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Abstract— We consider two variants of the standard multi-
armed bandit problem, namely, the multi-armed bandit prob-
lem with transition costs and the multi-armed bandit problem
on graphs. We develop block allocation algorithms for these
problems that achieve an expected cumulative regret that is
uniformly dominated by a logarithmic function of time, and
an expected cumulative number of transitions from one arm
to another arm uniformly dominated by a double-logarithmic
function of time. We observe that the multi-armed bandit prob-
lem with transition costs and the associated block allocation
algorithm capture the key features of popular animal foraging
models in literature.

I. INTRODUCTION

Foraging is a fundamental animal behavior that pertains to
searching out food resources and exploiting them. Foraging
behavior is studied in behavioral ecology using economic
principles, i.e., the foraging decisions are evaluated based
on their effects on certain pay-off functions. At the heart of
a foraging decision is the tradeoff between exploration (to
search for a better food resource) and exploitation (to stick
with the best known food resource).

In the engineering literature, a benchmark setup to study
the exploration-exploitation tradeoff is the multi-armed ban-
dit problem. The multi-armed bandit problem models a class
of resource allocation problems in which a decision-maker
allocates a single resource by sequentially choosing one
among a set of competing alternative options called arms.
In the so-called stationary multi-armed bandit problem, a
decision-maker at each discrete time instant chooses an arm
and collects a reward drawn from an unknown stationary
probability distribution associated with the selected arm. The
objective of the decision-maker is to maximize the total
reward aggregated over the sequential allocation process.

The fundamental exploration-exploitation tradeoff in for-
aging can be modeled as a multi-armed bandit problem,
and the effectiveness of the foraging decisions can be mea-
sured by comparing them to the optimal decisions for the
multi-armed bandit problem. In this paper, we explore this
connection and argue that the solution to a Bayesian multi-
armed bandit problem captures the qualitative features of the
foraging behavior in some animals.
Literature review: The multi-armed bandit problem has
been extensively studied; a survey is presented in [1]. In
their seminal work, Lai and Robbins [2] established a log-
arithmic lower bound on the expected number of times a
sub-optimal arm needs to be selected by an optimal policy.
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Since [2], a considerable emphasis has been on the design of
simple heuristic policies that achieve the logarithmic lower
bound on the expected number of selection instances of
any suboptimal arm. To this end, Auer et al. [3] devel-
oped upper confidence bound (UCB) algorithms for multi-
armed bandits with bounded reward that achieve logarithmic
expected cumulative regret uniformly in time. Recently,
Srinivas et al. [4] developed asymptotically optimal UCB
algorithms for Gaussian process optimization. Kauffman et
al. [5] developed a generic Bayesian UCB algorithm and
established its optimality for binary bandits with uniform
prior. Reverdy et al. [6] established the optimality of a
Bayesian UCB algorithm for Gaussian rewards and drew
several connections between these algorithms and human
decision-making. They also elucidated the role of priors in
decision-making performance.

Some variations of the multi-armed bandit problem have
been studied as well. Agarwal et al. [7] studied the multi-
armed bandit problem with transition costs, i.e., the multi-
armed bandit problem in which a certain penalty is imposed
each time the decision-maker switches from the currently
selected arm, and developed an asymptotically optimal block
allocation algorithm. In this paper, we consider the Gaussian
multi-armed bandit problem with transition costs and develop
a block allocation algorithm that achieves an expected cu-
mulative regret that is uniformly dominated by a logarithmic
term. Moreover, the block allocation scheme designed in this
paper incurs smaller expected transition costs than the block
allocation scheme in [7].

Kleinberg et al. [8] considered the multi-armed bandit
problem in which every arm is not available for selection
at each time (sleeping experts), and they analyzed the
performance of the UCB algorithms. In contrast to the
temporal unavailability of arms in [8], we consider a spatial
unavailability of arms. We propose a novel multi-armed
bandit problem, namely, the graphical multi-armed bandit
problem, in which only a subset of the arms can be selected at
the next allocation instance given the currently selected arm.
We develop a block allocation algorithm for such a problem
that achieves expected cumulative regret that is uniformly
dominated by a logarithmic term.

Foraging has been extensively studied in the behavioral
ecology literature [9], [10], [11], [12], [13]. A particular
emphasis has been on optimal foraging theory [9], [10]
that studies foraging behavior based on economic principles.
Traditional works [9], [10] in optimal foraging theory have
studied the optimal behavior by (i) picking an appropriate
currency; (ii) establishing appropriate cost-benefit functions;
and (iii) determining the optimal policies. Typically the
currency is chosen as the net rate of energy intake and the
fundamental hypothesis is that this intake rate is maximized.



The fundamental questions studied in optimal foraging the-
ory include (i) which environment patch should the animal
visit next? (ii) how long should the animal stay in that patch?
and (iii) which foraging path should the animal choose in
each patch?

In recent years, a significant focus has been on the
macroscopic properties of foraging. It has been observed
that Lévy flights are efficient search mechanisms, and it
has been hypothesized that animal foraging has evolved
into a Lévy flight [14], [11]. An alternative macroscopic
model to the Lévy flight model is the intermittent search
model [15]. The intermittent search model views foraging in
two alternating phases. In the first phase the animal performs
a local Brownian search, and in the second phase the animal
performs a ballistic relocation. In both the Lévy flight and
intermittent search models, the key macroscopic observation
is that the animal performs a local exploration for some time
and then moves to a far-off location.

While these macroscopic models capture the general char-
acteristics of foraging well, they do not provide insights into
the decision mechanisms used by the animal. There have
been significant efforts to understand the decision mecha-
nisms in foraging; see, e.g., [16], [17], [18]. Of particular
interest here are the foraging studies in the multi-armed
bandit problem setting. Krebs et al. [16] studied foraging
in great-tits in a two-armed bandit setting and found that the
foraging policy of great-tits is close to the optimal policy
for the two-armed bandit problem. Keasar [17] explored
the foraging behavior of bumblebees in a two-armed bandit
setting and discussed plausible decision-making mechanisms.
Contributions: In this paper, we study the multi-armed
bandit problem with Gaussian rewards. In animal foraging,
the energy aggregated from a patch can be thought of as
the reward from the patch, and the animal’s objective is to
maximize intake energy rate, while minimizing expenditure
in time and energy. In robotic foraging, the robot searches an
area, and the reward is the aggregated evidence. Analogous
to the animal, the robot’s objective is typically to maximize
evidence collected, while minimizing expenditure of time
and energy.

To address this common problem, we consider two partic-
ular extensions of the standard multi-armed bandit problem,
namely, the multi-armed bandit problem with transition costs,
and the graphical multi-armed bandit problem. We justify
the need for the extensions as follows. In the standard
multi-armed bandit problem, the decision-maker can switch
between two arms any number of times; while in the robotic
as well as the animal foraging task, a higher number of
switches between arms is undesirable because it results in
a higher travel time that leads to a smaller energy/evidence
aggregation rate and a larger fuel cost. Thus the foraging
objective is equivalent to maximizing the aggregated reward
while minimizing the switches between the arms; this is
addressed by our first extension. Another shortcoming of the
standard multi-armed bandit problem is that it assumes that
each arm can be directly visited from another arm; while this
is true for any convex environment, non-convex environments
require extra care. A well known technique to handle non-

convex environments is the occupancy grid [19] that con-
structs a graph associated with the non-convex environment.
Accordingly, our second extension to the multi-armed bandit
problem on graphs enables study of the foraging problem in
non-convex environments.

The major contributions of this work are threefold. First,
we study the Gaussian multi-armed bandit problem with tran-
sition costs and extend the Bayesian-UCB algorithm in [6]
to a block allocation strategy that uniformly achieves an
expected cumulative regret that is dominated by a logarithmic
term and an expected number of transitions between arms
that is dominated by a double-logarithmic term. Second, we
study the graphical Gaussian multi-armed bandit problem
and extend the block allocation strategy to this problem.
We show that even for the graphical multi-armed bandit
problem, the block allocation strategy uniformly achieves an
expected cumulative regret that is dominated by a logarithmic
term. Third, we draw connections between animal foraging
behavior and the behavior of the proposed policies for the
multi-armed bandits. We argue that the multi-armed bandits
and the associated block allocation algorithms qualitatively
capture the foraging behavior of some animals. In particular,
we observe that the multi-armed bandit problem setup has
the potential to provide an overarching framework that brings
together the classical optimal foraging theory, the Lévy
flight based macroscopic search models, and the decision-
mechanism based search models.
Paper structure: The remainder of the paper is organized as
follows. We review standard Gaussian multi-armed bandits
in Section II. The Gaussian multi-armed bandits with transi-
tion costs and the graphical Gaussian multi-armed bandits
are studied in Section III and IV, respectively. We draw
comparisons between the behavior of the block allocation
algorithm and animal foraging in Section V and conclude in
Section VI.

II. REVIEW OF BANDITS WITH GAUSSIAN REWARDS

Consider an N -armed bandit problem, i.e., a multi-armed
bandit problem with N arms. The reward associated with
arm i ∈ {1, . . . , N} is a Gaussian random variable with an
unknown mean mi, and a known variance σ2

s . The mean of
the Gaussian reward at arm i can be interpreted as the signal
strength at the arm, while the variance can be interpreted
as the sampling noise that is the same at each arm. Let the
agent choose arm it at time t ∈ {1, . . . , T} and receive a
reward rt ∼ N (mit , σ

2
s). The decision-maker’s objective is

to choose a sequence of arms {it}t∈{1,...,T} that maximizes
the expected cumulative reward

∑T
t=1mit , where T is the

horizon length of the sequential allocation process.
For a multi-armed bandit, the expected regret at time t is

defined by Rt = mi∗ − mit , where mi∗ = max{mi | i ∈
{1, . . . , N}}. The objective of the decision-maker can be
equivalently defined as minimizing the expected cumulative
regret defined by

∑T
t=1Rt =

∑N
i=1 ∆iE[nTi ], where nTi is

the cumulative number of times option i has been chosen
until time T and ∆i = mi∗ −mi is the expected regret due
to picking arm i instead of arm i∗.



A. Bound on Optimal Performance
Lai and Robbins [2] showed that any asymptotically

efficient algorithm for the multi-armed bandit problem must
choose suboptimal arms for an expected number of times
that is at least logarithmic in time. That is,

E[nTi ] ≥
(

1

D(pi||pi∗)
+ o(1)

)
log T,

where o(1) → 0 as T → +∞ and D(·||·) 7→ R≥0 ∪{+∞},
is defined by

D(pi||pi∗) =

∫
pi(r) log

pi(r)

pi∗(r)
dr,

is the Kullback-Leibler divergence between the reward den-
sity pi of any suboptimal option and the reward density
pi∗ of the optimal arm. For the Gaussian reward structure
considered in this paper, the Kullback-Leibler divergence is
equal to D(pi||pi∗) = ∆2

i /2σ
2
s , and consequently, E[nTi ] ≥

(2σ2
s/∆

2
i + o(1)) log T. This leads to a lower bound on the

cumulative regret given by
T∑
t=1

Rt ≥
N∑
i=1

(2σ2
s

∆i
+ o(1)

)
log T.

B. Upper Credible Limit Algorithm for Gaussian Bandits
Let the prior on the mean reward at arm i be a Gaussian

random variable with mean µ0
i and variance σ2

0 . We are
particularly interested in the case of an uninformative prior,
i.e., σ2

0 → +∞. Let the number of times arm i has been
chosen until time t be denoted by nti. Let the empirical mean
of the rewards from arm i until time t be m̄t

i. Conditioned
on the number of visits nti to arm i and the empirical mean
m̄t
i, the posterior distribution of the mean reward (Mi) at

arm i at time t is a Gaussian random variable with mean
and variance

µti := E[Mi|nti, m̄t
i] =

δ2µ0
i + ntim̄

t
i

δ2 + nti
, and

(
σti
)2

:= Var[Mi|nti, m̄t
i] =

σ2
s

δ2 + nti
,

respectively, where δ2 = σ2
s/σ

2
0 .

The UCL algorithm, proposed in [6], at each (discrete)
time t first computes the (1−1/Kt)-upper credible limit Qti
associated with each arm i ∈ {1, . . . , N} defined by

Qti := µti +
σs√
δ2 + nti

Φ−1
(

1− 1

Kt

)
,

where K > 0 is a constant and Φ−1(·) is the inverse cumu-
lative distribution function for the standard normal random
variable. The UCL algorithm then selects an arm it :=
arg max{Qti | i ∈ {1, . . . , N}}. For the uninformative prior,
i.e., δ2 → 0+, the UCL algorithm achieves a logarithmic
expected cumulative regret for a multi-armed bandit problem
with Gaussian rewards. In particular, the regret satisfies the
following uniform upper bound:

T∑
t=1

RUCL
t ≤

N∑
i=1

∆i

((8β2σ2
s

∆2
i

+
2√
2πe

)
log T

+
4β2σ2

s

∆2
i

(1− log 2− log log T ) + 1 +
2√
2πe

)
,

where RUCL
t is the regret of the UCL algorithm at time t,

and β = 1.02.

III. GAUSSIAN MULTI-ARMED BANDITS
WITH TRANSITION COSTS

Consider the N -armed bandit problem described in Sec-
tion II. Suppose the decision-maker incurs a random transi-
tion cost cij ∈ R≥0 for a transition from arm i to arm j. No
cost is incurred if the same arm as at the previous time instant
is chosen, i.e., cii = 0. Such a cost structure corresponds
to a search problem in which the N arms correspond to
N spatially distributed regions and the transition cost cij
correspond to the travel cost from region i to region j.

A. The Block UCL Algorithm

For such Gaussian bandits with transition costs, we de-
velop a block allocation strategy that extends the UCL
algorithm of Section II-B. To develop this strategy, we divide
the set of natural numbers (allocation instances) into frames
{fk | k ∈ N} such that frame fk starts at time 2k−1 and
ends at time 2k − 1. Thus, the length of frame fk is 2k−1.
We subdivide frame fk into blocks that we call rounds of
allocation. Let the first b2k−1/kc blocks in frame fk have
length k and the remaining allocation instances in frame
fk constitute a single block of length 2k−1 − b2k−1/kck.
The total number of allocation rounds (blocks) in frame
fk is bk = d2k−1/ke. Let ` ∈ N be the smallest index
such that T < 2`. Note that each round of allocation is
characterized by the tuple (k, r), for some k ∈ {1, . . . , `},
and r ∈ {1, . . . , bk}. The block UCL algorithm at each round
of allocation selects the arm with the maximum upper limit to
the smallest (1−1/Kτkr)-credible set Qkri (defined below),
where τkr is the time at allocation round (k, r), and chooses
it for the length of that round (block).

B. Regret Analysis of the Block UCL Algorithm

In this section, we analyze the regret of the block UCL
algorithm. We first introduce some notation. Let Qkri be the
maximum upper limit to the smallest (1− 1/Kτkr)-credible
set for the mean of arm i at allocation round (k, r), where
K =

√
2πe is the credible limit parameter. Let nkri be the

number of times arm i has been chosen until allocation round
(k, r). Let sti be the number of times the decision-maker
transitions to arm i from another arm j ∈ {1, . . . , N} \ {i}
until time t. Let the empirical mean of the rewards from arm
i until allocation round (k, r) be m̄kr

i . Conditioned on the
number of visits nkri to arm i and the empirical mean m̄kr

i ,
the posterior distribution of the mean reward (Mi) at arm i
at allocation round (k, r) is a Gaussian random variable with
mean and variance

µkri := E[Mi|nkri , m̄kr
i ] =

δ2µ0
i + nkri m̄

kr
i

δ2 + nkri
, and

σkri
2

:= Var[Mi|nkri , m̄kr
i ] =

σ2
s

δ2 + nkri
,

respectively. Moreover,

E[µkri |nkri ]=
δ2µ0

i + nkri mi

δ2 + nkri
and Var[µkri |nkri ]=

nkri σ
2
s

(δ2 + nkri )2
.



Accordingly, the (1− 1
Kτkr

)-upper credible limit Qkri is

Qkri = µkri +
σs√

δ2 + nkri
Φ−1

(
1− 1

Kτkr

)
.

Also, for each i ∈ {1, . . . , N}, we define constants

γi1 =
8β2σ2

s

∆2
i

+
1

log 2
+

2

K
,

γi2 =
4β2σ2

s

∆2
i

(1− log 2) + 2 +
8

K
+

log 4

K
,

γi3 = γi1 log 2(2− log log 2)

−
(4β2σ2

sγ
i
1

∆2
i

log log 2− γi2
)(

1 +
π2

6

)
, and

c̄max
i = max{E[cij ] | j ∈ {1, . . . , N}}.

Let {RBUCL
t }t∈{1,...,T} be the sequence of the expected

regret of the block UCL algorithm, and {SBUCL
t }t∈{1,...,T}

be the sequence of expected transition costs. The Block UCL
algorithm achieves a logarithmic expected cumulative regret
as formalized in the following theorem.

Theorem 1 (Regret of Block UCL Algorithm): The fol-
lowing statements hold for the Gaussian multi-armed bandit
problem with transition costs and the block UCL algorithm
with an uninformative prior:

(i) the expected number of times a suboptimal arm i is
chosen until time T satisfies

E[nTi ] ≤ γi1 log T − 4β2σ2
s

∆2
i

log log T + γi2;

(ii) the expected number of transitions to a suboptimal arm
i from another arm until time T satisfies

E[sTi ] ≤ (γi1 log 2) log log T + γi3;

(iii) the cumulative regret and the cumulative transition cost
until time T satisfy

T∑
t=1

RBUCL
t ≤

N∑
i=1

∆i

(
γi1 log T − 4β2σ2

s

∆2
i

log log T + γi2

)
,

T∑
t=1

SBUCL
t ≤

N∑
i=1,i6=i∗

(c̄max
i + c̄max

i∗ )×

((γi1 log 2) log log T + γi3) + c̄max
i∗ .

Proof: See Appendix.

IV. GRAPHICAL GAUSSIAN BANDITS

We now consider multi-armed bandits with Gaussian re-
wards in which the decision-maker cannot move to every
other arm from the current arm. Let the arms that can be
visited from arm i be ne(i) ⊆ {1, . . . , N}. Such a multi-
armed bandit can be represented by a graph G with node
set {1, . . . , N} and edge set E = {(i, j) | j ∈ ne(i), i ∈
{1, . . . , N}}. We assume that the graph is connected in the
sense that there exists at least one path from each node
i ∈ {1, . . . , N} to every other node j ∈ {1, . . . , N}.

A. The Graphical Block UCL Algorithm
For the graphical Gaussian bandits, we develop an al-

gorithm similar to the block allocation algorithm, namely,
the graphical block UCL algorithm. Similar to the block
allocation algorithm, at each comparison block, the arm with
the maximum upper credible limit is determined. Since the
arm with the maximum upper credible limit may not be
immediately reached from the current arm, the graphical
block UCL algorithm traverses a shortest path from the
current arm to the arm with the maximum upper credible
limit. The key intuition behind the algorithm is that the
block allocation strategy results in an expected number of
transitions that is sub-logarithmic in the horizon length. In
the context of graphical bandits, sub-logarithmic transitions
result in sub-logarithmic undesired visits to the arms on the
chosen shortest path to the desired arm. Consequently, the
regret of the algorithm is dominated by the logarithmic term.

B. Regret Analysis of the Graphical Block UCL Algorithm
We now analyze the performance of the graphical block

UCL algorithm. Let {RGUCL
t }t∈{1,...,T} be the sequence

of expected regret of the graphical block UCL algorithm.
The graphical block UCL algorithm achieves a logarithmic
expected cumulative regret as formalized in the following
theorem.

Theorem 2 (Regret of Graphical Block UCL Algorithm):
The following statements hold for the graphical Gaussian
multi-armed bandit problem with the graphical block UCL
algorithm and an uninformative prior:

(i) the expected number of times a suboptimal arm i is
chosen until time T satisfies

E[nTi ] ≤ γi1 log T − 4β2σ2
s

∆2
i

log log T + γi2

+

N∑
i=1,i6=i∗

(
(2γi1 log 2) log log T + 2γi3

)
+ 1;

(ii) the cumulative regret until time T satisfies

T∑
t=1

RGUCL
t ≤

N∑
i=1

(
γi1 log T − 4β2σ2

s

∆2
i

log log T

+γi2 +

N∑
i=1,i6=i∗

(
(2γi1 log 2) log log T+2γi3

)
+1
)

∆i;

Proof: See Appendix.

V. COMPARISON WITH ANIMAL FORAGING

In this section, we compare the behavior of the block
allocation algorithm for the multi-armed bandits with the
animal foraging behavior reported in the literature. Consider
the foraging environment as composed of patches and each
patch has sources of energy that are modeled by Gaussian
random variables with an unknown mean and a known vari-
ance. The exploration-exploitation tradeoff in the foraging
problem can be modeled by the multi-armed bandit problem.
In particular, the foraging objective of animals is to maximize
the net energy accumulation rate which in the multi-armed
bandit setting maps to maximizing the expected cumulative



reward while minimizing the travel time, i.e., minimizing the
number of transitions among arms.

The solution to the multi-armed bandit problem naturally
answers the first two fundamental questions studied in opti-
mal foraging theory: (i) which environment patch should the
animal visit next? (ii) how long should the animal stay in
that patch? Although the solution to the multi-armed bandit
problem does not answer the third fundamental question:
which foraging path should the animal choose in each patch?
To understand the third question, it is natural to envision
that points within a patch are highly correlated in terms
of the energy accumulation, i.e., each point within a patch
provides energy at somewhat the same rate, and accordingly
the energy can be accumulated, e.g., via an ergodic random
walk.

For simplicity of analysis, in this paper, we assume that
the arms are uncorrelated and the prior is uninformative.
In general, the prior may be informative and arms may be
correlated. The algorithm proposed in this paper extends to
this case by simply replacing the N univariate inference
procedures with an N -variate inference procedure. The cor-
relation structure captures the structure of the environment:
higher correlation describes a smoother environment, while
lower correlation describes a rougher environment.

In a sufficiently correlated environment, the block allo-
cation algorithm at allocation round (k, r) picks an arm
with highest value of Qkri and samples it k times. At
the subsequent allocation instance, due to the correlation
structure the uncertainty in the estimates for the nearby
locations will go down while the uncertainty in the far-off
locations would remain high. Consequently, the component
of Qkri associated with the width of the credible set will
be higher for the far-off locations than the nearby locations.
If the prior means are assumed to be uniform, the block
allocation strategy at the next allocation instance will select
a location far-off from the current location. This is a central
feature of the macroscopic foraging models, including the
Lévy flight model and the intermittent search model. Thus,
the Bayesian multi-armed bandit problem and the associated
block allocation strategy qualitatively captures the behavior
of Lévy flights and related macroscopic models for search.

Overall, the multi-armed bandit problem with transition
costs models the fundamental foraging objective as defined in
the optimal foraging literature, and its solution yields search
trajectories akin to those described by macroscopic search
models. Moreover, the solution to the multi-armed bandit
problem with transition costs naturally provides the decision
mechanisms involved with the search process. Therefore,
the multi-armed bandit problem setup has the potential to
provide an overarching framework that brings together the
classical optimal foraging theory, the Lévy flight based
macroscopic search models, and the decision-mechanism
based search models.

VI. CONCLUSIONS

We studied two variations of the Gaussian multi-armed
bandit problem, namely, the Gaussian multi-armed bandit
problem with transition cost, and the graphical Gaussian
multi-armed bandit problem and developed block allocation

algorithms that uniformly achieve an expected cumulative
regret dominated by a logarithmic function of time, and a
number of expected cumulative transitions among the arms
dominated by a double-logarithmic function of time. We
drew some qualitative connections between foraging behav-
ior of some animals and the behavior of the block allocation
algorithm. In particular, we argued that the multi-armed
bandit problem models the foraging objective in optimal
foraging theory well and the associated block allocation
strategy captures the key features of popular macroscopic
search models.

At this stage, we observe and point out the potential of the
multi-armed bandit problem and the associated block allo-
cation algorithm to bridge the gap between classical optimal
foraging theory and recent macroscopic search models. This
suggests an exciting new avenue of inquiry in which the
bandit model may prove valuable for future study of animal
foraging. In the future, we plan to investigate the bandit
model more extensively in the context of empirical work
on both animal and robotic foraging.

APPENDIX

A. Proof of regret of the block UCL algorithm

Proof of Theorem 1: We start by establishing the first
statement. For a given t, let (kt, rt) be the lexicographically
maximum tuple such that τktrt ≤ t. We note that

nTi =

T∑
t=1

1(it = i)

=

T∑
t=1

(
1(it = i & nktrti < η) + 1(it = i & nktrti ≥ η)

)
≤ η + `+

T∑
t=1

1(it = i & nktrti ≥ η)

≤ η + `+
∑̀
k=1

bk∑
r=1

k1(iτkr
= i & nkri ≥ η). (1)

It can be shown (see [20] for details) that if we choose η =

d 8β2σ2
s

∆2
i

(log T − 1
2 log log T ) +

4β2σ2
s

∆2
i

(1− log 2)e, then

E[nTi ] ≤ η + `+
2

K

∑̀
k=1

bk∑
r=1

k

τkr
. (2)

We now focus on the term
∑`
k=1

∑bk
r=1

k
τkr

. We note that
τkr = 2k−1 + (r − 1)k, and hence

bk∑
r=1

k

τkr
=

bk∑
r=1

k

2k−1 + (r − 1)k

≤ k

2k−1
+

∫ bk

1

k

k(x− 1) + 2k−1
dx

≤ k

2k−1
+ log 2. (3)

Since T ≥ 2`−1, it follows that ` ≤ 1 + log2 T =: ¯̀.
Therefore, inequalities (2) and (3) yield



E[nTi ] ≤ η + ¯̀+
2

K

¯̀∑
k=1

( k

2k−1
+ log 2

)
≤ η + ¯̀+

8

K
+

2 log 2

K
¯̀

≤ γi1 log T − 4β2σ2
s

∆2
i

log log T + γi2.

We now establish the second statement. In the spirit
of [7], we note that the number of times the decision-maker
transitions to arm i from another arm in frame fk is equal
to the number of times arm i is selected in frame k divided
by the length of each block is frame fk. Consequently,

sTi ≤
∑̀
k=1

n2k

i − n2k−1

i

k
=
∑̀
k=1

n2k

i

k
−
`−1∑
k=1

n2k

i

k + 1

=
n2`

i

`
+

`−1∑
k=1

n2k

i

(1

k
− 1

k + 1

)
≤ n2`

i

`
+

`−1∑
k=1

n2k

i

k2
.

Therefore, it follows that

E[sTi ] ≤ E[n2`

i ]

`
+

`−1∑
k=1

E[n2k

i ]

k2
. (4)

Substituting E[n2k

i ] in inequality (4) with the derived upper
bounds and performing some algebraic manipulations, we
obtain

E[sTi ] ≤ (γi1 log 2) log log T + γi3.

We now establish the last statement. The bound of the
cumulative regret follows from the definition and the first
statement. To establish the bound on the cumulative switch-
ing cost, we note that

T∑
t=1

SBUCL
t ≤

N∑
i=1,i6=i∗

c̄max
i E[sTi ] + c̄max

i∗ E[sTi∗ ]

≤
N∑

i=1,i6=i∗
(c̄max
i + c̄max

i∗ )E[sTi ] + c̄max
i∗ , (5)

where the second inequality follows from the observation
that sTi∗ ≤

∑T
i=1,i6=i∗ s

T
i + 1. The final expression follows

from inequality (5) and the second statement. �

B. Proof of regret of the graphical block UCL algorithm
Proof of Theorem 2: We start by establishing the first state-

ment. We classify the selection of arms in two categories,
namely, the goal selection and the transient selection. The
goal selection of an arm corresponds to the situation in which
the arm has the maximum upper credible limit, while the
transient selection corresponds to the situation in which the
arm is selected because it belongs to the chosen shortest path
to the arm with the maximum credible limit. We note that
due to transient selections, the number of frames until time
T are at most equal to the number of frames if there are
no transient selections. Consequently, the expected number
of goal selections of a suboptimal arm i are upper bounded
by the expected number of selections of arm i in the block
allocation algorithm, i.e.,

E[nTgoal,i] ≤ γi1 log T − 4β2σ2
s

∆2
i

log log T + γi2.

Moreover, the number of transient selections of arm i are
upper bounded by the total number of transitions from an
arm to another arm in the block allocation algorithm, i.e.,

E[nTtransient,i] ≤
N∑

i=1,i6=i∗

(
(2γi1 log 2) log log T + 2γi3

)
+ 1.

The expected number of selections of arm i is the sum of
the expected number of transient selections and the expected
number of goal selections, and thus the first statement
follows.

The second statement follows immediately from the defi-
nition of the cumulative regret. �
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