = [21,...,7,] , X = diag(z) is a
diagonal matrix with X;; = x; for all i € {1,...,n}.

2. SIR MODEL UNDER MULTI-LAYER
MARKOVIAN MOBILITY

We consider n sub-populations of individuals that are
located in distinct spatial regions (patches). We assume
that the individuals within each patch can be classified
into three categories: (i) susceptible, (ii) infected and (iii)
recovered. Additionally, we assume that these individuals
are further grouped into m classes depending on how
they travel to other patches. Let the connectivity of these
patches corresponding to the mobility pattern of each class
a € {1,...,m} be modeled by a digraph G* = (V,£%),
where V = {1,...,n} is the node (patch) set and £ C V x
V is the edge set. We model the mobility of individuals on
each graph G% using a Continuous Time Markov Chain
(CTMC) with generator matrix Q%, whose (i, 7)-th entry
is ¢fj. The entry ¢f; > 0, i # j, is the instantaneous
transition rate from node ¢ to node j, and —¢§; = v{* is the
total rate of transition out of node i, i.e., v = Zj# 455
Here, ¢; > 0, if (i,7) € £€%; and ¢i; = 0, otherwise. Let
x$(t) be the number of individuals of class « in patch i
at time t. Let p¢ € [0,1] (respectively, s¢ € [0, 1]) be the
fraction of infected (respectively, susceptible) individuals
within individuals of class « at patch i. Define p® :=

[ps, ..., p2]", 8% = [s¢,...,52]", & = [z%,...,2%]T,
- [E(%?TL o @ s = (T (87T and

For the epidemic process at node i, let §; > 0 and §; > 0
be the infection and recovery rate, respectively. We let
B* > 0 and D* > 0 be the positive and non-negative
diagonal matrices with entries 3; and §;, i € {1,...,n},
respectively. Let B and D be the positive and non-negative
diagonal matrices with block-diagonal entries B and D,
a € {1,...,m}, respectively. Let P* := diag(p®), P :=
diag(p) and S := diag(s). We now derive the continuous
time dynamics that captures the interaction of mobility
and the SIR epidemic dynamics.

Proposition 1. (SIR model under mobility). The
dynamic model for SIR epidemic process with multi-layer
Markovian mobility is

§$=—-SBF(x)p— L(x)s (1la)

p=(SBF(z) - D — L(z))p (1b)

& = (Q%) "z, (1c)

where L is an nm x nm block-diagonal matrix with block-

diagonal terms L%, o € {1,...,m}, L%(x) is a matrix with
entries

e

aTi e
Z jS‘riqv ifi= J
@) =4
—q5; I—ja , otherwise,
7
F(z) = [F'(z),...,F"(z)]" be a row-concatenated
nm X nm matrix with each n x nm block-row as F(x) :=
[Fl(z),..., F™(x)], and F'“ as a diagonal matrix with en-
tries ff(x) := Iiza, i.e., the fraction of total population

at node i contributed by class a.

Proof: The proof follows similarly to that in (Abhishek
and Srivastava, 2020, Proposition 1). O

We analyze the SIR model under multi-layer mobility (1)
under the following standard assumptions:

Assumption 1. Digraph G¢ is strongly connected, for all
a € {1,...,m}, which is equivalent to matrices Q“ being
irreducible (Bullo (2020)). O

Assumption 2. There exists a node k such that §; > 0. O

Let v be the right eigenvector of (Q%)" associated
with eigenvalue at 0. We assume that v® is scaled
such that its inner product with the associated left
eigenvector 1, is unity, i.e., 1;[1)“ = 1. Define v :=
[NY(oD)T,...,N™(v™)T]T, where N is the total number
of individuals belonging to class «, for a € {1,...,m}.

Theorem 1. (Existence and properties of equilibria).
For the SIR model with multi-layer Markovian mobility (1)
under Assumptions 1 and 2, the following statements hold

(i) if p(0) and s(0) € [0,1]™™ , then p(¢) and s(t)
€ [0,1)"™ for all ¢ > 0 ;

(ii) if p(0) > 0 and s*(0) > 0 for each «, then p(t) > 0
and s(t) > 0 for all ¢t > 0 ;

(iii) the equilibrium points (p*
set {(0,[k11,) ko1, ..
R>o};

(iv) the set of equilibria
{0, k11 kol ] k)T 0) | Ky ko,
R>o} is globally asymptotically attractive.

,8*,x*) belong to the
;ll—T,’U) | kl,kg,...,km S

wkm €

Proof: (i) and (ii) follow similarly to the proof in (Ab-
hishek and Srivastava, 2020, Theorem 1). Define L* :=
L(x*), S* := diag(s*) and F* := F(x*) . To establish
statement (iii), premultiply (la) and (1b) with z*T at
equilibrium

—z* ' S*BF*p* =0 (2a)
x*T S*BF*p* —x*" Dp* = 0. (2b)
Here, we have used the fact that * " L* = 0, which can

be seen from the fact that ' L(z) = = Q. Also, since
z* > 0 and S*BF*p* > 0, Dp* > 0, (2) yields

S*BF*p* =0 (3a)

Dp* = 0. (3b)

Using Assumption 2 in (3b) implies p;® = 0 for each «

at node k with d; > 0. Using (3) in (1b) at equilibrium

gives L*p* = 0 or equivalently L**p** = 0 for each «a.

Therefore under strong connectivity assumption of each

layer (Assumption 1) p* = 0. Further using (3a) in (1a) at

equilibrium yields L*s* = 0, or equivalently L**s** = 0



which gives: s** = k,1,, for each a. This proves statement
(iii).
For statement (iv), consider a Lyapunov candidate func-
tion V3 = &' (2s + p). It follows that
Vs =x' (~28BFp —2Ls + SBFp — Dp — Lp)
+2"Q(2s + p)

=x'(—~SBFp — Dp)

<0.
Now, using LaSalle’s invariance theorem (Khalil, 2002,
Theorem 4.4), all trajectory asymptotically goes to the

largest invariant set with V3 = 0. This further implies
all trajectory asymptotically goes to an invariant set
with Dp = 0 and SBFp = 0. Using this fact in (1b)
at equilibrium expanded for each mobility layer under
Assumptions 1 and 2 implies p* = 0 is globally attractive.

Next consider a Lyapunov candidate function V;, =
sTX*s — 2nmr fg(||L||)dt with X* := diag(«*) and r :=
[|X*||. Then,

Vi =2s" X*5 — 2nmr(||L||)
= 28" X*BFSp+s' (X*(=L)+ (L))" X*)s
— 2nmr(|[L])
=28 X*BFSp —s' (X*(L*) + (L*)" X*)
— s (X*(L)+ (L) " X*)s — 2nmr(||L])
< —2s" X*BFSp —s' (X*(L*) + (L*)T X*)
+ 2nmr(||LI) — 2nmr (|| L)
< 258" X*BFSp—s' (X*(L*)+ (L*)" X*)s
< —s (X*(L*) + (L") TX*)s <0.
The last inequality follows as the matrix X*(L*) +
(L*)TX* is a symmetric Laplacian and hence a sym-
metric positive semi-definite matrix. To see this, note
that (X*(L*) + (L*)TX*)1 = X*(L*)1 + (L*)TX*1 =
0+ (L*)"x* = 0. Additionally, this matrix is a block

diagonal matrix with block elements as strongly con-
nected symmetric Laplacian matrices. Using Barbalat’s

lemma, we get V4 — 0. This in turn leads to s —
[k11) ko1, ... k,1)]T. This proves statement (iv). O

S
S

An epidemic outbreak is an event in which the total
number of infected individuals in the system (summed
over all the layers and nodes) increase before eventually
reaching a disease-free state. As evident from Theorem 1,
the total number of infected individuals ultimately goes
to zero. The epidemic outbreak is characterized by the
increase in the size of the infected population in the early
phase of the transient response.

Define smax(t) as the greatest element in s(t) taken over
all layers and nodes.

Corollary 1. (Epidemic outbreak). For the SIR epidemic
model under multi-layer Markovian mobility (1) under
Assumption 1, the following statements hold

(i) For a single layer network, if $max(0)B — D < 0
then there is no epidemic outbreak and total infected
population monotonically decreases to zero;

(ii) If S(0)BF(0) — D > 0, then there is an epidemic
outbreak at ¢t = 0.

Proof: Using (1b), we first write the expression for the
rate of change of total infected population for the system,
Ni=z"p:
Nr=a'p+a'p
— 2" (SBF(@) - D~ L(@)p+ " Qp
— o (SBF(z) - D)p (4)

where (4) follows using =" L(z) = = Q, a consequence
of definitions of matrices L(x) and Q. It can be shown
from (1a) that syax(t) monotonically decreases with time.
This is a consequence of negative first term and negative
Laplacian second term in the right hand side of (1a). Now,
for the special case of a single layer network F(x) = I,
therefore in the right hand side of (4), we can see that
SB — D < $pax(t)B — D < $1max(0)B — D. Further, since
x and p are non-negative, if sy.x(0)B — D < 0, then
for a single layer network the right hand side of (4) is
non-positive and hence N; monotonically decreases. This
proves statement (i).

Statement (ii) follows by evaluating SBF — D at t = 0
and making it positive to make right side of (4) positive
at t = 0 and hence Ny increases at t = 0 giving rise to an
initial outbreak. O

3. NUMERICAL ILLUSTRATIONS

In this section, we numerically illustrate our results on
multi-layer SIR epidemic model.

We choose different population size for the two mobility
layers and select the mobility transition rates using the
Metropolis-Hastings algorithm (Hastings, 1970) such that
the equilibrium distribution of population is the same for
both the layers (taken as uniform equilibrium distribu-
tion).

Figures 1 (a) and (b) show the fractions of infected
population whereas Figures 1 (¢) and (d) show the
fraction of susceptible population trajectories for 10 nodes
connected with 2-layers of graph structures. Layer 1 is line
graph and layer 2 is ring graph. The initial population
distribution at the 10 nodes for layer 1 and layer 2 are

5 x [700, 500, 300, 100, 500, 700, 800, 900, 600, 500],
5 x [300, 300, 200, 100, 200, 300, 400, 400, 500, 200],
respectively. The infection and curing rates for the 10
nodes are
[0.31,0.32,0.35,0.36,0.5,0.3,0.3,0.1,0.1,0.1], and
[0.3,0.22,0.21,0.25,0.3,0.21,0.23,0.24,0.21, 0.22],

respectively. The initial fraction of infected population is
taken as 0.01 for all layers and nodes with no recovered
population.

and

4. CONCLUSIONS

We derived a continuous-time model for SIR epidemic
propagation under Markovian mobility across multi-layer
network of patches. The derived model has been analysed
to establish properties of the equilibria. Some simple
conditions for epidemic outbreak have been established.
We also provided numerical studies to support our results.
The work can be extended to do further analyses, for
example, analysis of transient dynamics for the presence
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Fig. 1. Simulation of deterministic model of SIR epidemic
spread under 2 layer mobility, over Line-Ring graph
structure. n = 10, p;(0) = 0.01.

of outbreaks as well as to study the effect of network
structure on the transient dynamics.
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