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Abstract— We study first passage time problems in collective
decision-making using the context of two alternative choice
tasks. The properties of the first passage time of a high
dimensional stochastic process are hard to compute. For a class
of stochastic processes governed by coupled linear stochastic
differential equations, we develop reduced order models that
are amenable to efficient computation of the properties of the
first passage time. We use the proposed reduced model to
study collective decision-making in heterogeneous cooperative
networks and leader-follower networks.

I. INTRODUCTION

Collective decision-making in animal and human groups
has received significant interest in a broad scientific commu-
nity [1], [2], [3]. In situations where individuals in groups are
free to make decisions whenever they have collected enough
information, the decision-making process often corresponds
to the first passage time of a stochastic process. The first
passage time is the earliest time when the trajectory of a
stochastic process starting within a region of interest hits the
boundary of the region.

The first passage time problems are ubiquitous in a wide
range of areas including neuroscience [4], biology [5], [6],
[7], finance [8], ecology [9], and engineering [10]. For
stochastic processes governed by stochastic differential equa-
tions (SDEs), properties of first passage times, e.g., their
expected values and probability distribution functions, can
be characterized in terms of second order partial differential
equations (PDEs). However, the number of variables in these
PDEs is equal to the dimension of the state of the SDE,
which makes the computation of the solution of these PDEs
intractable for high-dimensional state-spaces.

In this paper, we study first passage time problems in col-
lective decision-making using the context of two alternative
choice tasks. The number of variables in such problems is
of the order of the number of individuals in the group, and
thus, the computation of the properties of first passage times
becomes intractable for large groups. To ameliorate these
issues, we develop a generic model reduction technique and
apply it to collective decision-making problems.

We particularly focus on decision-making in human
groups. The collective decision-making in human groups is
typically studied under two extreme communication regimes:
the so-called ideal group and the Condorcet group. In an
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ideal group, each decision-maker interacts with every other
decision-maker in the group and the group arrives at a
consensus decision. In a Condorcet group, decision-makers
do not interact with one another; instead a majority rule is
employed to reach a decision. Collective decision-making in
ideal human groups and Condorcet human groups is studied
in [3] using the classical signal detection model for human
performance in two alternative choice tasks.

Human decision-making in two alternative choice tasks
is extensively studied and well understood [4], [11], [12].
In particular, human decision-making in a two alternative
choice task is modeled well by the drift-diffusion model
(DDM). Human decision-making is typically studied under
two paradigms, namely, interrogation, and free response.
In the interrogation paradigm, the human has to make a
decision at the end of a prescribed time duration, while in
the free response paradigm, the human takes their time to
make a decision. The free response paradigm in the DDM
correspond to a first passage problem of the Wiener process.

Collective decision-making in Condorcet human groups
using the DDM and free response paradigm is studied
in [13], [14]. Collective decision-making in ideal cooperative
networks and ideal leader-follower networks using the DDM
and interrogation paradigm are studied in [15] and [16],
respectively. Collective decision-making in ideal cooperative
networks with identical agents using the DDM and free-
response paradigm is studied in [17]. In this paper, we
extend the results in [17] to cooperative networks with
heterogeneous agents, and leader-follower networks.

The DDM is a continuous time approximation to the ev-
idence aggregation process in a hypothesis testing problem.
Moreover, the finite sample and the sequential hypothesis
testing problems correspond to the interrogation and the free
response paradigm in human decision-making, respectively.
Consequently, the collective decision-making problem in
human groups is similar to distributed hypothesis testing
problems studied in the engineering literature [18], [19], [20].
In contrast to existing results in the distributed hypothesis
testing literature, which focus on asymptotic performance,
we study the finite time collective decision-making perfor-
mance.

The major contributions of this paper are twofold. First,
we consider a class of coupled linear stochastic differential
equations and associated first passage time problems. We
develop reduced order models for these coupled SDEs that
are amenable to efficient computation of first passage time
properties.

Second, we study collective decision-making in cooper-



ative networks with heterogeneous agents and in leader-
follower networks. In both contexts, we use the reduced order
models to analyze the performance of collective decision-
making in terms of speed and accuracy.

The remainder of the paper is organized in the following
way. In Section II, we recall fundamentals of the first passage
time problems. In Section III, we study a class of coupled
linear SDEs and develop decoupled approximations to it.
In Section IV and V, we apply the developed techniques
to collective decision-making in cooperative networks, and
leader-follower networks, respectively. Finally, we conclude
in Section VI.

II. FIRST PASSAGE TIME PROBLEMS

In this section, we briefly review the fundamentals of
first passage time problems. We refer the interested reader
to [21] for more details. Consider the following stochastic
differential equation

dx(t) = a(x)dt+ b(x)dWm(t), (1)

where x(t) ∈ Rn, a : Rn → Rn, b : Rn → Rn×m, and
Wm(t) is the m-dimensional Wiener process. Let B(x) =
b(x)b(x)> ∈ Rn×n.

The first passage time [21] is the earliest time at which a
trajectory x(t), initially inside a region R with boundary S,
leaves the region. Let T ∈ R>0 be the first passage time. Let
G(x0, t) be the probability that a trajectory starting from x0

stays within R until time t, i.e., G(x0, t) = P(T ≥ t|x(0) =
x0). Then, G obeys the backward Fokker-Planck equation

∂G

∂t
=

n∑
i=1

ai(x0)
∂G

∂x0i
+

1

2

n∑
i,j=1

Bij(x0)
∂2G

∂x0i∂x0j
,

with the initial condition

G(x0, 0) =

{
1, x0 ∈ R,
0, elsewhere,

and the boundary condition G(x0, t) = 0, for each x0 ∈ S.
The mean first passage time ET(x0) satisfies

n∑
i=1

ai(x0)
∂ET

∂x0i
+

1

2

n∑
i,j=1

Bij(x0)
∂2ET

∂x0i∂x0j
= −1,

with boundary condition ET(x0) = 0, for each x0 ∈ S.
Let π(a,x0) be the probability of the exit through an

element dS(a) centered at point a on the boundary S. Then,
π(a,x0) satisfies

n∑
i=1

ai(x0)
∂π

∂x0i
+

1

2

n∑
i,j=1

Bij(x0)
∂2π

∂x0i∂x0j
= 0,

with boundary condition π(a,x0) = δs(a−x), where δs is
the surface delta function for the boundary S.

The above PDEs are of second order in an n-dimensional
space. For large n, such PDEs are hard to solve even
numerically. In the following, we consider a class of coupled
linear SDEs and semi-infinite rectangular cuboid regions R,
and develop tractable approximations to the above PDEs.

III. COUPLED DRIFT DIFFUSION EQUATIONS

Consider the following coupled drift-diffusion equation
(DDE)

dx(t) = −Ax(t)dt+ βdt+ ΣdW n(t), x(0) = x0. (2)

Suppose that the matrix A is diagonalizable and has eigenval-
ues with non-negative real parts. Suppose the eigenvalue with
the smallest real part is purely real. Let up and u†p be right
and left eigenvectors of A associated with eigenvalue λp,
p ∈ {1, . . . , n} such that A =

∑n
p=1 λpupu

†
p. We assume

that eigenvalues are ordered in increasing order of their real
parts.

We are interested in the properties of the first passage
time of the stochastic process {x(t)}t∈R≥0

from regions
of the form xk(t) ∈ [−ηk, ηk], for some k ∈ {1, . . . , n},
and some ηk ∈ R>0. In the following, we first develop
decoupled approximations to (2), and then use them to
determine properties of the first passage time.

A. Decomposition of coupled DDE

We now decompose the coupled DDE (2) into principal
and residual components. We define the principal component
of x(t) as xprin(t) = xpu1, where xp = u†1x(t). We define
the residual component as ε(t) = x(t)− xprin(t).

It follows that the principal component satisfies

dxp(t) = −u†1Ax(t) + u†1βdt+ u†1ΣdW n(t)

= −λ1xp(t)dt+ βpdt+ σpdW1(t), (3)

where βp = u†1β, σp = ‖u†1Σ‖2, and W1(t) is the
standard one dimensional Weiner process. Thus, the principal
component evolves according to an Ornstein-Uhlenbeck (O-
U) process [21].

Similarly, the residual component satisfies

dε(t) = −Ax(t)dt+ λ1u1u
†
1x(t) + β̄dt+ Σ̄dW n(t)

= −Ax(t)dt+Au1u
†
1x(t) + β̄dt+ Σ̄dW n(t)

= −Aε(t)dt+ β̄dt+ Σ̄dW n(t), (4)

where β̄ = β − u†1βu1 and Σ̄ = (In − u1u
†
1)Σ.

B. Properties of components of coupled DDE

We now characterize properties of two components of
the coupled DDE, namely, the principal component and the
residual component.

Proposition 1 (Properties of components): The follow-
ing statements hold for the principal component xp(t) and
the residual component ε(t) defined in equations (3) and (4):

(i) the expected value and variance of principal compo-
nent xp satisfy

E[xp(t)] = lim
λ→λ+

1

βp
λ

(1− e−λt), and

Var[xp(t)] = lim
λ→λ+

1

σ2
p

2λ
(1− e−2λt);



(ii) the expected value and covariance of residual compo-
nent ε(t) satisfy

lim
t→+∞

E[ε(t)] =

n∑
p=2

1

λp
upu

†
pβ, and

lim
t→+∞

Cov[ε(t)] =

n∑
q=2

n∑
r=2

u†qΣΣ>u‡r
λq + λr

uqu
>
r ,

where u‡q is the transpose of u†q;
(iii) the covariance between the principal component and

the residual component satisfies

lim
t→+∞

Cov(xp(t), ε(t)) =

n∑
q=2

u†qΣΣ>u‡1
λ1 + λq

uq.

Proof: Consider the following augmented coupled
dynamics:[

dxp(t)
dε(t)

]
=
[−λ1 0

0 −A
] [ xp(t)

εk(t)

]
dt+

[
βp
β̄

]
dt

+
[

u†1Σ

(In−u1u
†
1)Σ

]
dW n(t). (5)

Since, equation (5) is a linear SDE, it follows

E
[
xp(t)
ε(t)

]
=

[ ∫ t
τ=0

e−λ1τβpdτ∫ t
τ=0

e−Aτ (In−u1u
†
1)βdτ

]
,

and the expressions for the expected values follow immedi-
ately.

Similarly,

Cov
[
xp(t)
ε(t)

]
=

∫ t

τ=0

[
e−λ1τ 0

0 e−Aτ

] [
u†1Σ

(In−u1u
†
1)Σ

]
[ Σ>u‡1 Σ>(In−u‡1u

>
1 ) ]
[
e−λ1τ 0

0 e−A
>τ

]
dτ.

Simplifying the above expression, we obtain

Var(xp(t)) =

∫ t

τ=0

e−2λ1τσ2
pdτ = lim

λ→λ+
1

σ2
p

2λ
(1− e−2λt),

and

Cov(ε(t))

=

∫ t

τ=0

e−Aτ (In − u1u
†
1)ΣΣ>(In − u‡1u>1 )e−A

>τdτ

=

∫ t

τ=0

( n∑
q=2

e−λqτuqu
†
q

)
ΣΣ>

( n∑
r=2

e−λrτu‡ru
>
r

)
dτ

=

n∑
q=2

n∑
r=2

1− e−(λq+λr)t

λq + λr
u†qΣΣ>u‡ruqu

>
r .

Similarly,

Cov(xp(t), ε(t)) =

∫ t

0

e−Aτ (In − u1u
†
1)ΣΣ>u‡1e

−λ1τdτ

=

n∑
q=2

1− e−(λ1+λq)t

λ1 + λq
uqu

†
qΣΣ>u‡1.

This completes the proof.

C. Decoupled approximation to coupled DDE

In this section, we develop a decoupled approximation to
the coupled DDE (2). The principal component is already
decoupled. In particular, the k-th principal component is
xprin
k (t) = xp(t)u1k, where u1k is the k-th element of u1,

and can be modeled by the O-U process (3).
We now focus on the residual component ε(t). Since ε(t)

is the solution of the linear SDE (4) with constant coefficients
and a constant input, it is a continuous Gaussian process.
The asymptotic values of expected value and variance of
ε(t), derived in Proposition 1, are constants. A simple, scalar,
and continuous Gaussian process with a constant asymptotic
expected value and a constant asymptotic variance is the O-U
process. In the following, we approximate the k-th element
of the residual component εk(t) by an O-U process. Such an
approximate O-U process must also capture the correlation
between xp(t) and εk(t). In the following we propose such
an approximation εk(t) of εk(t).

We first introduce some notation. Let

1

µk
:= lim

t→+∞
Var(εk(t)), αk := lim

t→+∞
E[εk(t)], and

γk := lim
t→+∞

Cov(xp(t), εk(t)).

We now propose the following coupled dynamics for xprin
k (t)

and εk(t)[
dxprin
k (t)

dεk(t)

]
=
[
−λ1 0

0 −µk2

] [
xprin
k (t)

εk(t)

]
dt+

[
βpu1k
αkµk

2

]
dt

+

[
σpu1k 0

(2λ1+µk)γk
2σp

√
1−

(2λ1+µk)2γ2
k

4σ2p

] [
dW1(t)
dW2(t)

]
. (6)

Equation (6) can be solved to show that it asymptotically
matches the metrics for residual component (4) established
in Proposition 1. We now state this fact without proof.

Proposition 2 (Asymptotic Matching): The following
statements hold for the dynamics (6):

(i) the asymptotic expected value of εk(t) is

lim
t→+∞

E[εk(t)] = αk;

(ii) the asymptotic variance of εk(t) is

lim
t→+∞

Var(εk(t)) =
1

µk
;

(iii) the asymptotic covariance between xprin
k (t) and εk(t)

is

lim
t→+∞

Cov(xprin
k (t), εk(t)) = u1kγk.

Notice that if A is a symmetric matrix and Σ is an identity
matrix, then the decomposition in (3) and (4) corresponds to
principal components of the covariance of x(t). In such a
case, xprin

k (t) and εk(t) are uncorrelated and the diffusion
matrix in (6) is a diagonal matrix.



The approximate dynamics (6) can be used to obtain the
dynamics of the approximate state yk(t) = xprin

k (t) + εk(t).[
dyk(t)
dεk(t)

]
=
[
−λ1 λ1−

µk
2

0 −µk2

] [
yk(t)
εk(t)

]
dt+

[
βpu1k+

αkµk
2

αkµk
2

]
dt

+

 σpu1k+
(2λ1+µk)γk

2σp

√
1−

(2λ1+µk)2γ2
k

4σ2p

(2λ1+µk)γk
2σp

√
1−

(2λ1+µk)2γ2
k

4σ2p

[ dW1(t)
dW2(t)

]
. (7)

Now, the PDEs in Section II can be used with (7) to de-
termine approximate first passage time properties. Note that
the PDEs corresponding to (7) evolve in a two dimensional
space, and can be solved numerically in an efficient manner.

IV. DECISION-MAKING IN COOPERATIVE NETWORKS

In this section, we study collective decision-making in
cooperative networks using the context of two-alternative
choice tasks. In cooperative networks, agents exchange in-
formation with one another, and each agent makes its own
decision from its collected information. In the following, we
first describe the model for evidence aggregation in collective
decision-making, and then develop a decoupled approxima-
tion to this model. Finally, we numerically investigate the
accuracy of the decoupled approximation.

A. Cooperative coupled DDM
Consider a set of n decision-makers performing a two

alternative choice task and let their interaction topology be
modeled by a connected undirected graph G with Laplacian
matrix L ∈ Rn×n. The evidence aggregation in collective
decision-making is modeled in the following way. At each
time t ∈ R≥0, every decision-maker k ∈ {1, . . . , n} (i)
computes a convex combination of her evidence with her
neighbor’s evidence; (ii) collects new evidence; and (iii) adds
the new evidence to the convex combination. This collective
evidence aggregation process is mathematically described by
the following cooperative coupled drift diffusion model [15]

dx(t) = βdt− Lx(t)dt+ dW n(t), x(0) = x0, (8)

where x(t) ∈ Rn is the evidence at time t, β ∈ Rn≥0 is the
vector of drift rates, L is the Laplacian matrix associated with
the interaction graph of agents, andW n is the n-dimensional
Weiner process. Agent k makes a decision in favor of the
correct (incorrect) alternative, whenever its evidence xk(t)
crosses the threshold +ηk(−ηk). The decision-making pro-
cess for each decision-maker corresponds to a first passage
time problem associated with (8).

B. Reduced model for cooperative coupled DDM
We now specialize the decoupled approximation (6) to (8).

The approximate evidence at node k is yk(t) := 1
n1
>
nx(t) +

εk(t), where 1n is the column n-vector of all ones. Here,
the principal component corresponds to evidence averaged
across the network, and the residual component corresponds
to the deviation from this average. The evidence aggregation
dynamics for the reduced model are[
dyk(t)
dεk(t)

]
=

[
β̂ + µk

2 (αk − εk(t))
µk
2 (αk − εk(t))

]
dt+

[ 1√
n

1

0 1

] [
dW1(t)
dW2(t)

]
,

1

2

3

4

5

6

7

8

9

Fig. 1. Interaction topology of the agents.

with yk(0) = x̄0, εk(0) = 0, and β̂ = 1
n1
>
nβ. We refer to

this reduced model as the reduced DDM.
In [17], we investigated first passage properties of (2) for

agents with the same drift rate. For such agents, it can be
verified that the expected value of εk(t) is zero uniformly
in time, and consequently, the drift term µkαk/2 in εk(t)
dynamics is zero.

Suppose Tk = inf{yk(t) ∈ {−ηk,+ηk} | t ∈ R>0}. Let
ETk = E[Tk] and error rate ERk = P(yk(Tk) = −ηk).
Then, using the theory presented in Section II, we obtain the
following PDEs for ETk and ERk(

β̂ +
µk(αk − ε0k)

2

)∂ETk
∂y0k

+
µk(αk − ε0k)

2

∂ETk
∂ε0k

+
1

2

(n+ 1

n

∂2ETk
∂y0k

2
+ 2

∂2ETk
∂y0k∂ε0k

+
∂2ETk
∂ε0k

2

)
= −1,

with boundary conditions ETk(·,±ηk) = 0, ETk(±η̄k, ·) =
0, and η̄k → +∞. Similarly,(

β̂ +
µk(αk − ε0k)

2

)∂ERk

∂y0k
+
µk(αk − ε0k)

2

∂ERk

∂ε0k

+
1

2

(n+ 1

n

∂2ERk

∂y0k
2

+ 2
∂2ERk

∂y0k∂ε0k
+
∂2ERk

∂ε0k
2

)
= 0,

with boundary conditions ERk(·, ηk) = 0, ERk(·,−ηk) = 1,
ERk(η̄k, ·) = 0, ERk(−η̄k, ·) = 1, and η̄k → +∞.

C. Numerical Illustration

Consider a set of nine agents with the interaction topology
shown in Figure 1. Let the vector of drift rates be β =
[0>5 0.1 × 1>4 ]>. A comparison of the performance of the
nodes as predicted by the coupled DDM and by the reduced
DDM for different thresholds is shown in Figure 2. Note that
for a better presentation log

(
1−ERk

ERk

)
, which is a decreasing

function of ERk, is plotted in Figure 2. The performance
metrics obtained using the reduced DDM have the same
order as the performance metrics obtained using the coupled
DDM, e.g., node 6 has the smallest expected decision time
for a given threshold under both models.

It can be seen that for a sufficiently large threshold a
more central node has a larger expected decision time and a
smaller error rate as compared to a less central node. This
is interesting because the most central node 1 has no direct
access to the signal, i.e., its drift rate is zero, yet it is able
to achieve better decision accuracy as compared to node 6
which has direct access to the signal.
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Fig. 2. A comparison of the performance of the reduced DDM and
the cooperative coupled DDM with heterogeneous agents. The solid lines
and the dashed lines represent the coupled DDM and the reduced DDM,
respectively.

V. DECISION-MAKING IN LEADER-FOLLOWER
NETWORKS

In this section, we study collective decision-making in
leader-follower networks using the context of two-alternative
choice tasks. In leader-follower networks, there is a set of
leaders who each have access to a noisy signal and may
exchange information with others, and there is a set of
followers who each receive information from leaders and
exchange information with other followers. Then, each agent
makes its own decision from its collected information. In
the following, we first describe the model for evidence
aggregation in collective decision-making, then develop a de-
coupled approximation to this model. Finally, we numerically
investigate the accuracy of the decoupled approximation.

A. Leader-Follower Coupled DDM

We now consider the coupled DDM dynamics in leader-
follower networks. For simplicity, we consider networks with
a single leader. Without loss of generality, suppose the first
agent is the leader. Let the Laplacian matrix associated with
the interaction graph of agents be decomposed as follows

L =

[
L11 −1>n−1Lf

−Lf1n−1 Lf

]
,

where Lf ∈ R(n−1)×(n−1) is the block of the Laplacian
matrix associated with followers. Let

L̄ =

[
0 0>n−1

−Lf1n−1 Lf

]
.

The coupled DDM for leader follower networks is[
dx`(t)
dxf (t)

]
=

[
β`

0n−1

]
dt− L̄

[
x`(t)
xf (t)

]
dt+

[
σ`dW1(t)
dW n−1(t)

]
,

(9)

with x`1(0) = 0 and xf (0) = 0n−1, where x`1(t) is the
evidence of the leader at time t and xf (t) ∈ Rn−1 is the
vector of the evidence of followers at time t. The decision-
making based on the evidence in (9) is modeled similarly to
the cooperative coupled DDM in Section IV.

B. Reduced model for leader-follower coupled DDM

We now specialize the decoupled approximation (6) to (9).
The approximate evidence at node k is yk(t) = x`(t)+εk(t).
Here, the principal component corresponds to the evidence of
the leader, while the residual component corresponds to the
deviation of a follower’s evidence from the leader’s evidence.
The coupled dynamics of the evidence of the leader, and the
approximate evidence for the k-th follower are[

dx`(t)
dyk(t)

]
=

[
β`

β`
(
1− αkµk

2

)] dt+

[
0 0
µk
2 −µk2

] [
x`(t)
yk(t)

]
dt

+

[
σ` 0

σ`
(
1− αkµk

2

) √
1− σ2

`α
2
kµ

2
k

4

] [
dW1(t)
dW2(t)

]
,

with x`(0) = 0 and yk(0) = 0.
Suppose T fk = inf{yk(t) ∈ {−ηk,+ηk} | t ∈ R>0}.

Let ETk = E[T fk ] and error rate ERf
k = P(yk(T fk ) = −ηk).

Then, using the theory presented in Section II, we can obtain
the PDEs for the expected decision time and the error rate.

In the particular case when the leader has access to
noise free observation, the approximate evidence for the k-th
follower is

dyk(t) = β`
(
1− αkµk

2
+
µkt

2

)
dt− µk

2
ykdt+ dW2(t).

C. Numerical Illustration

Consider a set of nine agents with the interaction topology
shown in Figure 1. Let node 1 be the leader. Let the drift rate
and the diffusion rate for the leader be β` = 0.1 and σ` =
0.5, respectively. Let the diffusion rate for followers be unity.
A comparison of the performance of the nodes as predicted
by the coupled DDM and by the reduced DDM for different
thresholds is shown in Figure 3. The performance metrics
obtained using the reduced DDM have the same order as the
performance metrics obtained using the coupled DDM.

It can be seen that followers achieve a performance that
is very close to the performance of the leader. However,
there are individual differences in the performance, and these
differences depend on the location of the individual in the
network.
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Fig. 3. A comparison of the performance of the reduced DDM and the
coupled DDM for leader-follower network. The solid lines and the dashed
lines represent the coupled DDM and the reduced DDM, respectively.

VI. CONCLUSIONS

In this paper we studied first passage time problems in
collective decision-making using the context of two alterna-
tive choice tasks. We first considered a generic coupled linear
SDE and developed a reduced order approximation to it. The
reduced order model is amenable to efficient computation
of the properties of first passage times. We applied these
reduced order models to collective decision-making problems
in heterogeneous cooperative networks and leader-follower
networks, and characterized the performance of collective
decision-making in terms of speed and accuracy.

There are several possible directions of future research.
First, we developed methods for efficient computation of the
error rate and the expected decision time. It is well known
that small error rates and small expected decision times can
not be simultaneously achieved. An interesting question is
to characterize the tradeoff between the error rate and the
expected decision time, i.e., the speed-accuracy tradeoff. In
particular, it is of interest to understand the effect of the
network structure and the distribution of heterogeneity in the
network on the speed-accuracy tradeoff.

In this paper, we considered a given location of the leader.
A designer has the liberty to choose where to place the leader
in the network. This so-called leader selection problem has

been studied in the literature, see e.g. [16]. An interesting
direction is to study the leader selection problem in the
context of optimizing the speed-accuracy tradeoff.
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