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Abstract— We study collective decision making in human
groups performing a two alternative choice task. We model
the evidence aggregation process across the network using a
coupled drift diffusion model (DDM) and consider the free
response paradigm in which humans take their time to make
the decision. We analyze the coupled DDM under a mean-
field type approximation and characterize approximate error
rates and expected decision times for each individual in the
group as a function of their location in the network. We also
provide approximations to the first passage time distributions
for each individual. We elucidate on criteria to select thresholds
for decision making in human groups as well as in engineering
applications.

I. INTRODUCTION

Recent years have witnessed a considerable interest in
rigorous understanding of a group’s wisdom and associated
decision making process. Consequently, there has been ex-
tensive research that has led to several models for social net-
work dynamics [1], [2]. One of the fundamental drawbacks
of such models is that they do not capture the psychophysics
of individuals in the group and thus become ineffective in
applications involving real-time evolution of human psy-
chophysical state. One such application is the deployment
of a team of human operators that supervises the operation
of the automaton in complex and uncertain environments.
Such operators collect information from the environment,
interact with each other and communicate their beliefs on the
state of the environment. In such systems, efficient models
for the evolution of each individual’s psychophysical state
and associated decision making process are fundamental to
design of effective human-automaton teams.

In this paper, we focus on the speed-accuracy trade-off in
collective decision making using the context of two alter-
native choice problems. The two alternative choice problem
is a simplification of many decision making scenarios and
captures the essence of the speed-accuracy trade-off in a
variety of situations encountered by animal groups [3], [4].
Moreover, the human performance in two alternative choice
tasks is extensively studied and well understood [5], [6], [7].
In particular, the human performance in a two alternative
choice task is well modeled by a drift-diffusion model (DDM)
and its variants. Furthermore, these variants of the DDM
under the optimal choice of their parameters are equivalent
to the DDM [5].

Collective decision making in animal and human groups
has fetched significant interest in a broad scientific commu-
nity [8], [9], [10]. The collective decision making in human
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groups is typically studied under two extreme communica-
tion regimes: the so-called ideal group and the Condorcet
group. In an ideal group, each decision maker interacts
with every other decision maker and the group arrives at
a consensus decision, while in a Condorcet group, decision
makers do not interact with each other and a majority rule is
employed to reach a decision. Collective decision making
in ideal human groups and Condorcet human groups is
studied in [10] using the classical signal detection model for
human performance in two alternative choice tasks. Human
decision making is typically studied under two paradigms,
namely, interrogation, and free response. In the interrogation
paradigm, the human has to make a decision at the end
of a prescribed time duration, while in the free response
paradigm, the human takes their time to make a decision.
Collective decision making in Condorcet human groups using
the DDM and free response paradigm is studied in [11],
[12]. Collective decision making in ideal human groups using
the DDM and interrogation paradigm is studied in [13].
Related collective decision making models in animal groups
are studied in [14]. In this paper, we study collective decision
making in ideal groups using the DDM and free response
paradigm.

The DDM is a continuous time approximation to the ev-
idence aggregation process in a hypothesis testing problem.
Moreover, the finite sample and the sequential hypothesis
testing problems correspond to the interrogation and the free
response paradigm in human decision making, respectively.
Consequently, the collective decision making problem in
human groups is similar to distributed hypothesis testing
problems studied in the engineering literature [15], [16], [17].
In particular, Braca et al. [16] study distributed implementa-
tions of the finite sample as well as the sequential hypothesis
testing problems. They use a running consensus algorithm
to aggregate the test statistic across the network and show
that the proposed algorithm achieves the performance of a
centralized algorithm asymptotically. In contrast to [16], we
rely on the Laplacian flow [18] to aggregate evidence across
network. Moreover, we approximately characterize the finite
time behavior of the coupled DDM under the free response
paradigm.

The contributions of this paper are fourfold. First, we use
the Laplacian flow based evidence aggregation model for
human groups [13] in conjugation with a mean-field type
approximation to determine an effective time varying DDM
for the evolution of each individual’s evidence as a function
of their location in the network. Second, we characterize
lower and upper bounds on the error rates and decision
times associated with the effective DDM. We show that the
upper bound on the error rate and the lower bound on the



expected decision time are asymptotically achieved. Third,
we determine lower and upper bounds on the first passage
time distribution for the effective DDM. Fourth and last, we
elucidate on various threshold selection criteria, namely, the
Wald-like criterion, Bayes criterion, and reward rate criterion.

The remainder of the paper is organized as follows. We
review decision making models for human and human groups
in Section II. We determine the effective DDM for each in-
dividual in the group using a mean-field type approximation
and characterize its properties in Section III. We elucidate on
the concepts developed in the paper through some examples
in Section IV. Our conclusions are presented in Section V.

II. HUMAN DECISION MAKING MODELS

In this section, we present the DDM and the coupled
DDM that model the evidence aggregation process in two
alternative choice tasks for a single human and a human
group, respectively.

A. Drift Diffusion Model

A two alternative choice task [5] is a decision making sce-
nario in which a person has to chose between two plausible
alternatives. In a two alternative choice task, the difference
between the likelihood of each alternative (evidence) is
aggregated and the aggregated evidence is compared against
a threshold to make a decision. The decision making is
studied under two paradigms, namely, interrogation and free-
response. In the interrogation paradigm, a time duration is
prescribed to the human who decides on an alternative at
the end of this duration. In particular, by the end of the
prescribed duration, the human compares the aggregated ev-
idence against a single threshold, and chooses an alternative.
In the free response paradigm, the human subject is free to
take as much time as needed to make a reliable decision. In
this paradigm, the human compares the aggregated evidence
against two thresholds and decides on an alternative only
if the associated threshold is crossed; otherwise, the human
aggregates more evidence. The evidence aggregation is well
modeled by the drift-diffusion process [5] defined by

dx(t) = βdt+ σdW (t), x(0) = x0, (1)
where β ∈ R and σ ∈ R>0 are, respectively, the drift rate
and the diffusion rate, W (t) is the standard one dimensional
Wiener process, x(t) is the aggregate evidence at time t,
and x0 is the initial evidence (see [5] for the details of the
model).

In this paper, we study decision making under the free
response paradigm, which is modeled in the following way.
At each time τ ∈ R≥0, the human compares the aggre-
gated evidence against two symmetrically chosen thresholds
±η, η ∈ R≥0. In particular, if x(τ) ≥ η, then the human
decides in favor of the first alternative; if x(τ) ≤ −η, then the
human decides in favor of the second alternative; otherwise,
the human collects more evidence.

B. Coupled drift diffusion model

Consider a set of n decision makers performing a two
alternative choice task and let their interaction topology be
modeled by a connected undirected graph G with Laplacian

matrix L ∈ Rn×n. The evidence aggregation in collective de-
cision making is modeled in the following way. At each time
t ∈ R≥0, every decision maker k ∈ {1, . . . , n} (i) computes
a convex combination of her evidence and her neighbor’s
evidence; (ii) collects a new evidence; and (iii) adds the
new evidence to the convex combination. This collective
evidence aggregation process is mathematically described by
the following coupled drift diffusion model [13]:

dx(t) =
(
β1n − Lx(t)

)
dt+ σ2dW (t), (2)

where x(t) ∈ Rn is the vector of evidence aggregated by
decision makers until time t, W (t) ∈ Rn is the vector
of n independent standard Weiner processes, and 1n is the
column n-vector of all ones. It should be noted that the
coupled DDM (2) captures the interaction among individuals
using the Laplacian flow dynamics. The Laplacian flow is
the continuous time equivalent of the classical DeGroot
model [2], [19] that captures the consensus seeking process
in human groups.

The solution to the system (2) is a Gaussian process, and
for x(0) = 0n, where 0n is the n-vector of all zeros,

E[x(t)] = βt1n,

Cov(xk(t), xj(t)) =
σ2t

n
+ σ2

n∑
p=2

1− e−2λpt

2λp
u
(p)
k u

(p)
j ,

(3)

for k, j ∈ {1, . . . , n}, where λp, p ∈ {2, . . . , n}, are non-
zero eigenvalues of the Laplacian matrix, and u(p)k is the k-
th component of the normalized eigenvector associated with
eigenvalue λp (see [13] for details).

Remark 1 (Generalized ideal group): In contrast to the
standard ideal group analysis [10] that assumes each in-
dividual interacts with every other individual, in (2) each
individual interacts only with its neighbors in the interaction
graph G. Thus, the coupled DDM (2) generalizes the ideal
group model and captures more general interactions, e.g.,
organizational hierarchies. �

III. COUPLED DDM: FREE RESPONSE PARADIGM

In this section, we characterize the performance of each
decision maker in the network under the free response
paradigm. We first present a mean-field type approximation
to determine an effective DDM for each decision maker. We
then characterize error rates, decision times, and first passage
time distributions associated with the effective DDM. We
close this section with a discussion on threshold selection
criteria. We study the free response paradigm under the
following assumption:

Assumption 1 (Persistent Evidence Aggregation): Each
decision maker continues to aggregate and communicate
evidence according to the coupled DDM (2) even after
reaching a decision. �

A. Effective DDM at each node

The free response paradigm for the coupled DDM cor-
respond to the boundary crossing of the n-dimensional
Weiner process. In general, for n > 1, boundary crossing
properties of the Weiner process are hard to characterize
analytically, and a few available analytic solutions do not



provide much insight into the properties. Therefore, we resort
to approximations for the coupled DDM. We note that, at
each time t, the coupled DDM is a probabilistic graphical
model [20] in which a generic node k corresponds to the
random variable xk(t). The mean-field approximation to
a probabilistic graphical model approximates the coupled
joint distribution of all the random variables with a joint
distribution that factorizes over each random variable and
is close to the coupled joint distribution in an appropriate
sense [20].

In a similar spirit, we approximate the coupled DDM with
n independent effective DDMs such that, at any time t,
the distribution of the evidence for the k-th effective DDM
is the same as the marginal distribution of xk(t) in the
coupled DDM. The coupled DDM captures the evidence
aggregation by any decision maker as a Gaussian process.
It follows from equation (3) that the evidence aggregated by
the k-th decision maker until time t is marginally distributed
according to a normal distribution with mean βt and variance
σ2t
n + σ2

∑n
p=2

1−e−2λpt

2λp
u
(p)
k

2
. Accordingly, the evidence

aggregation by the k-th decision maker is approximated by
the following effective drift diffusion model:

dxk(t) = βdt+ σk(t)dW (t), (4)

where σk(t) = σ

√
1
n +

∑n
p=2e

−2λptu
(p)
k

2
. The effective

DDM (4) captures the evolution of the evidence for the
k-th individual in the interrogation paradigm. In the spirit
of [21], we use the interrogation paradigm model (4) to
approximate the free response paradigm for the coupled
DDM (2). Our analysis of the free response paradigm for
the effective DDM (4) is similar to the standard martingale
based analysis for the standard DDM [22].

We now introduce some notation. Let Fkτ , τ ∈ R≥0 be
the sigma algebra generated by {xk(t)}t∈[0,τ ]. Let decision
time Tk, measurable with respect to the filtration Fkτ , τ ∈
R≥0, be defined by Tk = inf{τ ∈ R≥0 ∪{+∞} | xk(τ) ∈
{−ηk,+ηk}}, where ηk ∈ R>0 is the threshold for the k-th
individual.

B. Error rates and decision times

The error rate is the probability that the human decides
in favor of an incorrect alternative, and the decision time
is the expected time the human takes to decide on an
alternative. If β > 0 (β < 0), then an erroneous decision
is made if the evidence crosses the threshold −ηk (+ηk)
before crossing +ηk (−ηk). Without loss of generality, we
assume that β > 0. We denote the error rate for k-th
individual by ERk. We now determine the error rates and
the expected decision times for the free response paradigm
associated with effective DDM (4). We first introduce some
notation. Define µk =

(
σ2
∑n
p=2

1
2λp

u
(p)
k

2)−1
for each k ∈

{1, . . . , n}. Note that µk is called the node certainty index
and is a measure of the accuracy of individual k [13]. Let
the variance of the k-th individual at time t be defined by
ς2k(t) = σ2t

n + σ2
∑n
p=2

1−e−2λpt

2λp
u
(p)
k

2
. Let the stochastic

process {yk(t)}t∈R≥0
be defined by

yk(t) = exp
(
θxk(t)−θβt−1

2
θ2σ2

( t
n
−

n∑
p=2

e−2λpt

2λp
u
(p)
k

2))
,

for some θ ∈ R and k ∈ {1, . . . , n}. We will show that the
stochastic process {yk(t)}t∈R≥0

is a martingale and utilize
it to determine the error rates. We now state the following
theorem about error rates and expected decision times.

Theorem 1 (Error Rates and Decision Times): For the
effective DDM (4) and the free response decision making
paradigm, the following statements hold:

(i) the stochastic process {yk(t)}t∈R≥0
is a martingale for

any θ ∈ R;
(ii) the error rate ERk satisfies

1

exp( 2βn
σ2 ηk) + 1

≤ ERk ≤
exp( 2βn

σ2 (ηk + βn
σ2µk

))− 1

exp( 4βn
σ2 ηk)− 1

;

(iii) the stochastic process {xk(t)− βt}t∈R≥0
is a martin-

gale;
(iv) the decision time E[Tk] satisfies

ηk
β

1− 2 exp( 2βn
σ2 (ηk + βn

σ2µk
)) + exp( 4βn

σ2 ηk)

exp( 4βn
σ2 ηk)− 1

≤ E[Tk] ≤ ηk
β

exp( 2βn
σ2 ηk)− 1

exp( 2βn
σ2 ηk) + 1

.

Proof: We start by establishing statement (i). In order
to prove that the stochastic process {yk(t)}t∈R≥0

is a mar-
tingale, we need to show that for each t ∈ R≥0, and for
some s ≤ t: (a) yk(t) is measurable with respect to Fkt ,
(b) E[|yk(t)|] < +∞, and (c) E[yk(t)|Fks ] = yk(s). The
measurability condition (a) can be easily verified. To estab-
lish condition (b), it suffices to show that E[eθxk(t)] < +∞.
From equation (3), xk(t) is normally distributed with mean
βt and variance ς2k(t). Moreover, E[eθxk(t)] is the associated
moment generating function. Consequently, E[eθxk(t)] =
exp(βtθ + ς2k(t)θ2/2) < +∞. To establish condition (c),
we observe from the effective DDM (4) that xk(t)|Fks is
a normally distributed random variable with mean xk(s) +

β(t− s) and variance σ2[ t−sn +
∑n
p=2

e−2λps−e−2λpt

2λp
u
(p)
k

2
].

Therefore,

E[exp(θxk(t))|Fks ] = exp
(
θxk(s) + βθ(t− s)

+
1

2
θ2σ2

( t− s
n

+

n∑
p=2

e−2λps − e−2λpt

2λp
u
(p)
k

2))
. (5)

It follows from equation (5) that

E
[

exp
(
θxk(t)−βθt−1

2
θ2σ2

( t
n
−

n∑
p=2

e−2λpt

2λp
u
(p)
k

2))
|Fks

]
= exp

(
θxk(s)−βθs− 1

2
θ2σ2

( s
n
−

n∑
p=2

e−2λps

2λp
u
(p)
k

2))
,

which establishes condition (c).
We now establish statement (ii). We pick θ = −2βn/σ2,

and consequently,

ȳk(t) = exp
(
− 2βn

σ2
xk(t) +

2β2n2

σ2

n∑
p=2

e−2λpt

2λp
u
(p)
k

2)
is a martingale. For the decision time Tk, xk(Tk) ∈
{−ηk,+ηk}. Therefore,



E[ȳk(Tk)] = ((1− ERk)e−
2βn

σ2
ηk + ERke

2βn

σ2
ηk)

× e
2β2n2

σ2

∑n
p=2

e
−2λpTk

2λp
u
(p)
k

2

.

It follows from the optional stopping theorem [23] that
E[ȳk(Tk)] = ȳk(0). Moreover, 0 ≤ e−2λpTk ≤ 1, and
consequently,

(1− ERk)e−
2βn

σ2
ηk + ERke

2βn

σ2
ηk ≤ e

2β2n2

σ4µk

≤ ((1− ERk)e−
2βn

σ2
ηk + ERke

2βn

σ2
ηk)e

2β2n2

σ4µk . (6)

Simplifying the inequalities (6) yields the desired bounds for
the error rate.

To prove statement (iii), we observe that xk(t) − βt is
measurable with respect to Ft. It follows from Jensen’s
inequality that E[|xk(t) − βt|] ≤

√
E[(xk(t)− βt)2] =

ςk(t) < +∞. Moreover, for any s ≤ t, E[xk(t)− βt|Fs] =
xk(s)+β(t−s)−βt = xk(s)−βs. Hence, {xk(t)−βt}t∈R≥0

is a martingale.
We apply the optional stopping theorem [23] to the mar-

tingale {xk(t) − βt}t∈R≥0
to obtain E[xk(Tk) − βTk] = 0.

Hence, E[Tk] = E[xk(Tk)]/β = (1− 2ERk)ηk/β. Substi-
tuting the lower and the upper bound for ERk yields the
upper and the lower bound for the expected decision time,
respectively.

Remark 2 (Comparison with centralized decision maker):
For a centralized decision maker, the effective drift and
diffusion rates are β and σ2/n, respectively. Thus, the lower
bound on the error rate and the upper bound on the expected
decision time in Theorem 1 correspond to a centralized
decision maker. �

C. First passage time distribution

We now determine the first passage time distributions for
the effective DDM (4). The first passage times T+

k and T−k
associated with the thresholds +ηk and −ηk, respectively,
are defined by

T+
k = inf{t ∈ R≥0 | xk(t) ≥ +ηk}, and

T−k = inf{t ∈ R≥0 | xk(t) ≤ −ηk}.

We denote the probability measure associated with the ef-
fective DDM (4) with drift rate β by Pβ . Let Φ(·) represent
the cumulative distribution function of the standard normal
random variable. We now state the following theorem about
the first passage time distributions.

Theorem 2 (First passage times): For the effective
DDM (4) and the first passage times T+

k and T−k , the
following statements hold:

(i) the first passage time densities under the effective
DDM with drift rate β and −β satisfy

e
2βηk
σ2 ≤

Pβ(T+
k ∈ ds)

P−β(T+
k ∈ ds)

≤ e
2βηkn

σ2 ;

(ii) the first passage time distributions satisfy

1− Φ
(ηk − βt

ςk(t)

)
+ e

2βηk
σ2 Φ

(−ηk − βt
ςk(t)

)
≤ Pβ(T+

k ≤ t)

≤ 1− Φ
(ηk − βt

ςk(t)

)
+ e

2βηkn

σ2 Φ
(−ηk − βt

ςk(t)

)
, and

Φ
(−ηk − βt

ςk(t)

)
+ e

2βηk
σ2

(
1−Φ

(ηk − βt
ςk(t)

))
≤ Pβ(T−k ≤ t)

≤ Φ
(−ηk − βt

ςk(t)

)
+ e

2βηkn

σ2

(
1− Φ

(ηk − βt
ςk(t)

))
.

Proof: We first establish statement (i). We note that

Pβ(T+
k ∈ds)=Eβ [1(T+

k ∈ds)]=E−β [lr 1(T+
k ∈ds)], (7)

where E±β represents the expected value under the effective
DDM (4) with drift rate ±β, 1(·) represents the indicator
function, and lr is the likelihood ratio of xk(t), t ∈ [0, s]
under the effective DDM with drift rate +β and −β, re-
spectively. We now evaluate lr. We discretize the interval
[0, s] to obtain the increasing sequence {s1, . . . , sm}, where
s1 = 0 and sm = s. Let lrm be defined by

lrm =
Pβ(xk(t1) ∈ dx1, . . . , xk(tm) ∈ dxm)

P−β(xk(t1) ∈ dx1, . . . , xk(tm) ∈ dxm)
.

We note that limm→+∞ lrm = lr. It follows that lrm =

exp
(∑m

i=1
2β(xk(ti+1)−xk(ti))

σk(ti)2

)
. Since, 0 ≤ e−λpti ≤ 1, it

follows that
σ2

n
≤ σk(ti)

2 ≤ σk(0)2 = σ2, and

exp
(2βηk
σ2

)
≤ lrm ≤ exp

(2βηkn

σ2

)
.

We note that the bounds on lrm are independent of m and
hence, hold for lr as well. The bounds on lr along with
equation (7) establish statement (i).

To establish statement (ii), we note that

Pβ(T+
k ≤ t)

= Pβ(T+
k ≤ t, xk(t) ≥ ηk) + Pβ(T+

k ≤ t, xk(t) < ηk)

= Pβ(xk(t) ≥ ηk) + Pβ(T+
k ≤ t, xk(t) < ηk). (8)

We now evaluate Pβ(T+
k ≤ t, xk(t) < ηk). It follows from

the definition of joint probability that

Pβ(T+
k ≤ t, xk(t) < ηk)

=

∫ t

s=0

Pβ(xk(t) ≤ ηk|xk(s) = ηk)Pβ(T+
k ∈ ds)

=

∫ t

s=0

Pβ(z+(t− s) ≤ 0)Pβ(T+
k ∈ ds)

=

∫ t

s=0

P−β(z−(t− s) ≥ 0)Pβ(T+
k ∈ ds), (9)

where z±(t − s) is a normally distributed random vari-
able with mean ±β(t − s) and variance σ2

(
t−s
n +∑n

p=2
e−2λps−e−2λpt

2λp
u
(p)
k

2)
. It follows from the first state-

ment and equation (9) that

e
2βηk
σ2

∫ t

s=0

P−β(z−(t− s) ≥ 0)P−β(T+
k ∈ ds)

≤ Pβ(T+
k ≤ t, xk(t) < ηk)

≤ e
2βηkn

σ2

∫ t

s=0

P−β(z−(t− s) ≥ 0)P−β(T+
k ∈ ds).

Consequently,

e
2βηk
σ2 P−β(T+

k ≤ t, xk(t) ≥ ηk) ≤ Pβ(T+
k ≤ t, xk(t) ≥ ηk)

≤ e
2βηkn

σ2 P−β(T+
k ≤ t, xk(t) ≥ ηk).



Furthermore, P−β(T+
k ≤ t, xk(t) > ηk) = P−β(xk(t) ≥

ηk) = Pβ(xk(t) ≤ −ηk). Hence,

e
2βηk
σ2 ≤

P−β(T+
k ≤ t, xk(t) > ηk)

Pβ(xk(t) ≤ −ηk)
≤ e

2βηkn

σ2 .

Consequently, from equation (8), we have the desired bounds
on Pβ(T+

k ≤ t). Bounds on Pβ(T−k ≤ t) can be established
similarly.

Corollary 3 (Asymptotics): For the effective DDM (4)
and the free response paradigm, the following statements
hold in the limit ηk → +∞

(i) the decision time Tk → +∞ almost surely;
(ii) the upper bound on error rate and the lower bound on

expected decision time in Theorem 1 are achieved.
Proof: We start by establishing statement (i). We note

that P(Tk ≤ t) ≤ P(T+
k ≤ t) + P(T−k ≤ t). It follows

from Theorem 2 that P(T+
k ≤ t) + P(T−k ≤ t) → 0+ as

ηk → +∞. Consequently, P(Tk ≤ t) → 0+ as ηk → +∞,
i.e., Tk → +∞ in probability as ηk → +∞. Therefore, there
exists an increasing subsequence of ηk for which Tk → +∞
almost surely. Moreover, Tk is a non-decreasing function of
ηk, hence Tk → +∞ almost surely as ηk → +∞.

The second statement follows by observing that as ηk →
+∞, e−λpTk → 0+ almost surely, and hence, the upper
bound on error rate and the lower bound on expected decision
time are achieved.

D. Optimal threshold design
In this section, we elucidate on various threshold selection

mechanisms for individuals in the group. We first discuss
the Wald-like threshold selection mechanism that is suited
for threshold selection in engineering applications. Then, we
discuss Bayes risk minimizing and reward rate maximizing
mechanisms that are plausible threshold selection methods
in human decision making.

Wald-like mechanism: In the classical sequential hypothe-
sis testing problem [24], the thresholds are designed such that
the probability of error is below a desired value. In a similar
spirit, we can pick threshold ηk such that the probability of
error is below a desired value αk ∈ (0, 1). It follows from
bounds on the error rate in Theorem 1 that such a threshold
ηk is the solution of the following transcendental equation:

e
2β2n2

σ4µk − (1− αk)e
−2βn

σ2
ηk − αke

2βn

σ2
ηk = 0. (10)

It follows that as αk → 0+, equation (10) holds only if
ηk → +∞. Under such asymptotic regime e

−2βn

σ2
ηk → 0+

and the desired threshold is approximately equal to ηwald
k ≈

βn
2σ2µk

− σ2

2βn logαk.
Bayes risk minimizing mechanism: The Bayes risk min-

imization is one of the plausible mechanisms for threshold
selection for humans [5]. In this mechanism, the threshold
ηk is selected to minimize the Bayes risk (BRk) defined by

BRk = ckERk + dkE[Tk],
where ck, dk ∈ R≥0 are parameters that are determined
from empirical data [5]. Using the asymptotic expressions
in Theorem 1, we have

BRk =
(
ck−

2dkηk
β

)(exp( 2βn
σ2 (ηk + βn

σ2µk
))− 1

exp( 4βn
σ2 ηk)− 1

)
+
dkηk
β

.

1 2 3 4

Fig. 1. Connection topology of individuals in the numerical example.

BRk is a univariate function of the threshold ηk and can be
numerically minimized to determine an optimal threshold.

Reward rate maximizing mechanism: Another plausible
mechanism for threshold selection in humans is reward rate
maximization [5]. The reward rate (RRk) is defined by

RRk =
1− ERk

E[Tk] + Tmotor +D + ERkDp
,

where Tmotor is the motor time associated with decision
making process, D is the response time, and Dp is the
additional time that the human takes after an erroneous
decision (see [5] for detailed description of the parameters).
Thus, the reward rate for the k-th individual is

RRk =
1− ERk

(1− 2ERk)ηkβ + Tmotor +D + ERkDp
,

where ERk is the asymptotic expression for the error rate for
k-th individual. Similar to the Bayesian risk, the reward rate
is also a univariate function of the threshold ηk and can be
numerically maximized to determine an optimal threshold.

IV. NUMERICAL EXAMPLES

We consider a set of four individuals with interaction
topology in Figure 1. The drift and the diffusion rate for
each individual are 0.2 and unity, respectively. Error rates
and reaction times for individual 1 and 2 are shown in
Figures 2 and 3, respectively. Note that the upper bound
on the error rate and the lower bound on the expected
decision time better predict the associated quantities for the
coupled DDM as compared to the asymptotic predictors that
correspond to a centralized decision maker.

First passage time distributions associated with unity
threshold are shown in Figure 4. The upper bound on the
distribution function for the effective DDM is very close
to the distribution function obtained from Monte Carlo
simulations, while the distribution function associated with a
centralized decision maker differs significantly from it. The
primary reason for this difference is that the noise in the
centralized case is very low. In particular, the diffusion rate
for a centralized decision maker is σ2/n and with increasing
n, the distribution function converges to a step function,
while for the coupled DDM the diffusion rate at each node
reaches σ2/n only asymptotically.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we studied the speed-accuracy trade-off in
collective decision making in human groups using the context
of two alternative choice tasks. We focused on the free
response decision making paradigm in which each individual
takes their time to make a decision. We derived approximate
bounds on error rates, expected decision times, and first
passage time distributions for each individual in the network.
We also discussed various threshold selection criteria.

There are several possible extensions to this work. First,
the mean-field type approximations considered in this paper
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Fig. 2. Error rates. The top and the bottom figures show error rates for
individuals 1 and 2, respectively. The solid black lines represent error rates
for the coupled DDM obtained using Monte Carlo simulations, the dashed
red lines and green dashed-dotted lines represent the upper and lower bound
obtained for the effective DDM.
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Fig. 3. Expected decision times. The top and the bottom figures show
expected decision times for individuals 1 and 2, respectively. The solid
black lines represent decision times for the coupled DDM obtained using
Monte Carlo simulations, the dashed red lines and green dashed-dotted lines
represent the lower and upper bound obtained for the effective DDM.

determine an effective DDM by matching the evidence distri-
bution for the effective DDM with the marginal distribution
of an individual’s evidence. It is of interest to explore other
possible mean-field type approximations, for instance, the
effective DDM can be selected such that it is closest to the
original coupled distribution in the sense of Kullback-Leibler
divergence. Second, in several decision making scenarios,
stochastic models close to DDM, e.g., Ornstein-Uhlenbeck
process, capture the information aggregation process. It is of
interest to extend the analysis in this paper to such models.
Third, in this paper, we considered two alternative choice
tasks. Diffusion models for multiple alternative choice tasks
are available [25], and it is of interest to extend this work
to multiple alternative choice tasks. Fourth, in the spirit of
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Fig. 4. Passage time distributions. The top and the bottom figures
show passage time distributions for individuals 1 and 2, respectively. The
solid black lines represent passage time distribution for the coupled DDM
obtained using Monte Carlo simulations, the dashed-dotted red lines and
green dashed lines represent the lower and upper bound obtained for the
effective DDM, and the magenta line with dots represents passage time
distribution for a centralized decision maker.

the centrality measures [13] in the interrogation paradigm, it
is of interest to explore the notion of centrality in the free
response paradigm.
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