Modeling Human Decision-making in Multi-armed Bandits
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Abstract

We study the exploration-exploitation trade-off in human decision-making in the context of multi-armed bandit prob-
lems. We consider a Bayesian multi-armed bandit problem with Gaussian rewards and develop an efficient algorithm
that captures the empirically observed trends in human-decision making. In particular, the proposed algorithm captures
the following features observed in human decision-making: (i) increased exploration with increasing time horizon of
the decision task, (ii) ambiguity bonus, and (iii) inherent decision-noise. We characterize the efficiency of the algorithm
in terms of the regret associated with the decision process. For the no decision-noise case, we demonstrate that as the
model parameters encoding the prior knowledge of the human are varied, the performance may change from efficient
(logarithmic regret) to the worst case (linear regret).
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1 Multi-armed Bandit Problem

Multi-arm bandit problems are a class of resource allocation problems in which a decision-maker allocates a single re-
source by sequentially choosing one among a set of competing alternative options called arms. In the so-called stationary
multi-armed bandit problem, a decision-maker at each discrete time instant chooses an arm and collects a reward drawn
from an unknown stationary probability distribution associated with the selected arm. The objective of the decision-
maker is to maximize the total reward aggregated over the sequential allocation process. These problems capture the
fundamental trade-off between exploration (collecting more information to reduce uncertainty) and exploitation (using
the current information to maximize the immediate reward).

The multi-armed bandit problem originated from the analysis of clinical trials [13], where the decision-maker was a
doctor and the options were different treatments for a given disease. The doctor’s goal in the trial was to find the most
efficient treatment while curing as many patients as possible. Robbins [10] later posed the multi-armed bandit problem in
the context of sequential design of experiments. The optimal solution to a multi-armed bandit problem can be obtained
though stochastic dynamic programming [7] but it quickly becomes intractable as horizon length grows. In his seminal
work, Gittins [6] developed a dynamic allocation index for each arm and showed that selecting an arm with the highest
index at the given time results in the optimal policy. The dynamic allocation index, while a powerful idea, suffers from
two drawbacks: (i) the dynamic allocation index is hard to compute, and (ii) it does not provide insight into the nature of
the optimal policies. In another ground-breaking work, Lai and Robbins [9] established a logarithmic lower bound on the
expected number of times a sub-optimal arm needs to be sampled by an optimal policy. They also developed an upper
confidence bound-based algorithm that achieves the lower bound asymptotically. The computation of the upper confi-
dence bounds in [9] involves tedious computations and Agarwal [3] simplified these computations to develop sample
mean-based upper bounds that achieve logarithmic regret. Auer et al. [4], in their seminal work, developed upper confi-
dence bound-based algorithms that achieve logarithmic regret uniformly in time. Recently, Srinivas et al. [11] developed
asymptotically optimal upper confidence bound-based algorithms for Gaussian process optimization. Kauffman et al. [8]
developed a generic Bayesian upper confidence bound-based algorithm and established its optimality for binary bandits
with uniform prior. We develop a similar Bayesian upper confidence bound-based algorithm for Gaussian multi-armed
bandit problems and show that it achieves logarithmic regret for uninformative priors. We draw connections between
the proposed algorithm and human decision-making in multi-armed bandit problems and highlight the effect of priors
on the performance of the proposed algorithm.

2 Gaussian Multi-armed Bandit Problem

Consider an N-armed bandit problem, i.e., a multi-armed bandit problem with N arms. The reward associated with
arm i € {1,..., N} is a Gaussian random variable with unknown mean m; and known variance 2. The mean of the
Gaussian reward at arm ¢ can be interpreted as the signal strength at the arm, while the variance can be interpreted as
the sampling noise that is the same at each arm. Let the decision-maker choose arm i; at time ¢t € {1,...,T} and receive
areward r; ~ N (m;,,0,). The decision-maker’s objective is to choose a sequence of arms {it}+eqa,...,ry that maximizes

cumulative expected reward ZtT:l m;, , where T is the horizon length of the sequential allocation process.

For a multi-armed bandit problem, the performance of a decision-making policy is characterized in terms of the expected
regret at time t defined by R; = m;- — m;,, where m;« = max{m; | i € {1,..., N}}. The objective of the decision-maker
can be equivalently defined to be to minimize the cumulative expected regret defined by S, R, = .~ AE[nT],

where nZT is the cumulative number of times option 7 has been chosen up to time 7" and A; = m;« — m; is the expected
regret due to picking arm 7 instead of arm ¢*.

2.1 Bound on Optimal Performance

Lai and Robbins [9] showed that any asymptotically efficient algorithm for the multi-armed bandit problem must chose
each suboptimal arm i at a rate that is at least logarithmic in time, i.e.,

1
E[nir] > (D(pzkl?z*) + 0(1)) logT,

where o(1) — 0as T — oo and D(||) = R>¢U{+00}, defined by

D(pillpi-) = /pz- () log ]ii((i)) dr,

is the Kullback-Leibler divergence between the reward density p; of the suboptimal option ¢ and the reward density p;-
of the optimal arm. For the Gaussian reward structure considered in this paper, the Kullback-Leibler divergence is equal



to D(pi||pi-) = A? /202, and consequently, E[n;r] > (202/A? +0(1)) log T This leads to a lower bound on the cumulative

regret given by
T N 2
SR=>Y (ZZ% (1)) log T.
t=1 i=1 ‘

2.2 Upper Credible Limit Algorithm for Gaussian Bandits

Let the prior on the mean reward at arm 7 be a Gaussian random variable with mean p; and Variance 03. Let the

empirical mean of the rewards from arm i until time ¢ be m!. Conditioned on the number of visits n} to arm i and the
empirical mean m!, the posterior distribution of the mean reward (M;) at arm 7 at time ¢ is a Gaussian random variable
with mean and variance

52y timt 2
gt = E[M;|nt, mt] = %n%ﬂ and af := Var[M;|n}, m}] = 52?71
respectively, where 6% = o2 /03. Moreover,
021l + ntm; nto?
t|.t1 7 Aa 7S
Elpi|ng] = w and Var[u;|nj] = W

For the Gaussian multi-armed bandit problem, we develop the upper credible limit (UCL) algorithm. The UCL algorithm
at each (discrete) time ¢ first computes the (1 — 1/Kt)-upper credible limit Q! associated with each arm i € {1,..., N}

defined by
t._ .t Is -1(1 = i
@ '*”’3+52+n§® (1 Kt)’

where K > 0 is a constant and ®~!(-) is the inverse cumulative distribution function for the standard normal random
variable. The UCL algorithm then selects an arm i, := argmax{Q’ | i € {1,...,N}}. We show that for the non-
informative prior, i.e., 6 — 0T, the UCL algorithm achieves a logarithmic regret for a multi-armed bandit with Gaussian
rewards. In partlcular the regret satisfies the following uniform upper bound:

T
SR < ZA ((A2 >1ogT+ 4A—2(floglogT+ 1 log?2) +2>

t=1 7

where RYCL is the regret of UCL algorithm at time ¢. Moreover, for a good prior, i.e., a prior with small value of |u;o —
m;|/oo, a similar performance can be achieved. In contrast, for a bad prior, i.e., a prior with large value of |u;0 — m;|/o0,
the expected cumulative regret may have super-logarithmic growth. The parameter K is chosen as v/2we(log T')¢, where
¢ > 0. For the non-informative prior ¢ = 0 achieves a logarithmic regret, while for other good priors, the parameter ¢
needs to be tuned to achieve a logarithmic regret. In the case of a bad prior, regret may have super-logarithmic growth
independent of c.

2.3 Incorporating decision noise in the UCL algorithm

The UCL algorithm described in the previous section deterministically selects an arm with maximum upper credible
limit. Human decision-making is inherently noisy and the soft-max action selection rule has been used in the literature
to capture the noise in human decision-making. Accordingly, we consider a stochastic arm selection policy where at time
t, arm i is selected with probability proportional to exp(n:Q!), where 7, is a cooling schedule of the form 7, = vlogt,
7 > 0. We show that there exists a feedback law for the cooling schedule parameter v such that the stochastic arm
selection policy achieves a logarithmic regret for good priors.

3 Comparison with human decision-making in multi-armed bandits

Human decision-making in multi-armed bandit problems has been studied in the cognitive psychology literature; see
[5,2,1, 12, 15], and references therein. The salient features of the human decision-making are: (i) the decision at time ¢
is based on a linear combination of the estimate of the mean reward of each arm and an ambiguity bonus that captures
the value of the information from that arm [14], (ii) the decision-making is inherently noisy [14, 5, 1, 12, 15], (iii) the
exploration-exploitation trade-off is sensitive to the time-horizon T for the bandit task [5, 14], (iv) the familiarity with the
environment and the structure of the environment plays a critical role [5, 12, 2].

The value function Q! of the UCL algorithm is comprised of two components: the first component is the estimate of the
mean reward from arm ¢, while the second component is half the width of the minimum (1 — 1/Kt)-credible set. Since



the width of the minimum (1 — 1/Kt)-credible set is a measure of the ambiguity in the estimate of the mean reward, the
value function Q! well captures feature (i) of human decision-making. Furthermore, the expression for Q! highlights that
for efficient performance the desired credibility of the minimum credible set should increase with time.

Feature (ii) of human decision-making is the decision-making noise that is well captured by the stochastic arm selection
policy. Our analysis of the soft-max arm selection policy highlights the role of decision-making noise in the perfor-
mance. In particular, there exists a cooling schedule that achieves efficient performance for the stochastic arm selection
policy, while for an arbitrary /non-diminishing decision noise the performance may be bad (i.e., the regret may be super-
logarithmic).

Feature (iii) of human decision-making pertains to sensitivity to the time horizon and is captured by the model by the

parameter K = +/2me(logT’)°. In particular, the desired credibility (1 — 1/Kt) increases with time horizon T, which
results in higher value of Q! for uncertain options and results in higher exploration.

Feature (iv) of human decision-making is captured through the priors in the UCL algorithm. In particular, familiarity
with the environment results in a good prior and hence, efficient performance. We also show that for very good priors
(that correspond to experts) even sub-logarithmic regret can be achieved. The structure of the environment can be
modeled by assuming that the mean rewards of arms are sampled from a correlated Gaussian process, and the structural
learning in human decision-making is captured by assuming a correlated prior. The UCL algorithm immediately extends
to the case of correlated priors by replacing the univariate estimation procedure for each arm by a single multivariate
estimation procedure for all arms and computing the upper credible limits using marginal distributions. In particular,
for spatially distributed multi-armed bandits, a normal prior with mean /191 and covariance ¥;; = o exp(—|z;—x il/A),
where z; is the location of arm ¢ and A > 0 is the correlation length scale parameter, well captures a variety of possible
correlation structures (true structures as well as structures believed by the human). In particular, as A varies from 0 to
+00, the correlation structure varies from independent to completely correlated.

4 Conclusions

We considered the multi-armed bandit problem with Gaussian rewards and developed UCL algorithm that well models
human decision-making in such tasks. We showed that the UCL algorithm achieves logarithmic regret for good priors
and appropriate cooling schedules, while bad priors and inefficient cooling schedules may result in super-logarithmic
regret. The proposed model is primarily parametrized by four parameters, namely, the cooling schedule parameter ~,
prior estimates of mean g, prior variance o3 and correlation parameter . Variations in these parameters capture a
variety of empirically observed behaviors in human decision-making.
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