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Abstract

Stochastic Search and Surveillance Strategies

for Mixed Human-Robot Teams

Vaibhav Srivastava

Mixed human-robot teams are becoming increasingly important in complex

and information rich systems. The purpose of the mixed teams is to exploit the

human cognitive abilities in complex missions. It has been evident that the infor-

mation overload in these complex missions has a detrimental effect on the human

performance. The focus of this dissertation is the design of efficient human-robot

teams. It is imperative for an efficient human-robot team to handle information

overload and to this end, we propose a two-pronged strategy: (i) for the robots, we

propose strategies for efficient information aggregation; and (ii) for the operator,

we propose strategies for efficient information processing. The proposed strategies

rely on team objective as well as cognitive performance of the human operator.

In the context of information aggregation, we consider two particular missions.

First, we consider information aggregation for a multiple alternative decision mak-

ing task and pose it as a sensor selection problem in sequential multiple hypothesis

testing. We design efficient information aggregation policies that enable the hu-

man operator to decide in minimum time. Second, we consider a surveillance

xii



problem and design efficient information aggregation policies that enable the hu-

man operator detect a change in the environment in minimum time. We study

the surveillance problem in a decision-theoretic framework and rely on statistical

quickest change detection algorithms to achieve a guaranteed surveillance perfor-

mance.

In the context of information processing, we consider two particular scenar-

ios. First, we consider the time-constrained human operator and study optimal

resource allocation problems for the operator. We pose these resource allocation

problems as knapsack problems with sigmoid utility and develop constant factor

algorithms for them. Second, we consider the human operator serving a queue

of decision making tasks and determine optimal information processing policies.

We pose this problem in a Markov decision process framework and determine

approximate solution using certainty-equivalent receding horizon framework.
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Chapter 1

Introduction

The emergence of mobile and fixed sensor networks operating at different

modalities, mobility, and coverage has enabled access to an unprecedented amount

of data. In a variety of complex and information rich systems, this information

is processed by a human operator [17, 31]. The inherent inability of the human

operator to handle the plethora of available information has detrimental effects

on their performance and may lead to unpleasant consequences [84]. To alleviate

this loss in performance of the human operator, the recent national robotic initia-

tive [38] emphasizes collaboration of humans with robotic partners, and envisions

a symbiotic co-robot that facilitates efficient interaction of the human operator

with the automaton. Given the complex interaction that can arise between the op-

erator and the automaton, such a co-robotic partner will enable better interaction

between the automaton and the operator by exploiting the operator’s strengths

while taking into account their inefficiencies, such as erroneous decisions, fatigue

1



Chapter 1. Introduction

and the loss of situational awareness. This encourages an investigation into algo-

rithms that enable the co-robot to aid the human partner to focus their attention

to the pertinent information and direct the automaton to efficiently collect the

information.

The problems of interest in this dissertation are the search and the persistent

surveillance. The search problem involves ascertaining the true state of the nature

among several possible states of the nature. The objective of the search problem

is to ascertain the true state of the nature in minimum time. The persistent

surveillance involves continuous search of target regions with a team of fixed and

mobile sensors. An efficient persistent surveillance policy has multiple objectives,

including, minimizing the time between subsequent visit to a region, minimizing

the detection delay at each region, and maximize visits to regions with high like-

lihood of target. The fundamental trade-off in persistent surveillance is between

the evidence collected from the visited region and the resulting delay in evidence

collection from other regions. The search and the persistent surveillance missions

may be fully autonomous or may involve a human operator that processes the

collected evidence and accordingly modifies the search and surveillance policy, re-

spectively. The latter is called the mixed human-robot team search/surveillance.

The purpose of the mixed teams is to exploit human cognitive abilities in com-

plex missions, and therefore, an effective model of human cognitive performance

2



Chapter 1. Introduction

is fundamental to the team design. Moreover, such a model should be efficiently

integrated with the automaton design enabling an effective team performance.

As a consequence of the growing interest in the mixed teams, a significant effort

has been made to model human cognitive performance and integrate it with the

automaton. Broadly speaking, there have been two approaches to mixed team de-

sign. In the first approach, the human is allowed to respond freely and the automa-

ton is adaptively controlled to cater to the human operator’s cognitive require-

ments. In the second approach, both the human and the automaton are controlled,

for instance, the human operator is told the time-duration they should spend on

each task, and their decision is utilized to adaptively control the automaton.

The first approach typically captures human performance via their free-response

reaction times on each task. The fundamental research questions in this ap-

proach include (i) optimal scheduling of automaton [65, 12, 11, 80, 81, 29, 66, 67];

(ii) controlling operator utilization to enable shorter reaction times [78, 79]; and

(iii) design of efficient work-shift design to counter fatigue effects on the oper-

ator [73]. The second approach captures the human performance as the prob-

ability of making the correct decision given the time spent on the task. The

fundamental research questions in this approach include (i) optimal duration al-

location to each task [93, 94, 90]; (ii) controlling operator utilization to enable

3
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better performance [98]; and (iii) controlling the automaton to collect relevant

information [95, 97, 96, 98].

In this dissertation, we focus on the latter approach, although most of the

concepts can be easily extended to the former approach. The objective of this dis-

sertation is to illustrate the use of systems theory to design mixed human-robot

teams. We illustrate the design principles for the mixed teams with a particular

application to mixed-team surveillance. One of the major challenges in mixed

human-robot teams is the information overload. The information overload can be

handled/avoided by (i) only selecting pertinent sources of information; (ii) only

collecting pertinent information; and (iii) efficiently allocating the operator’s at-

tention. To this end, first, we study a sensor selection problem for the human

operator. The objective of this problem is to identify pertinent sources that help

the operator decide on the true state of the nature in minimum time. Second,

we study a persistent surveillance problem and design surveillance strategies that

result in collection of the information pertinent to the quickest detection of anoma-

lies. Third, we focus on attention allocation problems for the human operator.

We study attention allocation for a time-constraint operator as well as attention

allocation for an operator serving a queue of decision making tasks.

4



Chapter 1. Introduction

1.1 Literature Synopsis

In this section, we review the literature in areas relevant to this dissertation.

We organize the literature according to the broad topics of interest in this disser-

tation.

1.1.1 Sensor Selection

One of the key focuses in this dissertation is the sensor selection problem in

sequential hypothesis testing. Recent years have witnessed a significant interest

in the problem of sensor selection for optimal detection and estimation. Tay et

al. [99] discuss the problem of censoring sensors for decentralized binary detection.

They assess the quality of sensor data by the Neyman-Pearson and a Bayesian

binary hypothesis test and decide on which sensors should transmit their obser-

vation at that time instant. Gupta et al. [39] focus on stochastic sensor selection

and minimize the error covariance of a process estimation problem. Isler et al. [49]

propose geometric sensor selection schemes for error minimization in target detec-

tion. Debouk et al. [30] formulate a Markovian decision problem to ascertain some

property in a dynamical system, and choose sensors to minimize the associated

cost. Williams et al. [107] use an approximate dynamic program over a rolling

time horizon to pick a sensor-set that optimizes the information-communication

5



Chapter 1. Introduction

trade-off. Wang et al. [104] design entropy-based sensor selection algorithms for

target localization. Joshi et al. [50] present a convex optimization-based heuristic

to select multiple sensors for optimal parameter estimation. Bajović et al. [5]

discuss sensor selection problems for Neyman-Pearson binary hypothesis testing

in wireless sensor networks. Katewa et al. [53] study sequential binary hypothe-

sis testing using multiple sensors. For a stationary sensor selection policy, they

determine the optimal sequential hypothesis test. Bai et al. [4] study an off-line

randomized sensor selection strategy for sequential binary hypothesis testing prob-

lem constrained with sensor measurement costs. In contrast to above works, we

focus on sensor selection in sequential multiple hypothesis testing.

1.1.2 Search and Surveillance

Another key focus in this dissertation is efficient vehicle routing policies for

search and surveillance. This problem belongs to the broad class of routing for in-

formation aggregation which has recently attracted significant attention. Klein et

al. [56] present a vehicle routing policy for optimal localization of an acoustic

source. They consider a set of spatially distributed sensors and optimize the

trade-off between the travel time required to collect a sensor observation and the

information contained in the observation. They characterize the information in an

observation by the volume of the Cramer-Rao ellipsoid associated with the covari-

6



Chapter 1. Introduction

ance of an optimal estimator. Hollinger et al. [46] study routing for an AUV to

collect data from an underwater sensor network. They developed approximation

algorithms for variants of the traveling salesperson problem to determine efficient

policies that maximize the information collected while minimizing the travel time.

Zhang et al. [108] study the estimation of environmental plumes with mobile sen-

sors. They minimize the uncertainty of the estimate of the ensemble Kalman

filter to determine optimal trajectories for a swarm of mobile sensors. We focus

on decision theoretic surveillance which has also received some interest in the liter-

ature. Castañon [22] poses the search problem as a dynamic hypothesis test, and

determines the optimal routing policy that maximizes the probability of detection

of a target. Chung et al. [26] study the probabilistic search problem in a deci-

sion theoretic framework. They minimize the search decision time in a Bayesian

setting. Hollinger et al. [45] study an active classification problem in which an

autonomous vehicle classifies an object based on multiple views. They formulate

the problem in an active Bayesian learning framework and apply it to underwater

detection. In contrast to the aforementioned works that focus on classification or

search problems, our focus is on the quickest detection of anomalies.

The problem of surveillance has received considerable attention recently. Pre-

liminary results on this topic have been presented in [25, 33, 55]. Pasqualetti et

al. [70] study the problem of optimal cooperative surveillance with multiple agents.
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They optimize the time gap between any two visits to the same region, and the

time necessary to inform every agent about an event occurred in the environ-

ment. Smith et al. [86] consider the surveillance of multiple regions with changing

features and determine policies that minimize the maximum change in features

between the observations. A persistent monitoring task where vehicles move on a

given closed path has been considered in [87, 69], and a speed controller has been

designed to minimize the time lag between visits of regions. Stochastic surveil-

lance and pursuit-evasion problems have also fetched significant attention. In an

earlier work, Hespanha et al. [43] studied multi-agent probabilistic pursuit eva-

sion game with the policy that, at each instant, directs pursuers to a location

that maximizes the probability of finding an evader at that instant. Grace et

al. [37] formulate the surveillance problem as a random walk on a hypergraph

and parametrically vary the local transition probabilities over time in order to

achieve an accelerated convergence to a desired steady state distribution. Sak et

al. [77] present partitioning and routing strategies for surveillance of regions for

different intruder models. Srivastava et al. [89] present a stochastic surveillance

problem in centralized and decentralized frameworks. They use Markov chain

Monte Carlo method and message passing based auction algorithm to achieve the

desired surveillance criterion. They also show that the deterministic strategies

fail to satisfy the surveillance criterion under general conditions. We focus on

8
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stochastic surveillance policies. In contrast to aforementioned works on stochastic

surveillance that assume a surveillance criterion is known, this work concerns the

design of the surveillance criterion.

1.1.3 Time-constrained Attention Allocation

In this dissertation, we also focus on attention allocation policies for a time

constrained human operator. The resource allocation problems with sigmoid util-

ity well model the situation of a time constrained human operator. To this end, we

present versions of the knapsack problem, the bin-packing problem, and the gener-

alized assignment problem in which each item has a sigmoid utility. If the utilities

are step functions, then these problems reduce to the standard knapsack prob-

lem, the bin-packing problem, and the generalized assignment problem [57, 61],

respectively. Similarly, if the utilities are concave functions, then these problems

reduce to standard convex resource allocation problems [48]. We will show that

with sigmoid utilities the optimization problem becomes a hybrid of discrete and

continuous optimization problems.

The knapsack problems [54, 57, 61] have been extensively studied. Consider-

able emphasis has been on the discrete knapsack problem [57] and the knapsack

problems with concave utilities; a survey is presented in [16]. Non-convex knap-

sack problems have also received significant attention. Kameshwaran et al. [52]
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study knapsack problems with piecewise linear utilities. Moré et al. [63] and

Burke et al. [18] study knapsack problem with convex utilities. In an early work,

Ginsberg [36] studies a knapsack problem in which each item has identical sigmoid

utility. Freeland et al. [34] discuss the implication of sigmoid functions on deci-

sion models and present an approximation algorithm for the knapsack problem

with sigmoid utilities that constructs a concave envelope of the sigmoid functions

and thus solves the resulting convex problem. In a recent work, Ağrali et al. [1]

consider the knapsack problem with sigmoid utility and show that this problem

is NP-hard. They relax the problem by constructing a concave envelope of the

sigmoid function and then determine the global optimal solution using branch

and bound techniques. They also develop an FPTAS for the case in which the

decision variable is discrete. In contrast to above works, we determine constant

factor algorithms for the knapsack problem, the bin-packing problem, and the

generalized assignment problem with sigmoid utility.

1.1.4 Attention Allocation in Decision Making Queues

The last focus of this dissertation is on attention allocation policies for a hu-

man operator serving a queue of decision making tasks (decision making queues).

There has been a significant interest in the study of the performance of a human

operator serving a queue. In an early work, Schmidt [82] models the human as

10
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a server and numerically studies a queueing model to determine the performance

of a human air traffic controller. Recently, Savla et al. [81] study human super-

visory control for unmanned aerial vehicle operations: they model the system by

a simple queuing network with two components in series, the first of which is a

spatial queue with vehicles as servers and the second is a conventional queue with

human operators as servers. They design joint motion coordination and operator

scheduling policies that minimize the expected time needed to classify a target

after its appearance. The performance of the human operator based on their uti-

lization history has been incorporated to design maximally stabilizing task release

policies for a human-in-the-loop queue in [79, 78]. Bertuccelli et al. [12] study the

human supervisory control as a queue with re-look tasks. They study the policies

in which the operator can put the tasks in an orbiting queue for a re-look later. An

optimal scheduling problem in the human supervisory control is studied in [11].

Crandall et al. [29] study optimal scheduling policy for the operator and discuss if

the operator or the automation should be ultimately responsible for selecting the

task. Powel et al. [73] model mixed team of humans and robots as a multi-server

queue and incorporate a human fatigue model to determine the performance of the

team. They present a comparative study of the fixed and the rolling work-shifts

of the operators. In contrast to the aforementioned works in queues with human

operator, we do not assume that the tasks require a fixed (potentially stochastic)

11
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processing time. We consider that each task may be processed for any amount of

time, and the performance on the task is known as a function of processing time.

The optimal control of queueing systems [83] is a classical problem in queue-

ing theory. There has been significant interest in the dynamic control of queues;

e.g., see [51] and references therein. In particular, Stidham et al. [51] study the

optimal servicing policies for an M/G/1 queue of identical tasks. They formu-

late a semi-Markov decision process, and describe the qualitative features of the

solution under certain technical assumptions. In the context of M/M/1 queues,

George et al. [35] and Adusumilli et al. [2] relax some of technical assumptions

in [51]. Hernández-Lerma et al. [42] determine optimal servicing policies for the

identical tasks and some arrival rate. They adapt the optimal policy as the ar-

rival rate is learned. The main differences between these works and the problem

considered in this dissertation are: (i) we consider a deterministic service process,

and this yields an optimality equation quite different from the optimality equation

obtained for Markovian service process; (ii) we consider heterogeneous tasks while

the aforementioned works consider identical tasks.
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1.2 Contributions and Organization

In this section, we outline the organization of the chapters in this dissertation

and detail the contributions in each chapter.

Chapter 2: In this chapter, we review some decision making concepts. We

start with a review of Markov decision processes (Section 2.1). We then review

sequential statistical decision making (Section 2.2). We close the chapter with a

review of human decision making (Section 2.3).

Chapter 3: In this chapter, we analyze the problem of time-optimal sequential

decision making in the presence of multiple switching sensors and determine a

randomized sensor selection strategy to achieve the same. We consider a sensor

network where all sensors are connected to a fusion center. Such topology is found

in numerous sensor networks with cameras, sonars or radars, where the fusion

center can communicate with any of the sensors at each time instant. The fusion

center, at each instant, receives information from only one sensor. Such a situation

arises when we have interfering sensors (e.g., sonar sensors), a fusion center with

limited attention or information processing capabilities, or sensors with shared

communication resources. The sensors may be heterogeneous (e.g., a camera

sensor, a sonar sensor, a radar sensor, etc), hence, the time needed to collect,

transmit, and process data may differ significantly for these sensors. The fusion
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center implements a sequential hypothesis test with the gathered information.

The material in this chapter is from [97] and [96].

The major contributions of this work are twofold. First, we develop a version of

the MSPRT algorithm in which the sensor is randomly switched at each iteration

and characterize its performance. In particular, we determine the asymptotic

expressions for the thresholds and the expected sample size for this sequential test.

We also incorporate the random processing time of the sensors into these models

to determine the expected decision time (Section 3.1). Second, we identify the set

of sensors that minimize the expected decision time. We consider three different

cost functions, namely, the conditioned decision time, the worst case decision

time, and the average decision time. We show that, to minimize the conditioned

expected decision time, the optimal sensor selection policy requires only one sensor

to be observed. We show that, for a generic set of sensors and M underlying

hypotheses, the optimal average decision time policy requires the fusion center

to consider at most M sensors. For the binary hypothesis case, we identify the

optimal set of sensors in the worst case and the average decision time minimization

problems. Moreover, we determine an optimal probability distribution for the

sensor selection. In the worst case and the average decision time minimization

problems, we encounter the problem of minimization of sum and maximum of
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linear-fractional functionals. We treat these problems analytically, and provide

insight into their optimal solutions (Section 3.2).

Chapter 4: In this chapter, we study persistent surveillance of an environment

comprising of potentially disjoint regions of interest. We consider a team of au-

tonomous vehicles that visit the regions, collect information, and send it to a con-

trol center. We study a spatial quickest detection problem with multiple vehicles,

that is, the simultaneous quickest detection of anomalies at spatially distributed

regions when the observations for anomaly detection are collected by autonomous

vehicles. We design vehicle routing policies to collect observations at different

regions that result in quickest detection of anomalies at different regions. The

material in this chapter is from [95] and [91].

The main contributions of this chapter are fivefold. First, we formulate the

stochastic surveillance problem for spatial quickest detection of anomalies. We

propose the ensemble CUSUM algorithm for a control center to detect concurrent

anomalies at different regions from collected observations (Section 4.1). For the

ensemble CUSUM algorithm we characterize lower bounds for the expected de-

tection delay and for the average (expected) detection delay at each region. Our

bounds take into account the processing times for collecting observations, the prior

probability of anomalies at each region, and the anomaly detection difficulty at

each region.
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Second, for the case of stationary routing policies, we provide bounds on the

expected delay in detection of anomalies at each region (Section 4.2). In partic-

ular, we take into account both the processing times for collecting observations

and the travel times between regions. For the single vehicle case, we explicitly

characterize the expected number of observations necessary to detect an anomaly

at a region, and the corresponding expected detection delay. For the multiple

vehicles case, we characterize lower bounds for the expected detection delay and

the average detection delay at the regions. As a complementary result, we show

that the expected detection delay for a single vehicle is, in general, a non-convex

function. However, we provide probabilistic guarantees that it admits a unique

global minimum.

Third, we design stationary vehicle routing policies to collect observations from

different regions (Section 4.2). For the single vehicle case, we design an efficient

stationary policy by minimizing an upper bound for the average detection delay

at the regions. For the multiple vehicles case, we first partition the regions among

the vehicles, and then we let each vehicle survey the assigned regions by using

the routing policy as in the single vehicle case. In both cases we characterize

the performance of our policies in terms of expected detection delay and average

(expected) detection delay.
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Fourth, we describe our adaptive ensemble CUSUM algorithm, in which the

routing policy is adapted according to the learned likelihood of anomalies in the

regions (Section 4.3). We derive an analytic bound for the performance of our

adaptive policy. Finally, our numerical results show that our adaptive policy

outperforms the stationary counterpart.

Fifth and finally, we report the results of extensive numerical simulations and a

persistent surveillance experiment (Sections 4.4 and 4.5). Besides confirming our

theoretical findings, these practical results show that our algorithms are robust

against realistic noise models, and sensors and motion uncertainties.

Chapter 5: In this chapter, we study optimization problems with sigmoid func-

tions. We show that sigmoid utility renders a combinatorial element to the prob-

lem and resource allocated to each item under optimal policy is either zero or more

than a critical value. Thus, the optimization variable has both continuous and

discrete features. We exploit this interpretation of the optimization variable and

merge algorithms from continuous and discrete optimization to develop efficient

hybrid algorithms. We study versions of the knapsack problem, the generalized

assignment problem and the bin-packing problem in which the utility is a sigmoid

function. These problems model situations where human operators are looking

at the feeds from a camera network and deciding on the presence of some mali-

cious activity. The first problem determines the optimal fraction of work-hours
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an operator should allocate to each feed such that their overall performance is

optimal. The second problem determines the allocations of the tasks to identical

and independently working operators as well as the optimal fraction of work-hours

each operator should allocate to each feed such that the overall performance of

the team is optimal. Assuming that the operators work in an optimal fashion, the

third problem determines the minimum number of operators and an allocation

of each feed to some operator such that each operator allocates non-zero fraction

of work-hours to each feed assigned to them. The material in this chapter is

from [90] and [92].

The major contributions of this chapter are fourfold. First, we investigate the

root-cause of combinatorial effects in optimization problems with sigmoid utility

(Section 5.1). We show that for a sigmoid function subject to a linear penalty, the

optimal allocation jumps down to zero with increasing penalty rate. This jump

in the optimal allocation imparts a combinatorial effect to the problems involving

sigmoid functions.

Second, we study the knapsack problem with sigmoid utility (Section 5.2). We

exploit the above combinatorial interpretation of the sigmoid functions and utilize

a combination of approximation algorithms for the binary knapsack problems and

algorithms for continuous univariate optimization to determine a constant factor

approximation algorithm for the knapsack problem with sigmoid utility.
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Third, we study the generalized assignment problem with sigmoid utility (Sec-

tion 5.3). We first show that the generalized assignment problem with sigmoid

utility is NP-hard. We then exploit a knapsack problem based algorithm for binary

generalized assignment problem to develop an equivalent algorithm for generalized

assignment problem with sigmoid utility.

Fourth and finally, we study bin-packing problem with sigmoid utility (Sec-

tion 5.4). We first show that the bin-packing problem with sigmoid utility is

NP-hard. We then utilize the solution of the knapsack problem with sigmoid util-

ity to develop a next-fit type algorithm for the bin-packing problem with sigmoid

utility.

Chapter 6: In this chapter, we study the problem of optimal time-duration

allocation in a queue of binary decision making tasks with a human operator. We

refer to such queues as decision making queues. We assume that tasks come with

processing deadlines and incorporate these deadlines as a soft constraint, namely,

latency penalty (penalty due to delay in processing of a task). We consider two

particular problems. First, we consider a static queue with latency penalty. Here,

the human operator has to serve a given number of tasks. The operator incurs a

penalty due to the delay in processing of each task. This penalty can be thought of

as the loss in value of the task over time. Second, we consider a dynamic queue of

the decision making tasks. The tasks arrive according to a stochastic process and
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the operator incurs a penalty for the delay in processing each task. In both the

problems, there is a trade-off between the reward obtained by processing a task

and the penalty incurred due to the resulting delay in processing other tasks. We

address this particular trade-off. The material in this chapter is from [93] and [94].

The major contributions of this chapter are fourfold. First, we determine

the optimal duration allocation policy for the static decision making queue with

latency penalty (Section 6.1). We show that the optimal policy may not process

all the tasks in the queue and may drop a few tasks.

Second, we pose a Markov decision process (MDP) to determine the optimal

allocations for the dynamic decision making queue (Section 6.2). We then establish

some properties of this MDP. In particular, we show an optimal policy exists and

it drops task if queue length is greater than a critical value.

Third, we employ certainty-equivalent receding horizon optimization to ap-

proximately solve this MDP (Section 6.3). We establish performance bounds on

the certainty-equivalent receding horizon solution.

Fourth and finally, we suggest guidelines for the design of decision making

queues (Section 6.3). These guidelines suggest the maximum expected arrival rate

at which the operator expects a new task to arrive soon after optimally processing

the current task.
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Preliminaries on Decision Making

In this chapter, we survey decision making in three contexts: (i) optimal de-

cision making in Markov decision processes, (ii) sequential statistical decision

making, and (iii) human decision making.

2.1 Markov Decision Process

A Markov decision process (MDP) is a stochastic dynamic system described

by five elements: (i) a Borel state space X ; (ii) a Borel action space U ; (iii) a set of

admissible actions defined by a strict, measurable, compact-valued multifunction

U : X 7→ B(U), where B(·) represents the Borel sigma-algebra; (iv) a Borel

stochastic transition kernel P(X|·) : K → [0, 1], for each X ∈ B(X ), where

K ∈ B(X ×U); and (v) a measurable one stage reward function g : K ×W → R,

where W ∈ B(W) and W is a Borel space of random disturbance.
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We focus on discrete time MDPs. The objective of the MDP is to maximize

the infinite horizon reward called the value function. There are two formulations

for the value function: (i) α-discounted value function; and (ii) average value

function. For a discount factor α ∈ (0, 1), the α-discounted value function Jα :

X × Ustat(X , U)→ R is defined by

Jα(x, ustat) = max
ustat∈Ustat

E
[ ∞∑
`=1

α`−1g(x`, ustat(x`), w`)
]
,

where Ustat(X , U) is the space of functions defined from X to U , ustat is the

stationary policy, x1 = x, and the expectation is over the uncertainty w` that may

only depend on x` and ustat(x`). Note that a stationary policy is a function that

allocates a unique action to each state.

The average value function Javg : X × Ustat(X , U)→ R is defined by

Javg(x, ustat) = max
ustat∈Ustat

lim
N→+∞

1

N
E
[ N∑
`=1

g(x`, ustat(x`), w`)
]
.

2.1.1 Existence on an optimal policy

For the MDP with a compact action space, the optimal discounted value func-

tion exists if the following conditions hold [3]:

(i). the reward function E[g(·, ·, w)] is bounded above and continuous for each

state and action;
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(ii). the transition kernel P(X|K) is weakly continuous in K, i.e., for a continuous

and bounded function h : X → R, the function hnew : K → R defined by

hnew(x, u) =
∑
X∈X

h(X)P(X|x, u),

is a continuous and bounded function.

(iii). the multifunction U is continuous.

Let J∗α : X → R be the optimal α-discounted value function. The optimal

average value function exists if there exists a finite constant M ∈ R such that

|J∗α(x)− J∗α(x̂)| < M,

for each α ∈ (0, 1), for each x ∈ X , and for some x̂ ∈ X , and the transition kernel

P is continuous in action variable [3].

If the optimal value function for the MDP exists, then it needs to be efficiently

computed. The exact computation of the optimal value function is in general

intractable and approximation techniques are employed [9]. We now present on

some standard techniques to approximately solve the discounted value MDP. The

case of average value MDP follows analogously.

2.1.2 Certainty-Equivalent Receding Horizon Control

We now focus on certainty-equivalent receding horizon control [9, 23, 62] to

approximately compute the optimal average value function. According to the
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certainty-equivalent approximation, the future uncertainties in the MDP are re-

placed by their nominal values. The receding horizon control approximates the

infinite-horizon average value function with a finite horizon average value function.

Therefore, under certainty-equivalent receding horizon control, the approximate

average value function J̄avg : X → R is defined by

J̄avg(x) = max
u1,...,uN

1

N

N∑
`=1

g(x̄`, u`, w̄`),

where x̄` is the certainty-equivalent evolution of the system, i.e., the evolution of

the system obtained by replacing the uncertainty in the evolution at each stage by

its nominal value, x̄1 = x, and w̄` is the nominal value of the uncertainty at stage

`. The certainty-equivalent receding horizon control at a given state x computes

the approximate average value function J̄avg(x), implements the first control ac-

tion u1, lets the system evolve to a new state x′, and repeats the procedure at the

new state. There are two salient features the approximate average value function

computation: (i) it approximates the value function at a given state by a deter-

ministic dynamic program; and (ii) it utilizes a open loop strategy, i.e., the action

variables u` do not depend on x̄`.

2.1.3 Discretization of the Action and the State Space

Note that the certainty-equivalent evolution x̄` may not belong to X , for in-

stance, X may be the set of natural numbers and x̄` may be a positive real
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number. In general, certainty-equivalent state x̄` will belong to a compact and

uncountable set and therefore, the finite-horizon deterministic dynamic program

associated with the computation of the approximate average value function in-

volves compact and uncountable action and state space. A popular technique to

approximately solve such dynamic programs involve discretization of action and

state space followed by the standard backward induction algorithm. We now focus

on efficiency of such discretization. Let the certainty-equivalent evolution of the

state be represented by x̄`+1 = evol(x̄`, u`, w̄`), where evol : X̄`×U`×W` → X̄`+1

represents the certainty-equivalent evolution function, X̄` represents the compact

space to which the certainty-equivalent state at stage ` belongs, U` is the compact

action space at stage ` and W` is the disturbance space at stage `. Let the action

space and the state space be discretized (see [10] for details of discretization pro-

cedure) such that ∆x and ∆u are the maximum grid diameter in the discretized

state and action space, respectively. Let Ĵ∗avg : X → R be the approximate aver-

age value function obtained via discretized state and action space. If the action

and state variables are continuous and belong to compact sets, and the reward

functions and the state evolution functions are Lipschitz continuous, then

|J̄∗avg(x)− Ĵ∗avg(x)| ≤ β(∆x+ ∆u),

for each x ∈ X , where β is some constant independent of the discretization

grid [10].
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2.2 Sequential Statistical Decision Making

We now present sequential statistical decision making problems. Opposed

to the classical statistical procedures in which the number of available observa-

tions are fixed, the sequential analysis collects observations sequentially until some

stopping criterion is met. We focus on three statistical decision making problems,

namely, sequential binary hypothesis testing, sequential multiple hypothesis test-

ing, and quickest change detection. We first define the notion of Kullback-Leibler

divergence that will be used throughout this section.

Definition 2.1 (Kullback-Leibler divergence, [28]). Given two probability

mass functions f1 : S → R≥0 and f2 : S → R≥0, where S is some countable set,

the Kullback-Leibler divergence D : L1 × L1 → R∪{+∞} is defined by

D(f1, f2) = Ef1
[
log

f1(X)

f2(X)

]
=

∑
x∈supp(f1)

f1(x) log
f1(x)

f2(x)
,

where L1 is the set of integrable functions and supp(f1) is the support of f1. It is

known that (i) 0 ≤ D(f1, f2) ≤ +∞, (ii) the lower bound is achieved if and only

if f1 = f2, and (iii) the upper bound is achieved if and only if the support of f2 is

a strict subset of the support of f1. Note that equivalent statements can be given

for probability density functions. �

26



Chapter 2. Preliminaries on Decision Making

2.2.1 Sequential Binary Hypothesis Testing

Consider two hypotheses H0 and H1 with their conditional probability distri-

bution functions f 0(y) := f(y|H0) and f 1(y) := f(y|H1). Let π0 ∈ (0, 1) and

π1 ∈ (0, 1) be the associated prior probabilities. The objective of the sequential

hypothesis testing is to determine a rule to stop collecting further observations

and make a decision on the true hypothesis. Suppose that the cost of collecting

an observation be c ∈ R≥0 and penalties L0 ∈ R≥0 and L1 ∈ R≥0 are imposed for

a wrong decision on hypothesis H0 and H1, respectively. The optimal stopping

rule determined through an MDP. The state of this MDP is the probability of

hypothesis H0 being true and the action space comprises of three actions, namely,

declare H0, declare H1, and continue sampling. Let the state at stage τ ∈ N of

the MDP be pτ and an observation Yτ be collected at stage τ . The value function

associated with sequential binary hypothesis testing at its τ -th stage is

Jτ (pτ ) = min{pL1, (1− p)L0, c+ Ef∗ [Jτ+1(pτ+1(Yτ ))]},

where the argument of min operator comprises of three components associated

with three possible decisions, f ∗ = pτf
0 + (1− pτ )f 1, Ef∗ denote expected value

with respect to the measure f ∗, p1 = π0, and pτ+1(Yτ ) is the posterior probability

defined by

pτ+1(Yτ ) =
pτf

0(Yτ )

pτf 0(Yτ ) + (1− pτ )f 1(Yτ )
.
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Algorithm 2.1: Sequential Probability Ratio Test

Input : threshold η0, η1, pdfs f0, f1 ;

Output : decision on true hypothesis ;

1 at time τ ∈ N, collect sample yτ ;

2 compute the log likelihood ratio λτ := log f1(yτ )
f0(yτ )

3 integrate evidence up to current time Λτ :=
∑τ
t=1 λt

% decide only if a threshold is crossed

4 if Λτ > η1 then accept H1;

5 else if Λτ < η0 then accept H0;

6 else continue sampling (step 1)

The solution to the above MDP is the famous sequential probability ratio

test(SPRT), first proposed in [103]. The SPRT algorithm collects evidence about

the hypotheses and compares the integrated evidence to two thresholds η0 and η1

in order to decide on a hypothesis. The SPRT procedure is presented in Algo-

rithm 2.1.

Given the probability of missed detection P(H0|H1) = α0 and probability of

false alarm P(H1|H0) = α1, the Wald’s thresholds η0 and η1 are defined by

η0 = log
α0

1− α1

, and η1 = log
1− α0

α1

. (2.1)

28



Chapter 2. Preliminaries on Decision Making

Let Nd denote the number of samples required for decision using SPRT. Its ex-

pected value is approximately [85] given by

E[Nd|H0] ≈ −(1− α1)η0 + α1η1

D(f 0, f 1)
, and

E[Nd|H1] ≈ α0η0 + (1− α0)η1

D(f 1, f 0)
.

(2.2)

The approximations in equation (2.2) are referred to as the Wald’s approxima-

tions [85]. According to the Wald’s approximation, the value of the aggregated

SPRT statistic is exactly equal to one of the thresholds at the time of decision.

It is known that the Wald’s approximation is accurate for large thresholds and

small error probabilities.

2.2.2 Sequential Multiple hypothesis Testing

Consider M hypotheses Hk ∈ {0, . . . ,M−1} with their conditional probability

density functions fk(y) := f(y|Hk). The sequential multiple hypothesis testing

problem is posed similar to the binary case. Suppose the cost of collecting an

observation be c ∈ R≥0 and a penalty Lk ∈ R≥0 is incurred for wrongly accepting

hypothesis Hk. The optimal stopping rule determined through an MDP. The state

of this MDP is the probability of each hypothesis being true and the action space

comprises of M + 1 actions, namely, declare Hk, k ∈ {0, . . . ,M − 1}, and continue

sampling. Let the state at stage τ ∈ N of the MDP be pτ = (p0
τ , . . . , p

M−1
τ ) and

an observation Yτ be collected at stage τ . The value function associated with

29



Chapter 2. Preliminaries on Decision Making

sequential multiple hypothesis testing at its τ -th iteration is

Jτ (pτ ) = min{(1− p0
τ )L0, . . . , (1− pM−1

τ )LM−1, c+ Ef∗ [Jτ+1(pτ+1(Yτ ))]},

where the argument of min operator comprises of M + 1 components associated

with M + 1 possible decisions, f ∗ =
∑M−1

k=0 pkf
k, Ef∗ denote expected value with

respect to the measure f ∗ and pτ+1(Yτ ) is the posterior probability defined by

pkτ+1(Yτ ) =
pkτf

k(Yτ )∑M−1
j=0 pjf

j(Yτ )
, for each k ∈ {0, . . . ,M − 1}. (2.3)

Opposed to the binary hypothesis case, there exists no closed form algorithmic

solution to the above MDP for M > 2. In particular, the optimal stopping rule

no longer comprises of constant functions, rather it comprises of curves in state

space that are difficult to characterize explicitly. However, in the asymptotic

regime, i.e., when the cost of observations c → 0+ and the penalties for wrong

decisions are identical, these curves can be approximated by constant thresholds.

In this asymptotic regime, a particular solution to the above MDP is the multiple

hypothesis sequential probability ratio test (MSPRT) proposed in [7]. Note that the

MSPRT reduces to SPRT for M = 2. The MSPRT is described in Algorithm 2.2.

The thresholds ηk are designed as functions of the frequentist error probabilities

(i.e., the probabilities to accept a given hypothesis wrongly) αk, k ∈ {0, . . . ,M −

1}. Specifically, the thresholds are given by

ηk =
αk
γk
, (2.4)
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Algorithm 2.2: Multiple hypothesis sequential probability ratio test

Input : threshold η0, η1, pdfs f0, f1 ;

Output : decision on true hypothesis ;

1 at time τ ∈ N, collect sample yτ ;

2 compute the posteriors pkτ , k ∈ {0, . . . ,M−1} as in (2.3)

% decide only if a threshold is crossed

3 if phτ >
1

1 + ηh
for at least one h ∈ {0, . . . ,M − 1} then accept H1;

4 else if Λτ < η0 then accept Hk with maximum pkτ ;

5 else continue sampling (step 1)

where γk ∈ (0, 1) is a constant function of fk (see [7]).

Let ηmax = max{ηj | j ∈ {0, . . . ,M − 1}}. It is known [7] that the expected

sample size of the MSPRT Nd, conditioned on a hypothesis, satisfies

E[Nd|Hk]→
− log ηk
D∗(k)

, as ηmax → 0+,

where D∗(k) = min{D(fk, f j) | j ∈ {0, . . . ,M − 1}, j 6= k} is the minimum

Kullback-Leibler divergence from the distribution fk to all other distributions f j,

j 6= k.
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2.2.3 Quickest Change Detection

Consider a sequence of observations {y1, y2, . . .} such that {y1, . . . , yυ−1} are

i.i.d. with probability density function f 0 and {yυ, yυ+1, . . .} are i.i.d. with proba-

bility density function f 1 with υ unknown. The quickest change detection problem

concerns detection of change in minimum possible observations (iterations) and

in studied in Bayesian and non-Bayesian settings. In the Bayesian formulation,

a prior probability distribution of the change time υ is known and is utilized to

determine the quickest detection scheme. On the other hand, in the non-Bayesian

formulation the worst possible instance of the change time is considered to deter-

mine the quickest detection scheme. We focus on the non-Bayesian formulation.

Let υdet ≥ υ be the iteration at which the change is detected. The non-Bayesian

quickest detection problem (Lorden’s problem) [72, 85] is posed as follows:

minimize sup
υ≥1

Eυ[υdet − υ + 1|υdet ≥ υ]

subject to Ef0 [υdet] ≥ 1/γ,

(2.5)

where Eυ[·] represents the expected value with respect to the distribution of ob-

servation at iteration υ, and γ ∈ R>0 is a large constant and is called the false

alarm rate.

The cumulative sum (CUSUM) algorithm, first proposed in [68], is shown to

be the solution to the problem (2.5) in [64]. The CUSUM algorithm is presented

in Algorithm 2.3. The CUSUM algorithm can be interpreted as repeated SPRT
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Algorithm 2.3: Cumulative Sum Algorithm

Input : threshold η, pdfs f0, f1 ;

Output : decision on change

1 at time τ ∈ N, collect sample yτ ;

2 integrate evidence Λτ := (Λτ−1 + log f1(yτ )
f0(yτ ) )+

% decide only if a threshold is crossed

3 if Λτ > η then declare change is detected;

4 else continue sampling (step 1)

with thresholds 0 and η. For a given threshold η, the expected time between two

false alarms and the worst expected number of observations for CUSUM algorithm

are

Ef0(N) ≈ eη − η − 1

D(f 0, f 1)
, and Ef1(N) ≈ e−η + η − 1

D(f 1, f 0)
, (2.6)

respectively. The approximations in equation (2.6) are the Wald’s approximations,

see [85], and are known to be accurate for large values of the threshold η.
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2.3 Speed Accuracy Trade-off in Human Deci-

sion Making

We now consider information processing by a human operator. The reaction

time and error rate are two elements that determine the efficiency of informa-

tion processing by a human operator. In general, a fast reaction is erroneous,

while the returns on error rate are diminishing after some critical time. This

trade-off between reaction time (speed) and error rates (accuracy) has been ex-

tensively studied in cognitive psychology literature. We review two particular

models that capture speed-accuracy trade-off in human decision making, namely,

Pew’s model and drift-diffusion model. Both these models suggest a sigmoid per-

formance function for the human operator. Before we present these models, we

define the sigmoid functions:

Definition 2.2 (Sigmoid functions). A Lipschitz-continuous function f : R≥0 →

R≥0 defined by

f(t) = fcvx(t)1(t < tinf) + fcnv(t)1(t ≥ tinf),

where fcvx and fcnv are monotonically non-decreasing convex and concave func-

tions, respectively, 1(·) is the indicator function, and tinf is the inflection point.

The sub-derivative of a sigmoid function is unimodal and achieves its maximum
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at tinf. Moreover, limt→+∞ ∂f(t) = 0, where ∂f represents sub-derivative of the

function f . A typical graph of a smooth sigmoid function and its derivative is

shown in Figure 2.1.
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Figure 2.1: A typical sigmoid function and its derivative.

2.3.1 Pew’s Model

Pew [71, 106] studied the evolution of the log odds of the probability of correct

reaction with reaction time. He demonstrated that the log odds of the correct

reaction probability is a linear function. Consequently, for a reaction time t ∈ R≥0,

P( correct reaction |t) =
p0

1 + e−(at−b) , (2.7)

where p0 ∈ [0, 1], a ∈ R>0 and b ∈ R are some parameters specific to the human

operator. Note that for a negative b the probability of correct decision in equa-

tion (2.7) is a concave function of reaction time t, while for a positive b it is convex

for t < b/a and concave otherwise. In both the cases, the probability of correct

decision is a sigmoid function of reaction time t.
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2.3.2 Drift-Diffusion Model

The drift-diffusion model [13] models the performance of a human operator on

a two alternative forced choice (TAFC) task. A TAFC task models a situation

in which an operator has to decide among one of the two alternative hypotheses.

The TAFC task models rely on three assumptions: (a) evidence is collected over

time in favor of each alternative; (b) the evidence collection process is random;

and (c) a decision is made when the collected evidence is sufficient to choose one

alternative over the other. A TAFC task is well modeled by the drift-diffusion

model (DDM) [13]. The DDM captures the evidence aggregation in favor of an

alternative by

dx(t) = µdt+ σdW (t), x(0) = x0, (2.8)

where µ ∈ R in the drift rate, σ ∈ R>0 is the diffusion rate, W (·) is the standard

Weiner process, and x0 ∈ R is the initial evidence. For an unbiased operator, the

initial evidence x0 = 0, while for a biased operator x0 captures the odds of prior

probabilities of alternative hypotheses; in particular, x0 = σ2 log(π/(1 − π))/2µ,

where π is the prior probability of the first alternative.

For the information aggregation model (2.8), the human decision making is

studied in two paradigms, namely, free response and interrogation. In the free

response paradigm, the operator take their own time to decide on an alterna-

tive, while in the interrogation paradigm, the operator works under time pressure
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and needs to decide within a given time. The free response paradigm is modeled

via two thresholds (positive and negative) and the operator decides in favor of

first/second alternative if the positive (negative) threshold is crossed from below

(above). Under the free response, the DDM is akin to the SPRT and is in fact

the continuum limit to the SPRT [13]. The reaction times under the free response

paradigm is a random variable with a unimodal probability distribution that is

skewed to right. Such unimodal skewed reaction time probability distributions also

capture human performance in several other tasks as well [88]. In this paradigm,

the operator’s performance is well captured by the cumulative distribution func-

tion of the reaction time. The cumulative distribution function associated with a

unimodal probability distribution function is also a sigmoid function.

The interrogation paradigm is modeled via a single threshold. In particular, for

a given deadline t ∈ R>0, the operator decides in favor of first (second) alternative

if the evidence collected by time t, i.e., x(t) is greater (smaller) than a threshold

ν ∈ R. If the two alternatives are equally likely, then the threshold ν is chosen

to be zero. According to equation (2.8), the evidence collected until time t is

a Gaussian random variable with mean µt + x0 and variance σ2t. Thus, the

probability to decide in favor of first alternative is

P(x(t) > ν) = 1− P(x(t) < ν) = 1− Φ
(ν − µt− x0

σ
√
t

)
,
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where Φ(·) is the standard normal cumulative distribution function. The proba-

bility of making the correct decision at time t is P(x(t) > ν) and is a metric that

captures the operator’s performance. For an unbiased operator x0 = 0, and the

performance P(x(t) > ν) is a sigmoid function of allocated time t.

In addition to the above decision making performance, the sigmoid function

also models the quality of human-machine communication [106], the human perfor-

mance in multiple target search [47], and the advertising response function [102].

38



Chapter 3

Randomized Sensor Selection in
Sequential Hypothesis Testing

We consider a group of n agents (e.g., robots, sensors, or cameras), which take

measurements and transmit them to a fusion center. We generically call these

agents “sensors.” We identify the fusion center with a person supervising the

agents, and call it the “supervisor.” The goal of the supervisor is to decide, based

on the measurements it receives, which one of M alternative hypotheses or “states

of nature” is correct. To do so, the supervisor implements the MSPRT with the

collected observations. Given pre-specified accuracy thresholds, the supervisor

aims to make a decision in minimum time.

We assume that there are more sensors than hypotheses (i.e., n > M), and

that only one sensor can transmit to the supervisor at each (discrete) time instant.

Equivalently, the supervisor can process data from only one of the n sensors at

each time. Thus, at each time, the supervisor must decide which sensor should
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Figure 3.1: The agents A transmit their observation to the supervisor S, one at the time.
The supervisor performs a sequential hypothesis test to decide on the underlying hypothesis.

transmit its measurement. This setup also models a sequential search problem,

where one out of n sensors is sequentially activated to establish the most likely

intruder location out of M possibilities; see [22] for a related problem. In this

chapter, our objective is to determine the optimal sensor(s) that the supervisor

must observe in order to minimize the decision time.

We adopt the following notation. Let {H0, . . . , HM−1} denote the M ≥ 2

hypotheses. The time required by sensor s ∈ {1, . . . , n} to collect, process and

transmit its measurement is a random variable Ts ∈ R>0, with finite first and

second moment. We denote the mean processing time of sensor s by T̄s ∈ R>0.

Let st ∈ {1, . . . , n} indicate which sensor transmits its measurement at time t ∈ N.

The measurement of sensor s at time t is y(t, s). For the sake of convenience, we

denote y(t, st) by yt. For k ∈ {0, . . . ,M−1}, let fks : R→ R denote the probability

density function of the measurement y at sensor s conditioned on the hypothesis

Hk. Let fk : {1, . . . , n} × R → R be the probability density function of the pair
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(s, y), conditioned on hypothesis Hk. For k ∈ {0, . . . ,M − 1}, let αk denote the

desired bound on probability of incorrect decision conditioned on hypothesis Hk.

We make the following standard assumption:

Conditionally-independent observations: Conditioned on hypothesisHk, the

measurement y(t, s) is independent of y(t̄, s̄), for (t, s) 6= (t̄, s̄).

We adopt a randomized strategy in which the supervisor chooses a sensor ran-

domly at each time instant; the probability to choose sensor s is stationary and

given by qs, for s ∈ {1, . . . , n}. Also, the supervisor uses the data collected from

the randomized sensors to execute a multi-hypothesis sequential hypothesis test.

For the stationary randomized strategy, note that fk(s, y) = qsf
k
s (y). We study

our proposed randomized strategy under the following assumptions about the

sensors.

Distinct sensors: There are no two sensors with identical conditioned probabil-

ity density fks (y) and mean processing time T̄s. (If there are such sensors, we

club them together in a single node, and distribute the probability assigned

to that node equally among them.)

Finitely-informative sensors: Each sensor s ∈ {1, . . . , n} has the following

property: for any two hypotheses k, j ∈ {0, . . . ,M − 1}, k 6= j,

(i). the support of fks is equal to the support of f js ,
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(ii). fks 6= f js almost surely in fks , and

(iii). conditioned on hypothesisHk, the first and second moment of log(fks (Y )/f js (Y ))

are finite.

Remark 3.1 (Finitely informative sensors). The finitely-informative sen-

sors assumption is equivalently restated as follows: each sensor s ∈ {1, . . . , n}

satisfies 0 < D(fks , f
j
s ) < +∞ for any two hypotheses k, j ∈ {0, . . . ,M − 1},

k 6= j. �

Remark 3.2 (Stationary policy). We study a stationary policy because it is

simple to implement, it is amenable to rigorous analysis and it has intuitively-

appealing properties (e.g., we show that the optimal stationary policy requires

the observation of only as many sensors as the number of hypothesis). On the

contrary, if we do not assume a stationary policy, the optimal solution would

be based on dynamic programming and, correspondingly, would be complex to

implement, analytically intractable, and would lead to only numerical results. �

3.1 MSPRT with randomized sensor selection

We call the MSPRT with the data collected from n sensors while observing

only one sensor at a time as the MSPRT with randomized sensor selection. For

each sensor s, define D∗s(k) = min{D(fks , f
j
s ) | j ∈ {0, . . . ,M − 1}, j 6= k}. The
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sensor to be observed at each time is determined through a randomized policy,

and the probability of choosing sensor s is stationary and given by qs. Assume

that the sensor st ∈ {1, . . . , n} is chosen at time instant t, then the posterior

probability after the observations yt, t ∈ {1, . . . , τ}, is given by

pkτ = P(Hk|y1, . . . , yτ ) =

∏τ
t=1 f

k(st, yt)∑M−1
j=0

∏τ
t=1 f

j(st, yt)

=

∏τ
t=1 qstf

k
st(yt)∑M−1

j=0

∏τ
t=1 qstf

j
st(yt)

=

∏τ
t=1 f

k
st(yt)∑M−1

j=0

∏τ
t=1 f

j
st(yt)

, (3.1)

and, at any given time τ , the hypothesis with maximum posterior probability pkτ

is the one maximizing
∏τ

t=1 f
k
st(yt). Note that the sequence {(st, yt)}t∈N is an i.i.d.

realization of the pair (s, Ys), where Ys is the measurement of sensor s.

For thresholds ηk, k ∈ {0, . . . ,M − 1}, defined in equation (2.4), the MSPRT

with randomized sensor selection is defined identically to the Algorithm 2.2, where

the first two instructions (steps 1 and 2) are replaced by:

1 at time τ ∈ N, select a random sensor sτ according to the probability vector q and collect

a sample yτ

2 compute the posteriors pkτ , k ∈ {0, . . . ,M−1} as in (3.1)

Lemma 3.1 (Asymptotics). Assume finitely informative sensors {1, . . . , n}.

Conditioned on hypothesis Hk, k ∈ {0, . . . ,M − 1}, the sample size for decision

Nd →∞ almost surely as ηmax → 0+.
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Proof.

P(Nd ≤ τ |Hk) = P
(

min
a∈{1,...,τ}

M−1∑
j=1

j 6=v

a∏
t=1

f jst(yt)

f vst(yt)
< ηv, for some v ∈ {0, . . . ,M − 1}

∣∣Hk

)

≤ P
(

min
a∈{1,...,τ}

a∏
t=1

f jst(yt)

f vst(yt)
< ηv, for some v, and any j 6= v

∣∣Hk

)
= P

(
max

a∈{1,...,τ}

a∑
t=1

log
f vst(yt)

f jst(yt)
> − log ηv, for some v, and any j 6= v

∣∣Hk

)
≤

M−1∑
v=0
v 6=k

P
(

max
a∈{1,...,τ}

a∑
t=1

log
f vst(yt)

fkst(yt)
> − log ηv

∣∣∣∣Hk

)

+ P
(

max
a∈{1,...,τ}

a∑
t=1

log
fkst(yt)

f j
∗
st (yt)

> − log ηk
∣∣Hk

)
,

for some j∗ ∈ {0, . . . ,M−1}\{k}. Observe that since 0 < D(fks , f
j
s ) <∞, for each

j, k ∈ {0, . . . ,M − 1}, j 6= k, and s ∈ {1, . . . , n}, the above right hand side goes

to zero as ηmax → 0+. Hence, conditioned on a hypothesis Hk, the sample size for

decision Nd →∞ in probability. This means that there exists a subsequence such

that Nd → ∞ almost surely. We further observe that Nd is a non decreasing as

we decrease ηmax. Hence, conditioned on hypothesis Hk, Nd →∞, almost surely,

as ηmax → 0+.

Lemma 3.2 (Theorem 5.2, [7]). Assume the sequences of random variables

{Zj
t }t∈N, j ∈ {1, . . . , d}, converge to µj almost surely as t → ∞, with 0 <

minj∈{1,...,d} µj <∞. Then as t→∞, almost surely,

−1

t
log
( d∑
j=1

e−tZ
j
t

)
→ min

j∈{1,...,d}
µj.
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�

Lemma 3.3 (Corollary 7.4.1, [76]). Let {Zt}t∈N be independent sequence of

random variables satisfying E[Z2
t ] <∞, for all t ∈ N, and {bt}t∈N be a monotone

sequence such that bt →∞ as t→∞. If
∑∞

i=1 Var (Zi/bi) <∞, then

∑t
i=1 Zi − E[

∑t
i=1 Zi]

bt
→ 0, almost surely as t→∞.

�

Lemma 3.4 (Theorem 2.1, [40]). Let {Zt}t∈N be a sequence of random vari-

ables and {τ(a)}a∈R≥0
be a family of positive, integer valued random variables.

Suppose that Zt → Z almost surely as t → ∞, and τ(a) → ∞ almost surely as

a→∞. Then Zτ(a) → Z almost surely as a→∞. �

We now present the main result of this section, whose proof is a variation of

the proofs for MSPRT in [7].

Theorem 3.5 (MSPRT with randomized sensor selection). Assume finitely-

informative sensors {1, . . . , n}, and independent observations conditioned on hy-

pothesis Hk, k ∈ {0, . . . ,M − 1}. For the MSPRT with randomized sensor selec-

tion, the following statements hold:

(i). conditioned on a hypothesis, the sample size for decision Nd is finite almost

surely;
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(ii). conditioned on hypothesis Hk, the sample size for decision Nd, as ηmax → 0+,

satisfies

Nd

− log ηk
→ 1∑n

s=1 qsD∗s(k)
almost surely;

(iii). the expected sample size satisfies

E[Nd|Hk]

− log ηk
→ 1∑n

s=1 qsD∗s(k)
, as ηmax → 0+; (3.2)

(iv). conditioned on hypothesis Hk, the decision time Td, as ηmax → 0+, satisfies

Td
− log ηk

→
∑n

s=1 qsT̄s∑n
s=1 qsD∗s(k)

almost surely;

(v). the expected decision time satisfies

E[Td|Hk]

− log ηk
→

∑n
s=1 qsT̄s∑n

s=1 qsD∗s(k)
≡ q · T
q ·Dk

, (3.3)

where T ,Dk ∈ Rn
>0 are arrays of mean processing times T̄s and minimum

Kullback-Leibler distances D∗s(k).

Proof. We start by establishing the first statement. We let ηmin = min{ηj | j ∈

{0, . . . ,M − 1}}. For any fixed k ∈ {0, . . . ,M − 1}, the sample size for decision,

denoted by Nd, satisfies

Nd ≤
(

first τ ≥ 1 such that
M−1∑
j=0

j 6=k

τ∏
t=1

f jst(yt)

fkst(yt)
< ηmin

)

≤
(

first τ ≥ 1 such that
τ∏
t=1

f jst(yt)

fkst(yt)
<

ηmin

M − 1
, for all j ∈ {0, . . . ,M − 1}, j 6= k

)
.
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Therefore, it follows that

P(Nd > τ |Hk)

≤ P
( τ∏
t=1

f jst(yt)

fkst(yt)
≥ ηmin

M−1
, j ∈ {0, . . . ,M−1} \ {k}

∣∣∣Hk

)

≤
M−1∑
j=0

j 6=k

P
( τ∏

t=1

f jst(yt)

fkst(yt)
≥ ηmin

M − 1

∣∣∣∣Hk

)

=
M−1∑
j=0

j 6=k

P
( τ∏

t=1

√
f jst(yt)

fkst(yt)
≥
√

ηmin

M − 1

∣∣∣∣Hk

)

≤
M−1∑
j=0

j 6=k

√
M − 1

ηmin

E

[√√√√f js∗(j)(Y )

fks∗(j)(Y )

∣∣∣∣Hk

]τ
(3.4)

≤ (M − 1)
3
2

√
ηmin

(
max

j∈{0,...,M−1}\{k}
ρj
)τ
,

where s∗(j) = argmaxs∈{1,...,n}E
[√

fjs (Y )
fks (Y )

∣∣∣∣Hk

]
, and

ρj = E

[√√√√f js∗(j)(Y )

fks∗(j)(Y )

∣∣∣∣Hk

]
=

∫
R

√
f js∗(j)(Y )fks∗(j)(Y )dY

<

√∫
R
f js∗(j)(Y )dY

√∫
R
fks∗(j)(Y )dY = 1.

The inequality (3.4) follows from the Markov inequality, while ρj < 1 follows

from the Cauchy-Schwarz inequality. Note that the Cauchy-Schwarz inequality

is strict because f js∗(j) 6= fks∗(j) almost surely in fks∗(j). To establish almost sure

convergence, note that

∞∑
τ=1

P(Nd > τ |Hk) ≤
∞∑
τ=1

(M − 1)
3
2

√
ηmin

(
max

j∈{0,...,M−1}\{k}
ρj
)τ
<∞.
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Therefore, by Borel-Cantelli lemma [76], it follows that

P(lim sup
τ→∞

[Nd > τ ]) = 1− P(lim inf
τ→∞

[Nd ≤ τ ]) = 0.

Thus, for τ large enough, all realizations in the set lim infτ→∞[Nd ≤ τ ], converge

in finite number of steps. This proves the almost sure convergence on the MSPRT

with randomized sensor selection.

To prove the second statement, for hypothesis Hk, let

Ñd =

(
first τ ≥ 1 such that

M−1∑
j=0

j 6=k

τ∏
t=1

f jst(yt)

fkst(yt)
< ηk

)
,

and, accordingly, note that

M−1∑
j=0

j 6=k

Ñd−1∏
t=1

f jst(yt)

fkst(yt)
≥ ηk, and

M−1∑
j=0

j 6=k

Ñd∏
t=1

f jst(yt)

fkst(yt)
< ηk.

Some algebraic manipulations on these inequalities yield

−1

Ñd − 1
log

(M−1∑
j=0

j 6=k

E
(
−
Ñd−1∑
t=1

log
fkst(yt)

f jst(yt)

))
≤ − log ηk

Ñd − 1
,

−1

Ñd

log

(M−1∑
j=0

j 6=k

E
(
−

Ñd∑
t=1

log
fkst(yt)

f jst(yt)

))
>
− log ηk

Ñd

.

(3.5)

Observe that Ñd ≥ Nd, hence from Lemma 3.1, Ñd → ∞ almost surely as

ηmax → 0+. In the limit Ñd →∞, the supremum and infimum in inequalities (3.5)

converge to the same value. From Lemma 3.3, and Lemma 3.4

1

Ñd

Ñd∑
t=1

log
fkst(yt)

f jst(yt)
→ 1

Ñd

Ñd∑
t=1

E
[

log
fkst(yt)

f jst(yt)

∣∣∣∣Hk

]
→

n∑
s=1

qsD(fks , f
j
s ), almost surely,
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as Ñd → ∞. Lemma 3.2 implies that the left hand sides of the inequalities (3.5)

almost surely converge to

min
j∈{0,...,M−1}\{k}

E
[

log
fks (Y )

f js (Y )

∣∣∣∣Hk

]
=

n∑
s=1

qsD∗s(k).

Hence, conditioned on hypothesis Hk

Ñd

− log ηk
→ 1∑n

s=1 qsD∗s(k)

almost surely, as ηmax → 0+.

Now, notice that

P
(∣∣∣∣ Nd

− log ηk
− 1∑n

s=1 qsD∗s(k)

∣∣∣∣ > ε

∣∣∣∣Hk

)
=

M−1∑
v=0

P
(∣∣∣∣ Nd

− log ηk
− 1∑n

s=1 qsD∗s(k)

∣∣∣∣ > ε & accept Hv

∣∣∣∣Hk

)

=P
(∣∣∣∣ Ñd

− log ηk
− 1∑n

s=1 qsD∗s(k)

∣∣∣∣ > ε

∣∣∣∣Hk

)
+
M−1∑
v=0
v 6=k

P
(∣∣∣∣ Nd

− log ηk
− 1∑n

s=1 qsD∗s(k)

∣∣∣∣ > ε & accept Hv

∣∣∣∣Hk

)
.

Note that αj → 0+, for all j ∈ {0, . . . ,M − 1}, as ηmax → 0+. Hence, the

right hand side terms above converge to zero as ηmax → 0+. This establishes the

second statement. We have proved almost sure convergence of Nd
− log ηk

. To establish

convergence in expected value, we construct a Lebesgue integrable upper bound

of Nd. Define ξ0 = 0, and for all m ≥ 1,

ξm =
(

first τ ≥ 1 such that

ξm−1+τ∑
t=ξm−1+1

log
fkst(yt)

f jst(yt)
> 1, for j ∈ {0, . . . ,M−1}\{k}

)
.
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Note that the variables in the sequence {ξi}i∈N are i.i.d., and moreover E[ξ1|Hk] <

∞, since D(f sk , f
s
j ) > 0, for all s ∈ {1, . . . , n}, and j ∈ {0, . . . ,M − 1} \ {k}.

Choose η̃ = dlog M−1
ηk
e. Note that

ξ1+...+ξη̃∑
t=1

log
fkst(yt)

f jst(yt)
> η̃, for j ∈ {0, . . . ,M − 1} \ {k}.

Hence, ξ1 + . . .+ ξη̃ ≥ Nd. Further, ξ1 + . . .+ ξη̃ is Lebesgue integrable. The third

statement follows from the Lebesgue dominated convergence theorem [76].

To establish the next statement, note that the decision time of MSPRT with

randomized sensor selection is the sum of sensor’s processing time at each iteration,

i.e.,

Td = Ts1 + . . .+ TsNd .

From Lemma 3.3, Lemma 3.1 and Lemma 3.4, it follows that

Td
Nd

→ 1

Nd

Nd∑
t=1

E[Tst ]→
n∑
s=1

qsT̄s,

almost surely, as ηmax → 0+. Thus, conditioned on hypothesis Hk,

lim
ηmax→0+

Td
− log ηk

= lim
ηmax→0+

Td
Nd

Nd

− log ηk
= lim

ηmax→0+

Td
Nd

lim
ηmax→0+

Nd

− log ηk
=

∑n
s=1 qsT̄s∑n

s=1 qsD∗s(k)
,

almost surely. Now, note that {(st, Tst)}t∈N is an i.i.d. realization of the pair

(s, Ts). Therefore, by the Wald’s identity [76]

E[Tξ1 ] = E
[ ξ1∑
t=1

Tst
]

= E[ξ1]E[Ts] <∞.
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Also, Td ≤ Tξ1 + . . . + Tξη̃ ∈ L1. Thus, by the Lebesgue dominated convergence

theorem [76]

E[Td|Hk]

− log ηk
→

∑n
s=1 qsT̄s∑n

s=1 qsD∗s(k)
=
q · T
q ·Dk

as ηmax → 0+.

Remark 3.3. The results in Theorem 3.5 hold if we have at least one sensor

with positive minimum Kullback-Leibler divergence D∗s(k), which is chosen with

a positive probability. Thus, the MSPRT with randomized sensor selection is

robust to sensor failure and uninformative sensors. In what follows, we assume

that at least M sensors are finitely informative. �

Remark 3.4. In the remainder of the chapter, we assume that the error proba-

bilities are chosen small enough, so that the expected decision time is arbitrarily

close to the expression in equation (3.3). �

Remark 3.5. The MSPRT with randomized sensor selection may not be the

optimal sequential test. In fact, this test corresponds to a stationary open-loop

strategy. In this chapter we wish to determine a time-optimal stationary open-loop

strategy, as motivated in Remark 3.2. �

Remark 3.6. If the minimum Kullback-Leibler divergence D∗s(k) is the same for

any given s ∈ {1, . . . , n}, and for each k ∈ {0, . . . ,M − 1}, and all thresholds
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ηk are identical, then the expected decision time is the same conditioned on any

hypothesis Hk. For example, if conditioned on hypothesis Hk, k ∈ {0, . . . ,M−1},

and sensor s ∈ {1, . . . , n}, the observation is generated from a Gaussian distribu-

tion with mean k and variance σ2
s , then the minimum Kullback-Leibler divergence

from hypothesis k, for sensor s is D∗s(k) = 1/2σ2
s , which is independent of k. �

3.2 Optimal sensor selection

In this section we consider sensor selection problems with the aim to mini-

mize the expected decision time of a sequential hypothesis test with randomized

sensor selection. As exemplified in Theorem 3.5, the problem features multiple

conditioned decision times and, therefore, multiple distinct cost functions are of

interest. In Section 3.2.1 below, we aim to minimize the decision time conditioned

upon one specific hypothesis being true; in Section 3.2.2 and 3.2.3 we will consider

worst-case and average decision times. In all three scenarios the decision variables

take values in the probability simplex.

Minimizing decision time conditioned upon a specific hypothesis may be of

interest when fast reaction is required in response to the specific hypothesis being

indeed true. For example, in change detection problems one aims to quickly

detect a change in a stochastic process; the CUSUM algorithm (also referred to as
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Page’s test) [68] is widely used in such problems. It is known [6] that, with fixed

threshold, the CUSUM algorithm for quickest change detection is equivalent to

an SPRT on the observations taken after the change has occurred. We consider

the minimization problem for a single conditioned decision time in Section 3.2.1

below and we show that, in this case, observing the best sensor each time is the

optimal strategy.

In general, no specific hypothesis might play a special role in the problem and,

therefore, it is of interest to simultaneously minimize multiple decision times over

the probability simplex. This is a multi-objective optimization problem, and may

have Pareto-optimal solutions. We tackle this problem by constructing a single

aggregate objective function. In the binary hypothesis case, we construct two

single aggregate objective functions as the maximum and the average of the two

conditioned decision times. These two functions are discussed in Section 3.2.2

and Section 3.2.3 respectively. In the multiple hypothesis setting, we consider the

single aggregate objective function constructed as the average of the conditioned

decision times. An analytical treatment of this function for M > 2, is difficult. We

determine the optimal number of sensors to be observed, and direct the interested

reader to some iterative algorithms to solve such optimization problems. This

case is also considered under Section 3.2.3.
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Before we pose the problem of optimal sensor selection, we introduce the follow-

ing notation. We denote the probability simplex in Rn by ∆n−1, and the vertices

of the probability simplex ∆n−1 by ei, i ∈ {1, . . . , n}. We refer to the line joining

any two vertices of the simplex as an edge. Finally, we define gk : ∆n−1 → R,

k ∈ {0, . . . ,M − 1}, by gk(q) = q · T /q · Ik, where Ik = −Dk/ log ηk.

We also recall following definition from [15]:

Definition 3.1 (Linear-fractional function). Given parameters A ∈ Rl×p,

B ∈ Rl, c ∈ Rp, and d ∈ R, the function g : {z ∈ Rp | cT z + d > 0} → Rl, defined

by

g(x) =
Ax+B

cTx+ d
,

is called a linear-fractional function [15]. A linear-fractional function is quasi-

convex as well as quasi-concave. In particular, if l = 1, then any scalar linear-

fractional function g satisfies

g(νx+ (1− ν)y) ≤ max{g(x), g(y)},

g(νx+ (1− ν)y) ≥ min{g(x), g(y)},
(3.6)

for all ν ∈ [0, 1] and x, y ∈ {z ∈ Rp | cT z + d > 0}.

3.2.1 Optimization of conditioned decision time

We consider the case when the supervisor is trying to detect a particular

hypothesis, irrespective of the present hypothesis. The corresponding optimization
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problem for a fixed k ∈ {0, . . . ,M − 1} is posed in the following way:

minimize gk(q)

subject to q ∈ ∆n−1.

(3.7)

The solution to this minimization problem is given in the following theorem.

Theorem 3.6 (Optimization of conditioned decision time). The solution

to the minimization problem (3.7) is q∗ = es∗ , where s∗ is given by

s∗ = argmin
s∈{1,...,n}

Ts
Iks
,

and the minimum objective function is

E[T ∗d |Hk] =
Ts∗

Iks∗
. (3.8)

Proof. We notice that objective function is a linear-fractional function. In the

following argument, we show that the minima occurs at one of the vertices of the

simplex.

We first notice that the probability simplex is the convex hull of the vertices,

i.e., any point q̃ in the probability simplex can be written as

q̃ =
n∑
s=1

αses,
n∑
s=1

αs = 1, and αs ≥ 0.

We invoke equation (3.6), and observe that for some β ∈ [0, 1] and for any s, r ∈

{1, . . . , n}

gk(βes + (1− β)er) ≥ min{gk(es), gk(er)}, (3.9)
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which can be easily generalized to

gk(q̃) ≥ min
s∈{1,...,n}

gk(es), (3.10)

for any point q̃ in the probability simplex ∆n−1. Hence, minima will occur at one

of the vertices es∗ , where s∗ is given by

s∗ = argmin
s∈{1,...,n}

gk(es) = argmin
s∈{1,...,n}

Ts
Iks
.

3.2.2 Optimization of the worst case decision time

For the binary hypothesis testing, we consider the multi-objective optimization

problem of minimizing both decision times simultaneously. We construct single

aggregate objective function by considering the maximum of the two objective

functions. This turns out to be a worst case analysis, and the optimization problem

for this case is posed in the following way:

minimize max
{
g0(q), g1(q)

}
,

subject to q ∈ ∆n−1.

(3.11)

Before we move on to the solution of above minimization problem, we state

the following results.
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Lemma 3.7 (Monotonicity of conditioned decision times). The functions

gk, k ∈ {0, . . . ,M − 1} are monotone on the probability simplex ∆n−1, in the

sense that given two points qa, qb ∈ ∆n−1, the function gk is monotonically non-

increasing or monotonically non-decreasing along the line joining qa and qb.

Proof. Consider probability vectors qa, qb ∈ ∆n−1. Any point q on line joining qa

and qb can be written as q(ν) = νqa+(1−ν)qb, ν ∈ ]0, 1[. We note that gk(q(ν))

is given by:

gk(q(ν)) =
ν(qa · T ) + (1− ν)(qb · T )

ν(qa · Ik) + (1− ν)(qb · Ik)
.

The derivative of gk along the line joining qa and qb is given by

d

dν
gk(q(ν)) =

(
gk(qa)− gk(qb)

) (qa · Ik)(qb · Ik)
(ν(qa · Ik) + (1− ν)(qb · Ik))2

.

We note that the sign of the derivative of gk along the line joining two points

qa, qb is fixed by the choice of qa and qb. Hence, the function gk is monotone

over the line joining qa and qb. Moreover, note that if gk(qa) 6= gk(qb), then gk is

strictly monotone. Otherwise, gk is constant over the line joining qa and qb.

Lemma 3.8 (Location of min-max ). Define g : ∆n−1 → R≥0 by g = max{g0, g1}.

A minimum of g lies at the intersection of the graphs of g0 and g1, or at some

vertex of the probability simplex ∆n−1.
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Proof. The idea of the proof is illustrated in Figure 3.2. We now prove it rigor-

ously.

Case 1: The graphs of g0 and g1 do not intersect at any point in the simplex ∆n−1.

In this case, one of the functions g0 and g1 is an upper bound to the other

function at every point in the probability simplex ∆n−1. Hence, g = gk, for some

k ∈ {0, 1}, at every point in the probability simplex ∆n−1. From Theorem 3.6, we

know that the minima of gk on the probability simplex ∆n−1 lie at some vertex

of the probability simplex ∆n−1.

Case 2: The graphs of g0 and g1 intersect at a set Q in the probability simplex

∆n−1, and let q̄ be some point in the set Q.

Suppose, a minimum of g occurs at some point q∗ ∈ relint(∆n−1), and q∗ /∈

Q, where relint(·) denotes the relative interior. With out loss of generality, we

can assume that g0(q∗) > g1(q∗). Also, g0(q̄) = g1(q̄), and g0(q∗) < g0(q̄) by

assumption.

We invoke Lemma 3.7, and notice that g0 and g1 can intersect at most once

on a line. Moreover, we note that g0(q∗) > g1(q∗), hence, along the half-line from

q̄ through q∗, g0 > g1, that is, g = g0. Since g0(q∗) < g0(q̄), g is decreasing

along this half-line. Hence, g should achieve its minimum at the boundary of the

simplex ∆n−1, which contradicts that q∗ is in the relative interior of the simplex
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∆n−1. In summary, if a minimum of g lies in the relative interior of the probability

simplex ∆n−1, then it lies at the intersection of the graphs of g0 and g1.

The same argument can be applied recursively to show that if a minimum lies

at some point q† on the boundary, then either g0(q†) = g1(q†) or the minimum

lies at the vertex.

Figure 3.2: Linear-fractional functions. Both the functions achieve their minima at some ver-
tex of the simplex. The maximum of the two functions achieves its minimum at the intersection
of two graphs.

In the following arguments, let Q be the set of points in the simplex ∆n−1,

where g0 = g1, that is,

Q = {q ∈ ∆n−1 | q · (I0 − I1) = 0}. (3.12)

Also notice that the set Q is non empty if and only if I0− I1 has at least one

non-negative and one non-positive entry. If the set Q is empty, then it follows

from Lemma 3.8 that the solution of optimization problem in equation (3.11) lies
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at some vertex of the probability simplex ∆n−1. Now we consider the case when

Q is non empty. We assume that the sensors have been re-ordered such that the

entries in I0−I1 are in ascending order. We further assume that, for I0−I1, the

first m entries, m < n, are non positive, and the remaining entries are positive.

Lemma 3.9 (Intersection polytope). If the set Q defined in equation (3.12)

is non empty, then the polytope generated by the points in the set Q has vertices

given by:

Q̃ = {q̃sr | s ∈ {1, . . . ,m} and r ∈ {m+ 1, . . . , n}},

where for each i ∈ {1, . . . , n}

q̃sri =



(I0
r − I1

r )

(I0
r − I1

r )− (I0
s − I1

s )
, if i = s,

1− q̃srs , if i = r,

0, otherwise.

(3.13)

Proof. Any q ∈ Q satisfies the following constraints

n∑
s=1

qs = 1, qs ∈ [0, 1], (3.14)

n∑
s=1

qs(I
0
s − I1

s ) = 0, (3.15)

Eliminating qn, using equation (3.14) and equation (3.15), we get:

n−1∑
s=1

βsqs = 1, where βs =
(I0
n − I1

n)− (I0
s − I1

s )

(I0
n − I1

n)
. (3.16)
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The equation (3.16) defines a hyperplane, whose extreme points in Rn−1
≥0 are given

by

q̃sn =
1

βs
es, s ∈ {1, . . . , n− 1}.

Note that for s ∈ {1, . . . ,m}, q̃sn ∈ ∆n−1. Hence, these points define some

vertices of the polytope generated by points in the set Q. Also note that the other

vertices of the polytope can be determined by the intersection of each pair of lines

through q̃sn and q̃rn, and es and er, for s ∈ {1, . . . ,m}, and r ∈ {m+1, . . . , n−1}.

In particular, these vertices are given by q̃sr defined in equation (3.13).

Hence, all the vertices of the polytopes are defined by q̃sr, s ∈ {1, . . . ,m},

r ∈ {m+ 1, . . . , n}. Therefore, the set of vertices of the polygon generated by the

points in the set Q is Q̃.

Before we state the solution to the optimization problem (3.11), we define the

following:

(s∗, r∗) ∈ argmin
r∈{m+1,...,n}
s∈{1,...,m}

(I0
r − I1

r )Ts − (I0
s − I1

s )Tr
I1
s I

0
r − I0

s I
1
r

, and

gtwo-sensors(s
∗, r∗) =

(I0
r∗ − I1

r∗)Ts∗ − (I0
s∗ − I1

s∗)Tr∗

I1
s∗I

0
r∗ − I0

s∗I
1
r∗

.

We also define

w∗ = argmin
w∈{1,...,n}

max

{
Tw
I0
w

,
Tw
I1
w

}
, and

gone-sensor(w
∗) = max

{
Tw∗

I0
w∗
,
Tw∗

I1
w∗

}
.
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Theorem 3.10 (Worst case optimization). For the optimization problem

(3.11), an optimal probability vector is given by:

q∗ =


ew∗ , if gone-sensor(w

∗) ≤ gtwo-sensors(s
∗, r∗),

q̃s
∗r∗ , if gone-sensor(w

∗) > gtwo-sensors(s
∗, r∗),

and the minimum value of the function is given by:

min {gone-sensor(w
∗), gtwo-sensors(s

∗, r∗)} .

Proof. We invoke Lemma 3.8, and note that a minimum should lie at some vertex

of the simplex ∆n−1, or at some point in the set Q. Note that g0 = g1 on the set

Q, hence the problem of minimizing max{g0, g1} reduces to minimizing g0 on the

set Q. From Theorem 3.6, we know that g0 achieves the minima at some extreme

point of the feasible region. From Lemma 3.9, we know that the vertices of the

polytope generated by points in set Q are given by set Q̃. We further note that

gtwo-sensors(s, r) and gone-sensor(w) are the value of objective function at the points

in the set Q̃ and the vertices of the probability simplex ∆n−1 respectively, which

completes the proof.

3.2.3 Optimization of the average decision time

For the multi-objective optimization problem of minimizing all the decision

times simultaneously on the simplex, we formulate the single aggregate objec-
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tive function as the average of these decision times. The resulting optimization

problem, for M ≥ 2, is posed in the following way:

minimize
1

M
(g0(q) + . . .+ gM−1(q)),

subject to q ∈ ∆n−1.

(3.17)

In the following discussion we assume n > M , unless otherwise stated. We

analyze the optimization problem in equation (3.17) as follows:

Lemma 3.11 (Non-vanishing Jacobian). The objective function in opti-

mization problem in equation (3.17) has no critical point on ∆n−1 if the vectors

T , I0, . . . , IM−1 ∈ Rn
>0 are linearly independent.

Proof. The Jacobian of the objective function in the optimization problem in

equation (3.17) is

1

M

∂

∂q

M−1∑
k=0

gk = Γψ(q),

where Γ =
1

M

[
T −I0 . . . −IM−1

]
∈ Rn×(M+1), and

ψ : ∆n−1 → RM+1 is defined by

ψ(q) =

[
M−1∑
k=0

1

q · Ik
q · T

(q · I0)2
. . .

q · T
(q · IM−1)2

]T

.

For n > M , if the vectors T , I0, . . . , IM−1 are linearly independent, then Γ

is full rank. Further, the entries of ψ are non-zero on the probability simplex

∆n−1. Hence, the Jacobian does not vanish anywhere on the probability simplex

∆n−1.
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Lemma 3.12 (Case of Independent Information). For M = 2, if I0 and

I1 are linearly independent, and T = α0I
0 + α1I

1, for some α0, α1 ∈ R, then the

following statements hold:

(i). if α0 and α1 have opposite signs, then g0 + g1 has no critical point on the

simplex ∆n−1, and

(ii). for α0, α1 > 0, g0 + g1 has a critical point on the simplex ∆n−1 if and only

if there exists v ∈ ∆n−1 perpendicular to the vector
√
α0I

0 −√α1I
1.

Proof. We notice that the Jacobian of g0 + g1 satisfies

(q · I0)2(q · I1)2 ∂

∂q
(g0 + g1)

= T
(
(q · I0)(q · I1)2 + (q · I1)(q · I0)2

)
− I0(q · T )(q · I1)2 − I1(q · T )(q · I0)2.

(3.18)

Substituting T = α0I
0 + α1I

1, equation (3.18) becomes

(q · I0)2(q · I1)2 ∂

∂q
(g0 + g1)

=
(
α0(q · I0)2 − α1(q · I1)2

) (
(q · I1)I0 − (q · I0)I1

)
.

Since I0, and I1 are linearly independent, we have

∂

∂q
(g0 + g1) = 0 ⇐⇒ α0(q · I0)2 − α1(q · I1)2 = 0.
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Hence, g0 + g1 has a critical point on the simplex ∆n−1 if and only if

α0(q · I0)2 = α1(q · I1)2. (3.19)

Notice that, if α0, and α1 have opposite signs, then equation (3.19) can not be

satisfied for any q ∈ ∆n−1, and hence, g0 + g1 has no critical point on the simplex

∆n−1.

If α0, α1 > 0, then equation (3.19) leads to

q · (
√
α0I

0 −
√
α1I

1) = 0.

Therefore, g0 + g1 has a critical point on the simplex ∆n−1 if and only if there

exists v ∈ ∆n−1 perpendicular to the vector
√
α0I

0 −√α1I
1.

Lemma 3.13 (Optimal number of sensors). For n > M , if each (M + 1)×

(M + 1) sub-matrix of the matrix

Γ =

[
T −I0 . . . −IM−1

]
∈ Rn×(M+1)

is full rank, then the following statements hold:

(i). every solution of the optimization problem (3.17) lies on the probability

simplex ∆M−1 ⊂ ∆n−1; and

(ii). every time-optimal policy requires at most M sensors to be observed.
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Proof. From Lemma 3.11, we know that if T , I0, . . . , IM−1 are linearly indepen-

dent, then the Jacobian of the objective function in equation (3.17) does not

vanish anywhere on the simplex ∆n−1. Hence, a minimum lies at some simplex

∆n−2, which is the boundary of the simplex ∆n−1. Notice that, if n > M and

the condition in the lemma holds, then the projections of T , I0, . . . , IM−1 on the

simplex ∆n−2 are also linearly independent, and the argument repeats. Hence, a

minimum lies at some simplex ∆M−1, which implies that optimal policy requires

at most M sensors to be observed.

Lemma 3.14 (Optimization on an edge). Given two vertices es and er,

s 6= r, of the probability simplex ∆n−1, then for the objective function in the

problem (19) with M = 2, the following statements hold:

(i). if g0(es) < g0(er), and g1(es) < g1(er), then the minima, along the edge

joining es and er, lies at es, and optimal value is given by 1
2
(g0(es)+g1(es));

and

(ii). if g0(es) < g0(er), and g1(es) > g1(er), then the minima, along the edge

joining es and er, lies at the point q∗ = (1− ν∗)es + ν∗er, where

ν∗ = min
{

1,
( 1

1 + µ

)+}
,

µ =
I0
r

√
TsI1

r − TrI1
s − I1

r

√
TrI0

s − TsI0
r

I1
s

√
TrI0

s − TsI0
r − I0

s

√
TsI1

r − TrI1
s

,
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and the optimal value is given by

1
2
(g0(es) + g1(es)), if ν∗ = 0,

1
2
(g0(er) + g1(er)), if ν∗ = 1,

1
2

(√
TsI1r−TrI1s
I0s I

1
r−I0r I1s

+
√

TrI0s−TsI0r
I0s I

1
r−I0r I1s

)2

, otherwise.

Proof. We observe from Lemma 5 that both g0, and g1 are monotonically non-

increasing or non-decreasing along any line. Hence, if g0(es) < g0(er), and

g1(es) < g1(er), then the minima should lie at es. This concludes the proof of the

first statement. We now establish the second statement. We note that any point

on the line segment connecting es and er can be written as q(ν) = (1−ν)es+νer.

The value of g0 + g1 at q is

g0(q(ν)) + g1(q(ν)) =
(1− ν)Ts + νTr
(1− ν)I0

s + νI0
r

+
(1− ν)Ts + νTr
(1− ν)I1

s + νI1
r

.

Differentiating with respect to ν, we get

g0′(q(ν)) + g1′(q(ν)) =
I0
sTr − TsI0

r

(I0
s + ν(I0

r − I0
s ))2

+
I1
sTr − TsI1

r

(I1
s + ν(I1

r − I1
s ))2

. (3.20)

Notice that the two terms in equation (3.20) have opposite sign. Setting the

derivative to zero, and choosing the value of ν in [0, 1], we get ν∗ = min{1, 1/(1 +

µ)+}, where µ is as defined in the statement of the theorem. The optimal value

of the function can be obtained, by substituting ν = ν∗ in the expression for

1
2
(g0(q(ν)) + g1(q(ν))).
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Theorem 3.15 (Optimization of average decision time). For the optimiza-

tion problem (3.17) with M = 2, the following statements hold:

(i). if I0, I1 are linearly dependent, then the solution lies at some vertex of the

simplex ∆n−1;

(ii). if I0 and I1 are linearly independent, and T = α0I
0 + α1I

1, α0, α1 ∈ R,

then the following statements hold:

(a) if α0 and α1 have opposite signs, then the optimal solution lies at some

edge of the simplex ∆n−1;

(b) if α0, α1 > 0, then the optimal solution may lie in the interior of the

simplex ∆n−1;

(iii). if every 3 × 3 sub-matrix of the matrix
[
T I0 I1

]
∈ Rn×3 is full rank,

then a minimum lies at an edge of the simplex ∆n−1.

Proof. We start by establishing the first statement. Since, I0 and I1 are linearly

dependent, there exists a γ > 0 such that I0 = γI1. For I0 = γI1, we have

g0 + g1 = (1 + γ)g0. Hence, the minima of g0 + g1 lies at the same point where g0

achieves the minima. From Theorem 3.6, it follows that g0 achieves the minima

at some vertex of the simplex ∆n−1.

To prove the second statement, we note that from Lemma 3.12, it follows that

if α0, and α1 have opposite signs, then the Jacobian of g0 + g1 does not vanish
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anywhere on the simplex ∆n−1. Hence, the minima lies at the boundary of the

simplex. Notice that the boundary, of the simplex ∆n−1, are n simplices ∆n−2.

Notice that the argument repeats till n > 2. Hence, the optima lie on one of the(
n
2

)
simplices ∆1, which are the edges of the original simplex. Moreover, we note

that from Lemma 3.12, it follows that if α0, α1 > 0, then we can not guarantee

the number of optimal set of sensors. This concludes the proof of the second

statement.

To prove the last statement, we note that it follows immediately from Lemma 3.13

that a solution of the optimization problem in equation (3.17) would lie at some

simplex ∆1, which is an edge of the original simplex.

Note that, we have shown that, for M = 2 and a generic set of sensors, the

solution of the optimization problem in equation (3.17) lies at an edge of the

simplex ∆n−1. The optimal value of the objective function on a given edge was

determined in Lemma 3.14. Hence, an optimal solution of this problem can be

determined by a comparison of the optimal values at each edge.

For the multiple hypothesis case, we have determined the time-optimal number

of the sensors to be observed in Lemma 3.13. In order to identify these sensors,

one needs to solve the optimization problem in equation (3.17). We notice that

the objective function in this optimization problem is non-convex, and is hard

to tackle analytically for M > 2. Interested reader may refer to some efficient
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iterative algorithms in linear-fractional programming literature (e.g., [8]) to solve

these problems.

3.3 Numerical Illustrations

We now elucidate on the results obtained in previous sections through some

numerical examples. We present three examples, which provide further insights

into the scenarios considered in Section 3.2. In the first one, we consider four

sensors with ternary outputs, and three hypotheses. We compare the conditioned

asymptotic decision times, obtained in Theorem 3.5, with the decision times ob-

tained numerically through Monte-Carlo simulations. In the second example, for

the same set of sensors and hypothesis, we compare the optimal average decision

time, obtained in Theorem 3.15, with some particular average decision times. In

the third example, we compare the worst case optimal decision time obtained in

Theorem 3.10 with some particular worst-case expected decision times.

Example 3.1 (Conditional expected decision time). We consider four sen-

sors connected to a fusion center, and three underlying hypothesis. We assume

that the sensors take ternary measurements {0, 1, 2}. The probabilities of their

measurement being zero and one, under three hypotheses, are randomly chosen

and are shown in Tables 3.1 and 3.2, respectively. The probability of measurement
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being two is obtained by subtracting these probabilities from one. The processing

times on the sensors are randomly chosen to be 0.68, 3.19, 5.31, and 6.55 seconds,

respectively.

Table 3.1: Conditional probabilities of measurement being zero

Sensor Probability(0)
Hypothesis 0 Hypothesis 1 Hypothesis 2

1 0.4218 0.2106 0.2769
2 0.9157 0.0415 0.3025
3 0.7922 0.1814 0.0971
4 0.9595 0.0193 0.0061

Table 3.2: Conditional probabilities of measurement being one

Sensor Probability(1)
Hypothesis 0 Hypothesis 1 Hypothesis 2

1 0.1991 0.6787 0.2207
2 0.0813 0.7577 0.0462
3 0.0313 0.7431 0.0449
4 0.0027 0.5884 0.1705

We performed Monte-Carlo simulations to numerically obtain the expected

decision time, conditioned on hypothesis H0. For different sensor selection prob-

abilities, a comparison of the numerically obtained expected decision times with

the theoretical expected decision times is shown in Figure 3.3. These results sug-

gest that the asymptotic decision times obtained in Theorem 3.5 provide a lower

bound to the conditional expected decision times for the larger error probabilities.
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It can be seen from Figure 3.3, and verified from Theorem 3.6 that conditioned

on hypothesis H0, sensor 4 is the optimal sensor. Notice the processing time and

information trade-off. Despite having the highest processing time, conditioned on

hypothesis H0, the sensor 4 is optimal. This is due to the fact that sensor 4 is

highly informative on hypothesis H0.

Figure 3.3: Expected decision time conditioned on hypothesis H0 plotted on semi-log axes.
The dotted magenta line and magenta ”+” represent the theoretical and numerical expected
decision time for average expected decision time-optimal sensor selection policy, respectively.
The dashed blue line and blue ”×” represent the theoretical and numerical expected decision
time for the uniform sensor selection policy, respectively. The solid black line and black triangles
represent the theoretical and numerical expected decision time when only optimal sensor 4 is
selected.

Example 3.2 (Optimal average expected decision time). For the same set

of data in Example 1, we now determine the optimal policies for the average ex-

pected decision time. A comparison of average expected decision time for different

sensor selection probabilities is shown in Figure 3.4. An optimal average expected

decision time sensor selection probability distribution is q = [0 0.98 0 0.02]. It

can be seen that the optimal policy significantly improves the average expected

decision time over the uniform policy. The sensor 4 which is the optimal sensor

conditioned on hypothesis H0 is now chosen with a very small probability. This is
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due to the poor performance of the sensor 4 under hypothesis H1 and H2 and its

high processing time. Good performance under one hypothesis and poor perfor-

mance under other hypothesis is common in weather-sensitive sensors, e.g., sensor

performs extremely well in sunny conditions, but in cloudy or rainy conditions its

performance deteriorates significantly.

Figure 3.4: Average expected decision times plotted on semi-log axes. The black solid line
represents the policy where only sensor 4 is selected. The blue dashed line represents the uniform
sensor selection policy. The magenta dotted line is average expected decision time-optimal policy.

Example 3.3 (Optimal worst case decision time). For the same set of data

in Example 1, we now determine the optimal policies for the average expected

decision time. For this data, the optimal worst-case sensor selection probability

distribution is q = [0 0.91 0 0.09]. A comparison of the optimal worst case

expected decision time with some particular worst case decision times is shown in

Figure 3.5. It may be verified that for the optimal sensor selection probabilities,

the expected decision time, conditioned on hypothesis H0 and H2 are the same.

This suggests that even for more that two hypothesis, the optimal policy may lie

at the intersection of the graphs of the expected decision times.
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Figure 3.5: Worst case expected decision times plotted on semi-log axes. The black solid
line represents the policy where only sensor 4 is selected. The blue dashed line represents the
uniform sensor selection policy. The magenta dotted line is worst expected decision time-optimal
policy.

Remark 3.7. The optimal results we obtained, may only be sub-optimal because

of the asymptotic approximations in equations (3.3). We further note that, for

small error probabilities and large sample sizes, these asymptotic approximations

yield fairly accurate results [7], and in fact, this is the regime in which it is

of interest to minimize the expected decision time. Therefore, for all practical

purposes the obtained optimal scheme is very close to the actual optimal scheme.

�

3.4 Conclusions

In this chapter, we considered a sequential decision making problem with ran-

domized sensor selection. We developed a version of the MSPRT algorithm where

the sensor switches at each observation. We used this sequential procedure to

decide reliably. We studied the set of optimal sensors to be observed in order to

decide in minimum time. We observed the trade off between the information car-
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ried by a sensor and its processing time. A randomized sensor selection strategy

was adopted. It was shown that, conditioned on a hypothesis, only one sensor

is optimal. Indeed, if the true hypothesis is not known beforehand, then a ran-

domized strategy is justified. For the binary hypothesis case, three performance

metrics were considered and it was found that for a generic set of sensors at most

two sensors are optimal. Further, it was shown that for M underlying hypotheses,

and a generic set of sensors, an optimal policy requires at most M sensors to be

observed. It was observed that the optimal set of the sensors is not necessarily the

set of optimal sensors conditioned on each hypothesis. A procedure for the identi-

fication of the optimal sensors was developed. In the binary hypothesis case, the

computational complexity of the procedure for the three scenarios, namely, the

conditioned decision time, the worst case decision time, and the average decision

time, was O(n), O(n2), and O(n2), respectively.
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Chapter 4

Stochastic Surveillance Strategies
for Spatial Quickest Detection

In this chapter we consider the persistent surveillance of a set of n disjoint

regions with a team of m < n identical1 autonomous vehicles capable of sensing,

communicating, and moving from one region to another. In persistent surveillance,

the vehicles visit the regions according to some routing policy, collect evidence

(sensor observation), and send it to a control center. The control center runs

an anomaly detection algorithm with the evidence collected by the vehicles to

determine the likelihood of an anomaly being present at some region (the control

center declares an anomaly if substantial evidence is present). Finally, the control

center utilizes the likelihood of an anomaly at each region to determine a vehicle

routing policy. The objective of the control center is to detect an anomaly at

any region in minimum time subject to a desired bound on the expected time

1The vehicle routing policies designed in this chapter also work for non-identical vehicles.
We make this assumption for the convenience of analysis.
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between any two subsequent false alarms. Notice that the time required to detect

an anomaly depends on the anomaly detection algorithm and the time vehicles

take to travel the regions. Thus, the control center needs to minimize the anomaly

detection time jointly over anomaly detection policies and vehicle routing policies.

Our problem setup is shown in Fig. 4.1.

Anomaly
Detection
Algorithm

Vehicle
Routing

Algorithm

Decision

Anomaly
Likelihood

Control Center

Observations Collected by UAVs

Vehicle Routing Policy

Figure 4.1: Persistent Surveillance Setup. A set of n regions is surveyed by m < n vehicles.
Each vehicle visits the regions according to some policy and collects evidence from the visited
region. The collected evidence is sent to an anomaly detection algorithm. The anomaly detection
algorithm processes the collected evidence and decides on the presence of an anomaly. It also
provides the likelihood of an anomaly being present, which in turn is used by the vehicle routing
algorithm. The anomaly detection algorithm and vehicle routing algorithm constitute the control
center, which can be implemented on-board of a vehicle.

We adopt the standard motion planning notation in [59]. We denote the k-th

region by Rk, k ∈ {1, . . . , n}, and r-th vehicle by Ur, r ∈ {1, . . . ,m}. Let the

likelihood of an anomaly at region Rk be πk ∈ (0, 1). We study the persistent

surveillance problem under the following assumptions.
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Regarding the vehicles, we do not assume any specific dynamics and we assume

that:

(A1). each vehicle takes time dij to travel from region Ri to region Rj, i, j ∈

{1, . . . , n};

(A2). the sensors on each vehicle take a random time Tk to collect an informative

observation2 from region Rk, k ∈ {1, . . . , n}.

Regarding the observations, we assume that:

(A3). the observation collected by a vehicle from region Rk is sampled from prob-

ability density functions f 0
k : R → R≥0 and f 1

k : R → R≥0, respectively, in

the presence and in the absence of anomalies;

(A4). for each k ∈ {1, . . . , n}, probability density functions f 1
k and f 0

k are non-

identical with some non-zero probability, and have the same support;

(A5). conditioned on the presence or absence of anomalies, the observations in

each region are mutually independent, and

(A6). observations in different regions are also mutually independent.

2An informative observation may require the acquisition of several observations from different
locations at the same region. In this case the processing time equals the total time required to
collect all these observations.
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Regarding the anomaly detection algorithm at the control center, we employ

the cumulative sum (CUSUM) algorithm (see Section 2.2) for anomaly detection

at each region. In particular, we run n parallel CUSUM algorithms (one for each

region) and declare an anomaly being present at a region as soon as a substantial

evidence is present. We refer to such parallel CUSUM algorithms by ensemble

CUSUM algorithm.

Remark 4.1 (Knowledge of distributions). For the ease of presentation,

we assume that the probability density functions in presence and absence of an

anomaly are known. In general, only the probability density function in absence

of any anomaly may be known, or both the probability density functions may be

unknown. In the first case, the CUSUM algorithm can be replaced by the weighted

CUSUM algorithm or the Generalized Likelihood Ratio (GLR) algorithm, see [6],

while in the second case, it can be replaced by the robust minimax quickest change

detection algorithm proposed in [101]. The ideas presented in this chapter extend

to these cases in a straightforward way. A related example is in Section 4.4. �

Remark 4.2 (Independence of observations). For the ease of presentation,

we assume that the observations collected from each region are independent con-

ditioned on the presence and absence of anomalies. In general, the observations

may be dependent and the dependence can be captured through an appropriate

hidden Markov model. If the observations can be modeled as a hidden Markov
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model, then the CUSUM like algorithm in [24] can be used instead of the stan-

dard CUSUM algorithm. The analysis presented in this chapter holds in this

case as well but in an asymptotic sense, i.e., in the limit when a large number of

observations are needed for anomaly detection.

We also assumed that the observations collected from different regions are

mutually independent. Although the ideas in this chapter also work when the

observations at different regions are dependent, the performance can be improved

with a slight modification in the procedure presented here (see Remark 4.4). In

this case the algorithm performance improves because each observation is now

informative about more than one region. �

Regarding the vehicle routing policy, we propose the randomized routing policy,

and the adaptive routing policy. In the randomized routing policy, each vehicle

(i) selects a region from a stationary distribution, (ii) visits that region, (iii)

collects evidence, and (iv) transmits this evidence to the control center and iterates

this process endlessly. In the randomized routing policy, the evidence collected

by the vehicles is not utilized to modify their routing policy. In other words,

there is no feedback from the anomaly detection algorithm to the vehicle routing

algorithm. In the adaptive routing policy, instead, the evidence collected by the

vehicles is used to modify the routing policy, and thus, the loop between the vehicle

routing algorithm and the anomaly detection algorithm is closed. The adaptive
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routing policy follows the same steps as in the randomized routing policy, with the

exception that the distribution in step (i) is no longer stationary and is adapted

based on the collected evidence.

For brevity of notation, we will refer to the joint anomaly detection and vehicle

routing policy comprising of the ensemble CUSUM algorithm and the random-

ized routing policy by randomized ensemble CUSUM algorithm. We will show that

the randomized ensemble CUSUM algorithm provides a solution that is within a

factor of optimality. Similarly, we refer to the joint anomaly detection and ve-

hicle routing policy comprising of the ensemble CUSUM algorithm and adaptive

routing policy by adaptive ensemble CUSUM algorithm. We will show that adap-

tive ensemble CUSUM algorithm makes the vehicles visit anomalous regions with

high probability, and thus it improves upon the performance of the randomized

ensemble CUSUM algorithm.

Remark 4.3 (Randomized routing policy). The randomized routing policy

samples regions to visit from a stationary distribution; this assumes that each

region can be visited from another region in a single hop. While this is the case

for aerial vehicles, it may not be true for ground vehicles. In the latter case,

the motion from one region to another can be modeled as a Markov chain. The

transition probabilities of this Markov chain can be designed to achieve a desired

stationary distribution. This can optimally be done, for instance, by picking the
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fastest mixing Markov chain proposed in [14] or heuristically by using the stan-

dard Metropolis-Hastings algorithm, see [105]. Related examples are presented

in Section 4.4 and 4.5. It should be noted that under the randomized routing

policy, the desired stationary distribution of the Markov chain is fixed, and the

Markov chain converges to this distribution exponentially. Thus, the policy de-

signed using Markov chain is arbitrarily close to the desired policy. However, in

the case of adaptive routing policy, the desired stationary distribution keeps on

changing, and the performance of the Markov chain based policy depends on rate

of convergence of the Markov chain and the rate of change of desired stationary

distribution. �

We now introduce some notations that will be used throughout the chapter.

We denote the probability simplex in Rn by ∆n−1, and the space of vehicle routing

policies by Ω. For the processing time Tk, we let T̄k denote its expected value.

Consider m realizations of the processing time Tk, we denote the expected value

of the minimum of these m realized values by T̄m-smlst
k . Note that T̄ 1-smlst

k = T̄k.

We also define T̄max = max{T̄k | k ∈ {1, . . . , n}} and T̄min = min{T̄k | k ∈

{1, . . . , n}}. We denote the Kullback-Leibler divergence between the probability

density functions f 1
k and f 0

k by Dk. Finally, Dmax = max{Dk | k ∈ {1, . . . , n}}

and Dmin = min{Dk | k ∈ {1, . . . , n}}.
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4.1 Spatial Quickest Detection

In this section, we propose the ensemble CUSUM algorithm for the simulta-

neous quickest detection of anomalies in spatially distributed regions.

4.1.1 Ensemble CUSUM algorithm

We run n parallel CUSUM algorithms (one for each region), and update the

CUSUM statistic for region Rk only if an observation is received from region

Rk. We refer to such parallel CUSUM algorithms by ensemble CUSUM algorithm

(Algorithm 4.1). Notice that an iteration of this algorithm is initiated by the

collection of an observation.

We are particularly interested in the performance of the ensemble CUSUM al-

gorithm when the observations are collected by autonomous vehicles. In this case,

the performance of the ensemble CUSUM algorithm is a function of the vehicle

routing policy. For the ensemble CUSUM algorithm with autonomous vehicles

collecting observation, let the number of iterations (collection of observations)

required to detect an anomaly at region Rk be Nk : Ω → N∪{+∞}, and let

the detection delay, i.e., the time required to detect an anomaly, at region Rk be

δk : Ω → R>0 ∪{+∞}, for each k ∈ {1, . . . , n}, where Ω is the space of vehicle

routing policies. We also define average detection delay as follows:
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Algorithm 4.1: Ensemble CUSUM Algorithm

Input : threshold η, pdfs f0
k , f

1
k , k ∈ {1, . . . , n} ;

Output : decision on presence of an anomaly ;

1 at time τ receive observation yτ for region Rk;

2 update the CUSUM statistic at each region:

Λjτ =


(

Λkτ−1 + log
f1
k(yτ )

f0
k(yτ )

)+

, if j = k;

Λjτ−1, if j ∈ {1, . . . , n} \ {k};

3 if Λkτ > η then change detected at region Rk ;

4 else wait for next observations and iterate.

Definition 4.1 (Average detection delay). For any vector of weights (w1, . . . , wn) ∈

∆n−1, define the average detection delay δavg : Ω→ R>0 ∪{+∞} for the ensemble

CUSUM algorithm with autonomous vehicles collecting observations by

δavg(ω) =
n∑
k=1

wkE[δk(ω)]. (4.1)

For the ensemble CUSUM algorithm with m vehicles collecting observation,

define δm-min
k and δm-min

avg by

δm-min
k = inf{E[δk(ω)] | ω ∈ Ω}, and

δm-min
avg = inf{δavg(ω) | ω ∈ Ω},
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respectively. Note that δm-min
k and δm-min

avg are lower bounds for the expected detec-

tion delay and average detection delay at region Rk, respectively, independently

of the routing policy. Let η̄ = e−η +η−1. We now state lower bounds on the per-

formance of the ensemble CUSUM algorithm with autonomous vehicles collecting

observations.

Lemma 4.1 (Global lower bound). The following statements hold for the

ensemble CUSUM algorithm with m vehicles collecting information:

(i). the lower bound δm-min
k for the expected detection delay at regionRk satisfies

δm-min
k ≥ η̄ T̄m-smlst

k

mDk
;

(ii). the lower bound δm-min
avg for the average detection delay satisfies

δm-min
avg ≥ η̄ T̄m-smlst

min

mDmax

,

where T̄m-smlst
min = min{T̄m-smlst

k | k ∈ {1, . . . , n}}.

Proof. We start by establishing the first statement. We note that a lower bound

on the expected detection delay at region Rk is obtained if all the vehicles al-

ways stay at region Rk. Since, each observation is collected from region Rk,

the number of iterations of the ensemble CUSUM algorithm required to detect

an anomaly at region Rk satisfies E[Nk] = η̄/Dk. Let T rk (b) be realized value

of the processing time of vehicle Ur at its b-th observation. It follows that
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Tm-smlst
k (b) = min{T rk (b) | r ∈ {1, . . . ,m}} is a lower bound on the processing

time of each vehicle for its b-th observation. Further, Tm-smlst
k (b) is identically dis-

tributed for each b and E[Tm-smlst
k (b)] = T̄m-smlst

k . Consider a modified stochastic

process where the realized processing time of each vehicle for its b-th observation

in Tm-smlst
k (b). Indeed, such a stochastic process underestimates the time required

to collect each observation and, hence, provides a lower bound to the expected

detection delay. Therefore, the detection delay satisfies the following bound

δk(ω) ≥
dNk/me∑
b=1

Tm-smlst
k (b), for each ω ∈ Ω.

It follows from Wald’s identity, see [76], that

E[δk(ω)] ≥ T̄m-smlst
k E[dNk/me] ≥ T̄m-smlst

k E[Nk]/m.

This proves the first statement.

The second statement follows from Definition 4.1 and the first statement.

Remark 4.4 (Dependence across regions). We assumed that the observa-

tions collected from different regions are mutually independent. If the observations

from different regions are dependent, then, at each iteration, instead of updating

only one CUSUM statistic, the CUSUM statistic at each region should be updated

with an appropriate marginal distribution. �
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4.2 Randomized Ensemble CUSUM Algorithm

We now study the persistent surveillance problem under randomized ensemble

CUSUM algorithm. First, we derive an exact expression for the expected detection

delay for the randomized ensemble CUSUM algorithm with a single vehicle, and

use the derived expressions to develop an efficient stationary policy for a single

vehicle. Second, we develop a lower bound on the expected detection delay for

the randomized ensemble CUSUM algorithm with multiple vehicles, and develop a

generic partitioning policy that (i) constructs a complete and disjoint m-partition

of the regions, (ii) allocates one partition each to a vehicle, and (iii) lets each

vehicle survey its assigned region with some single vehicle policy. Finally, we show

that the partitioning policy where each vehicle implements the efficient stationary

policy in its regions is within a factor of an optimal policy.

4.2.1 Analysis for single vehicle

Consider the randomized ensemble CUSUM algorithm with a single vehicle.

Let qk ∈ [0, 1] denote the probability to select regionRk, and let q = (q1, . . . , qn) ∈

∆n−1. Let the threshold for the CUSUM algorithm at each region be uniform and

equal to η ∈ R>0. We note that for the randomized ensemble CUSUM algorithm

with a single vehicle the space of vehicle routing policies is Ω = ∆n−1.
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Theorem 4.2 (Single vehicle randomized ensemble CUSUM ). For the

randomized ensemble CUSUM algorithm with a single vehicle and stationary rout-

ing policy q ∈ ∆n−1, the following statements hold:

(i). the number of observations Nk(q) required to detect a change at region Rk

satisfies

Ef1k [Nk(q)] =
η̄

qkDk
;

(ii). the detection delay δk(q) at region Rk satisfies

Ef1k [δk(q)] =
( n∑
i=1

qiT̄i +
n∑
i=1

n∑
j=1

qiqjdij

)
Ef1k [Nk(q)].

Proof. Let τ ∈ {1, . . . , Nk} be the iterations at which the vehicle collects and

sends information about the regions, where Nk denotes the iteration at which an

anomaly is detected at region Rk. Let the log likelihood ratio at region Rk at

iteration τ be λkτ . We have

λkτ =


log

f1k (yτ )

f0k (yτ )
, with probability qk,

0, with probability 1− qk.

Therefore, conditioned on the presence of an anomaly, {λkτ}τ∈N are i.i.d., and

Ef1k [λkτ ] = qkDk.
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The remaining proof of the first statement follows similar to the proof for CUSUM

in [85].

To prove the second statement, note that the information aggregation time

T agr comprises of the processing time and the travel time. At an iteration the

vehicle is at region Ri with probability qi and picks region Rj with probability

qj. Additionally, the vehicle travels between the two regions in dij units of time.

Thus, the average travel time at each iteration is

E[Ttravel] =
n∑
i=1

n∑
j=1

qiqjdij.

Hence, the expected information aggregation time at each iteration is

E[T agr] = E[Ttravel + Tprocess] =
n∑
i=1

n∑
j=1

qiqjdij +
n∑
i=1

qiT̄i.

Let {T agr
τ }τ∈{1,...,Nk}, be the information aggregation times at each iteration. We

have that δk =
∑Nk

τ=1 T
agr
τ , and it follows from Wald’s identity, see [76], that

E[δk] = E[T agr]E[Nk].

This completes the proof of the statement.

4.2.2 Design for single vehicle

Our objective is to design a stationary policy that simultaneously minimizes

the detection delay at each region, that is, to design a stationary policy that min-

imizes each term in (δ1(q), . . . , δn(q)) simultaneously. For this multiple-objective
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Figure 4.2: Level-sets of the objective function in problem (4.3). It can be seen that the
level sets are not convex.

optimization problem, we construct a single aggregate objective function as the

average detection delay. After incorporating the expressions for the expected de-

tection delays derived in Theorem 4.2, the average detection delay becomes

δavg(q) =
( n∑
k=1

wkη̄

qkDk

)( n∑
i=1

qiTi +
n∑
i=1

n∑
j=1

qiqjdij

)
, (4.2)

where wk = πk/(
∑n

i=1 πi) is the weight on the expected detection delay at region

Rk and πk is the prior probability of an anomaly being present at region Rk. Our

objective is to solve the average detection delay minimization problem:

minimize
q∈∆n−1

δavg(q). (4.3)

In general, the objective function δavg is non-convex. For instance, let n = 3,

and consider the level sets of δavg on the two dimensional probability simplex
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(Fig. 4.2). It can be seen that the level sets are non-convex, yet there exists a

unique critical point and it corresponds to a minimum. We now state the following

conjecture about the average detection delay:

Conjecture 4.3 (Single vehicle optimal stationary policy). For the ran-

domized ensemble CUSUM algorithm with a single vehicle, the average detection

delay function δavg has a unique critical point at which the minimum of δavg is

achieved. �

In the Appendix of this chapter we provide probabilistic guarantees that, for

a particular stochastic model of the parameters in δavg, with at least confidence

level 99.99% and probability at least 99%, the optimization problem (4.3) has a

unique critical point at which the minimum is achieved. Such a minimum can be

computed via standard gradient-descent methods, see [15].

We now construct an upper bound for the expected detection delay. We will

show that minimization of this upper bound yields a policy that is within a factor

of an optimal policy. From equation (4.2), we define the upper bound δupper :

∆n−1 → R>0 ∪{+∞} as

δavg(q) ≤ δupper(q) =
( n∑
k=1

wkη̄

qkDk

)
(T̄max + dmax),

where dmax = max{dij | i, j ∈ {1, . . . , n}}.
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Theorem 4.4 (Single vehicle efficient stationary policy). The following

statements hold for the randomized ensemble CUSUM algorithm with single ve-

hicle:

(i). the upper bound on the expected detection delay satisfies

min
q∈∆n−1

δupper(q) =
( n∑
k=1

√
wk
Dk

)2

η̄(T̄max + dmax),

and the minimum is achieved at q† defined by

q†k =

√
wk/Dk∑n

j=1

√
wj/Dj

, k ∈ {1, . . . , n};

(ii). the average detection delay satisfies the following lower bound

δavg(q) ≥
( n∑
k=1

√
wk
Dk

)2

η̄ T̄min,

for all q ∈ ∆n−1;

(iii). the stationary policy q† is within a factor of optimal, that is

δavg(q†)

δavg(q∗)
≤ T̄max + dmax

T̄min

, and

δavg(q†)

δ1-min
avg

≤ n
T̄max + dmax

T̄min

Dmax

Dmin

,

where q∗ is an optimal stationary policy;

(iv). the expected detection delay at region Rk under policy q† satisfy

E[δk(q
†)]

δ1-min
k

≤ (T̄max + dmax)

T̄k

√
nDk

wkDmin

.
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Proof. We start by establishing the first statement. It follows from the sta-

tionarity conditions on the Lagrangian that the minimizer q† of δupper satisfy

q†k ∝
√
wkη̄/Dk, for each k ∈ {1, . . . , n}. Incorporating this fact into

∑n
k=1 q

†
k = 1

yields the expression for q†k. The expression for δupper(q
†) can be verified by sub-

stituting the expression for q† into δupper.

To prove the second statement, we construct a lower bound δlower : ∆n−1 →

R>0 ∪{+∞} to the average detection delay δavg defined by δlower(q) =
∑n

k=1 wkη̄T̄min/Dkqk.

It can be verified that δlower also achieves its minimum at q†, and

δlower(q
†) =

( n∑
k=1

√
wk
Dk

)2

η̄ T̄min.

We note that

δlower(q
†) ≤ δlower(q

∗) ≤ δavg(q∗) ≤ δavg(q),∀q ∈ ∆n−1.

Thus, the second statement follows.

To prove the first part of the third statement, we note that

δlower(q
†) ≤ δavg(q∗) ≤ δavg(q†) ≤ δupper(q

†).

Therefore, the policy q† is within δupper(q
†)/δlower(q

†) = (Tmax + dmax)/Tmin factor

of optimal stationary policy.
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To prove the second part of the third statement, we note

δavg(q†)

δ1-min
avg

≤ Dmax(T̄max + dmax)

DminT̄min

(
√
w1 + . . .+

√
wn)2

≤ n
T̄max + dmax

T̄min

Dmax

Dmin

,

where the last inequality follows from the fact: max{√w1 + . . .+
√
wn | w1 + . . .+

wn = 1} =
√
n.

To establish the last statement, we note that

E[δk(q
†)]

δ1-min
k

≤ (T̄max + dmax)

q†kT̄k

≤ (T̄max + dmax)

T̄k

√
Dk

wkDmin

(
√
w1 + . . .+

√
wn)

≤ (T̄max + dmax)

T̄k

√
nDk

wkDmin

.

This concludes the proof of the theorem.

In the following, we would refer to q† as the single vehicle efficient stationary

policy.

Remark 4.5 (Efficient stationary policy). As opposed to the average de-

tection delay δavg, the upper bound δupper does not depend upon any travel time

information. Then, our efficient policy does not take this information into account,

and it may not be optimal. Instead, an optimal policy allocates higher visiting

probabilities to regions that are located more centrally in the environment. We
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resort to the efficient policy because (i) if the problem (4.3) does not admit a

unique minimum, then the optimal policy can not be computed efficiently; and

(ii) efficient policy has an intuitive, tractable, and closed form expression. �

4.2.3 Analysis for multiple vehicles

We now consider the randomized ensemble CUSUM with m > 1 vehicles. In

this setting the vehicles operate in an asynchronous fashion. This asynchronicity,

which did not occur in the single vehicle case, is due to (i) different travel times

between two different pair of regions, and (ii) different realized value of processing

time at each iteration. Such an asynchronous operation makes the time durations

between two subsequent iterations non-identically distributed and makes it dif-

ficult to obtain closed form expressions for the expected detection delay at each

region.

Motivated by the above discussion, we determine a lower bound on the ex-

pected detection delay for the randomized ensemble CUSUM algorithm with mul-

tiple vehicles. Let qr = (qr1, . . . , q
r
n) ∈ ∆n−1 denote the stationary policy for

vehicle Ur, i.e., the vector of probabilities of selecting different regions for vehicle

Ur, and let ~qm = (q1, . . . , qm) ∈ ∆m
n−1. We note that for the randomized en-

semble CUSUM algorithm with m vehicles the space of vehicle routing policies

is Ω = ∆m
n−1. We construct a lower bound on the processing times at differ-
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ent regions for different vehicles in the following way. Let Ξ be the set of all

the sets with cardinality m in which each entry is an arbitrarily chosen region;

equivalently, Ξ = {R1, . . . ,Rn}m. Let a realization of the processing times at the

regions in a set ξ ∈ Ξ be tξ1, . . . , t
ξ
m. We now define a lower bound T̄one to the

expected value of the minimum of the processing times at m arbitrary regions as

T̄one = min{E[min{tξ1, . . . , tξm}] | ξ ∈ Ξ}.

Theorem 4.5 (Multi-vehicle randomized ensemble CUSUM ). For the

randomized ensemble CUSUM algorithm with m vehicles and stationary region

selection policies qr, r ∈ {1, . . . ,m}, the detection delay δk at region Rk satisfies:

Ef1k [δk(~qm)] ≥ η̄ T̄one∑m
r=1 q

r
kDk

.

Proof. We construct a modified stochastic process to determine a lower bound on

the expected detection delay. For the randomized ensemble CUSUM algorithm

with multiple vehicles, let tbr be the the processing time for the vehicle Ur during

its b-th visit to any region. We assume that the sampling time for each vehicle at

its b-th visit in the modified process is min{tb1, . . . , tbm}. Therefore, the sampling

time for the modified process is the same at each region. Further, it is identically

distributed for each visit and has expected value greater than or equal to T̄one. We

further assume that the distances between the regions are zero. Such a process

underestimates the processing and travel time required to collect each observation
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in the randomized ensemble CUSUM algorithm. Hence, the expected detection

delay for this process provides a lower bound to the expected detection delay for

randomized ensemble CUSUM algorithm. Further, for this process the vehicles

operate synchronously and the expected value of the likelihood ratio at region k

at each iteration is
∑m

r=1 q
r
kD(f 1

k , f
0
k ). The remainder of the proof follows similar

to the proof for single vehicle case in Theorem 4.2.

4.2.4 Design for multiple vehicles

We now design an efficient stationary policy for randomized ensemble CUSUM

algorithm with multiple vehicles. We propose an algorithm that partitions the set

of regions into m subsets, allocates one vehicle to each subset, and implements our

single vehicle efficient stationary policy in each subset. This procedure is formally

defined in Algorithm 4.2.

Let the subset of regions allocated to vehicle Ur be Sr, r ∈ {1, . . . ,m}. We

will denote the elements of subset Sr by Sri , i ∈ {1, . . . , nr}. Let ~q†part ∈ ∆m
n−1

be a stationary routing policy under the partitioning algorithm that implements

single vehicle efficient stationary policy in each partition. We define the weights in

equation (4.1) by wk = π1
k/
∑n

j=1 π
1
j , where π1

k is the prior probability of anomaly

at region Rk. Let wmin = min{w1, . . . , wn} and wmax = max{w1, . . . , wn}. We
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Algorithm 4.2: Partitioning Algorithm
Input : vehicles {U1, . . . ,Um}, regions R = {R1, . . . ,Rn},

a single vehicle routing policy;

Require : n > m ;

Output : a m-partition of the regions ;

1 partition R into m arbitrary subsets {Sr}r∈{1,...,m}

with cardinalities nr ≤ dn/me, r ∈ {1, . . . ,m} ;

2 allocate vehicle Ur to subset Sr, for each r ∈ {1, . . . ,m};

3 implement the single vehicle efficient stationary policy in each subset.

now analyze the performance of the partitioning algorithm and show that it is

within a factor of optimal.

Theorem 4.6 (Performance of the partitioning policy). For the partition-

ing algorithm with m vehicles and n regions that implements the single vehicle

efficient stationary policy in each partition, the following statements hold:

(i). the average detection delay under partitioning policy satisfies the following

upper bound

δavg(~q†part) ≤ m
⌈ n
m

⌉2 wmaxη̄(T̄max + dmax)

Dmin

;

(ii). the average detection delay satisfies the following lower bound

δavg(~qm) ≥
( n∑
k=1

√
wk
Dk

)2 η̄T̄one

m
,
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for any ~qm ∈ ∆m
n−1;

(iii). the stationary policy ~q†part is within a factor of optimal, and

δavg(~q†part)

δavg(~q∗m)
≤ 4wmax

wmin

(T̄max + dmax)

T̄one

Dmax

Dmin

, and

δavg(~q†part)

δm-min
avg

≤ m2
⌈ n
m

⌉(T̄max + dmax)

T̄m-smlst
min

Dmax

Dmin

,

where ~q∗m is optimal stationary policy;

(iv). the expected detection delay at region Rk under the stationary policy ~q†part

satisfies

E[δk(~q
†
part)]

δm-min
k

≤ m(T̄max + dmax)

T̄m-smlst
k

√⌈ n
m

⌉ Dk
wkDmin

.

Proof. We start by establishing the first statement. We note that under the

partitioning policy, the maximum number of regions a vehicle serves is dn/me. It

follows from Theorem 4.4 that for vehicle Ur and the associated partition Sr, the

average detection delay is upper bounded by

δavg(qrpart) ≤
( nr∑
i=1

√
wi
Di

)2

η̄(T̄max + dmax)

≤
⌈ n
m

⌉2 η̄wmax(T̄max + dmax)

Dmin

.

Therefore, the overall average detection delay satisfies δavg(~q†part) ≤ mδavg(qrpart).

This establishes the first statement.
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To prove the second statement, we utilize the lower bounds obtained in Theo-

rem 4.5 and construct a lower bound to the average detection delay δmlower : ∆m
n−1 →

R>0 ∪{+∞} defined by δmlower(~qm) =
∑n

k=1(vkT̄one/
∑m

r=1 q
r
k). It can be verified that

min
~qm∈∆m

n−1

δmlower(~qm) =
( n∑
k=1

√
wk
Dk

)2 η̄T̄one

m
.

We now establish the first part of the third statement. Note that

δavg(~q†part)

δavg(~q∗m)
≤ dn/me

2

(n/m)2

wmax

wmin

(T̄max + dmax)

T̄one

Dmax

Dmin

≤ 4wmax

wmin

(T̄max + dmax)

T̄one

Dmax

Dmin

,

where the last inequality follows from the fact that (dn/me)/(n/m) ≤ 2.

The remainder of the proof follows similar to the proof of Theorem 4.4.

4.3 Adaptive ensemble CUSUM Algorithm

The stationary vehicle routing policy does not utilize the real-time information

regarding the likelihood of anomalies at the regions. We now develop an adap-

tive policy that incorporates the anomaly likelihood information provided by the

anomaly detection algorithm. We consider the CUSUM statistic at a region as

a measure of the likelihood of an anomaly at that region, and utilize it at each

iteration to design new prior probability of an anomaly for each region. At each

iteration, we adapt the efficient stationary policy using this new prior probability.
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This procedure results in higher probability of visiting an anomalous region and,

consequently, it improves the performance of our efficient stationary policy. In

Section 4.4 we provide numerical evidence showing that the adaptive ensemble

CUSUM algorithm improves the performance of randomized ensemble CUSUM

algorithm.

Our adaptive ensemble CUSUM algorithm is formally presented in Algorithm 4.3

for the single vehicle case. For the case of multiple vehicles we resort to the

partitioning Algorithm 4.2 that implements the single vehicle adaptive ensemble

CUSUM Algorithm 4.3 in each partition. Let us denote the adaptive routing policy

for a single vehicle by a and the policy obtained from the partitioning algorithm

that implements single vehicle adaptive routing policy in each partition by apart.

We now analyze the performance of the adaptive ensemble CUSUM algorithm.

Since, the probability to visit any region varies with time in the adaptive ensemble

CUSUM algorithm, we need to determine the number of iterations between two

consecutive visit to a region, i.e., the number of iterations for the recurrence of the

region. We first derive a bound on the expected number of samples to be drawn

from a time-varying probability vector for the recurrence of a particular state.

Lemma 4.7 (Mean observations for region recurrence). Consider a se-

quence {xτ}τ∈N, where xτ is sampled from a probability vector pτ ∈ ∆n−1. If the
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k-th entry of pτ satisfy pτk ∈ (αk, βk), for each τ ∈ N and some αk, βk ∈ (0, 1), then

the number of iterations Ik for the recurrence of state k satisfy E[Ik] ≤ βk/α
2
k.

Proof. The terms of the sequence {xτ}τ∈N are statistically independent. Further,

the probability mass function pτ is arbitrary. Therefore, the bound on the expected

iterations for the first occurrence of state k is also a bound on the subsequent

recurrence of state k. The expected number of iterations for first occurrence of

region k are

E[Ik] =
∑
i∈N

ipik

i−1∏
j=1

(1− pjk) ≤ βk
∑
i∈N

i(1− αk)i−1 = βk/α
2
k.

This establishes the statement.

We utilize this upper bound on the expected number of iterations for recurrence

of a region to derive performance metrics for the adaptive ensemble CUSUM

algorithm. We now derive an upper bound on the expected detection delay at

each region for adaptive ensemble CUSUM algorithm. We derive these bounds

for the expected evolution of the CUSUM statistic at each region.

Theorem 4.8 (Adaptive ensemble CUSUM algorithm). Consider the ex-

pected evolution of the CUSUM statistic at each region. For the partitioning

algorithm that implements single vehicle adaptive ensemble CUSUM algorithm
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(Algorithm 4.3) in each subset of the partition, the following statement holds:

E[δk(apart)] ≤
( η̄

Dk
+

2(dn/me − 1)eη/2
√
Dk(1− e−η̄/2)√

Dmin(1− e−Dk/2)

+
(dn/me − 1)2eηDk(1− e−η̄)

Dmin(1− e−Dk)

)
(T̄max + dmax).

Proof. We start by deriving expression for a single vehicle. Let the number of

iterations between the (j−1)th and jth visit to region Rk be Ikj .

Let the observation during the jth visit to region Rk be yj and the CUSUM

statistic at region Rk after the visit be Ck
j . It follows that the probability to visit

region Rk between (j−1)th and jth visit is greater than

pj−1
k =

eC
k
j−1/2/

√
Dk

eC
k
j−1/2/

√
Dk + (n− 1)eη/2/

√
Dmin

.

Therefore, it follows from Lemma 4.7 that

E[Ikj ] ≤ (1 + (n− 1)e(η−Ckj−1)/2
√
Dk/Dmin)2.

Note that Ck
j = max{0, Ck

j−1+log(f 1
k (yj)/f

0
k (yj))}. Since, maximum of two convex

function is a convex function, it follows from Jensen inequality, see [76], that

E[Ck
j ] ≥ max{0,E[Ck

j−1] +Dk} ≥ E[Ck
j−1] +Dk.

Therefore, E[Ck
j ] ≥ jDk and for expected evolution of the CUSUM statistics

E[Ikj ] ≤ (1 + (n− 1)e(η−(j−1)Dk)/2
√
Dk/Dmin)2.
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Therefore, the total number of iterations Nk required to collect Nobs
k observa-

tions at region Rk satisfy

E[Nk(a)|Nobs
k ] =

Nobs
k∑
j=1

(1 + (n− 1)e(η−(j−1)Dk)/2
√
Dk/Dmin)2

= Nobs
k +

2(n− 1)eη/2
√
Dk(1− e−DkN

obs
k /2)√

Dmin(1− e−Dk/2)

+
(n− 1)2eηDk(1− e−DkN

obs
k )

Dmin(1− e−Dk)
.

Note that the number of observations Nobs
k required at regionRk satisfy E[Nobs

k ] =

η̄/Dk. It follows from Jensen’s inequality that

E[Nk(a)] ≤ η̄

Dk
+

2(n− 1)eη/2
√
Dk(1− e−η̄/2)√

Dmin(1− e−Dk/2)

(n− 1)2eηDk(1− e−η̄)
Dmin(1− e−Dk)

.

Since the expected time required to collect each evidence is smaller T̄max + dmax,

it follows that

E[δk(a)] ≤ (T̄max + dmax)E[Nk(a)].

The expression for the partitioning policy that implement single vehicle adap-

tive routing policy in each partition follow by substituting dn/me in the above

expressions. This completes the proof of the theorem.

Remark 4.6 (Performance bound). The bound derived in Theorem 4.8 is

very conservative. Indeed, it assumes the CUSUM statistic at each region to be

fixed at its maximum value η, except for the region in consideration. This is

practically never the case. In fact, if at some iteration the CUSUM statistic is
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close to η, then it is highly likely that the vehicle visits that region at the next

iteration, so that the updated statistic crosses the threshold η and resets to zero.

�

4.4 Numerical Results

We now elucidate on the concepts developed in this chapter through some

numerical examples. We first validate the expressions for expected detection delay

obtained in Section 4.2.

Example 4.1 (Expected detection delay). Consider a set of 4 regions sur-

veyed by a single vehicle. Let the location of the regions be (10, 0), (5, 0), (0, 5),

and (0, 10), respectively. The vector of processing times at each region is (1, 2, 3, 4).

Under the nominal conditions, the observations at each region are sampled from

normal distributionsN (0, 1),N (0, 1.33),N (0, 1.67) andN (0, 2), respectively, while

under anomalous conditions, the observations are sampled from normal distribu-

tions with unit mean and same variance as in nominal case. Let the prior prob-

ability of anomaly at each region be 0.5. An anomaly appears at each region

at time 50, 200, 350, and 500, respectively. Assuming that the vehicle is holo-

nomic and moves at unit speed, the expected detection delay at region R1 and

the average detection delay are shown in Fig. 4.3. It can be seen that the theoret-
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(a) Expected detection delay at region R1
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(b) Average detection delay

Figure 4.3: Expected and average detection delay. Solid black line with dots and black
×, respectively, represent the theoretical expression and the value obtained by Monte-Carlo
simulations under stationary policy q = [ 0.2 0.25 0.25 0.3 ]. Dashed green line and green
triangles, respectively, represent the theoretical expression and the value obtained by Monte-
Carlo simulations under stationary policy q = [ 0.5 0.2 0.2 0.1 ]. Solid red line and red
diamonds, respectively, represent the theoretical expression and the value obtained by Monte-
Carlo simulations under stationary policy q = [ 0.85 0.05 0.05 0.05 ].

ical expressions provide a lower bound to the expected detection delay obtained

through Monte-Carlo simulations. This phenomenon is attributed to the Wald’s

approximation. �

We remarked earlier that if each region cannot be reached from another region

in a single hop, then a fastest mixing Markov chain (FMMC) with the desired

stationary distribution can be constructed. Consider a set of regions modeled by

the graph G = (V, E), where V is the set of nodes (each node corresponds to a

region) and E is the set of edges representing the connectivity of the regions. The
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transition matrix of the FMMC P ∈ Rn×n with a desired stationary distribution

q ∈ ∆n−1 can be determined by solving the following convex minimization problem

proposed in [14]:

minimize ‖Q1/2PQ1/2 − qrootq
T
root‖2

subject to P1 = 1

QP = P TQ

Pij ≥ 0, for each (i, j) ∈ E

Pij = 0, for each (i, j) /∈ E ,

where Q is a diagonal matrix with diagonal q, qroot = (
√
q1, . . . ,

√
qn), and 1 is

the vector of all ones. We now demonstrate the effectiveness of FMMC in our

setup.

Example 4.2 (Effectiveness of FMMC ). Consider the same set of data as

in Example 4.1. We study the expected and average detection delay for random-

ized ensemble CUSUM algorithm when the regions to visit are sampled from the

FMMC. The expected and average detection delay for all-to-all connection topol-

ogy, line connection topology and ring connection topology are shown in Fig. 4.4.

It can be seen that the performance under all three topologies is remarkably close

to each other. �
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(a) Expected detection delay at region R1
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(b) Average detection delay

Figure 4.4: Expected and average detection delay for uniform stationary policy. The solid
black line represents the theoretical expression. The black ×, red diamonds, and green triangles,
respectively, represent the values obtained by Monte-Carlo simulations for all-to-all, line, and
ring connection topology. For the line and ring topologies, the region to visit at each iteration
is sampled from the fastest mixing Markov chain with the desired stationary distribution.

108



Chapter 4. Stochastic Surveillance Strategies for Spatial Quickest Detection

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

Ex
pe

ct
ed

 d
et

ec
tio

n 
de

la
y

ThresholdThreshold

E
x
p
ec

te
d

D
et

ec
ti

on
D

el
ay

Figure 4.5: Average detection delay for a single vehicle. The solid red line, the dashed
green line, and the solid black line with dots represent efficient, uniform, and optimal stationary
policies, respectively.

We now study the performance of the (numerically computed) optimal and our

efficient stationary policies for the single vehicle randomized ensemble CUSUM

algorithm.

Example 4.3 (Single vehicle optimal stationary policy). For the same set

of data as in Example 4.1, we now study the performance of the uniform, the

(numerically computed) optimal and our efficient stationary routing policies. A

comparison is shown in Fig. 4.5. Notice that the performance of the optimal and

efficient stationary policy is extremely close to each other. �

We now study the performance of the optimal, partitioning and uniform sta-

tionary policies for randomized ensemble CUSUM algorithm with multiple vehi-

cles.

Example 4.4 (Multiple-vehicle optimal stationary policy). Consider a set

of 6 regions surveyed by 3 vehicles. Let the regions be located at (10, 0), (5, 0), (0, 5),

(0, 10), (0, 0) and (5, 5). Let the processing time at each region be unitary. Under
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Figure 4.6: Average detection delay for 3 vehicles surveying 6 regions. The green triangles
represent the policy in which each vehicle surveys each region uniformly. The red diamonds and
black × represent the partitioning policy in which each vehicle implements the single vehicle
efficient stationary policy and the single vehicle optimal stationary policy, respectively.

nominal conditions, the observations at each region are sampled from normal dis-

tributions N (0, 1), N (0, 1.4), N (0, 1.8), N (0, 2.2), N (0, 2.6) and N (0, 3), respec-

tively. Under anomalous conditions, the observations are sampled from normal

distributions with unit mean and same variance as in the nominal case. Let the

prior probability of anomaly at each region be 0.5. An anomaly appears at each

region at time 25, 35, 45, 55, 65 and 75, respectively. Assuming that the vehicles

are holonomic and moves at unitary speed, the average detection delay for the

uniform stationary policy for each vehicle, the partitioning policy in which each

vehicle implements single vehicle efficient stationary policy in each subset of the

partition, and the partitioning policy in which each vehicle implements single ve-

hicle optimal stationary policy in each subset of the partition is shown in Fig. 4.6.

�

We now study the performance of the adaptive ensemble CUSUM algorithm,

and we numerically show that it improves the performance of our stationary policy.
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Example 4.5 (Adaptive ensemble CUSUM algorithm). Consider the same

set of regions as in Example 4.1. Let the processing time at each region be uni-

tary. The observations at each region are sampled from normal distributions

N (0, σ2) and N (1, σ2), in nominal and anomalous conditions, respectively. Under

the nominal conditions at each region and σ2 = 1, a sample evolution of the adap-

tive ensemble CUSUM algorithm is shown in Fig. 4.7(a). The anomaly appears

at regions R2, R3, and R4 at time 100, 300, and 500, respectively. Under these

anomalous conditions and σ2 = 1, a sample evolution of the adaptive ensemble

CUSUM algorithm is shown in Fig. 4.7(b). It can be seen that the adaptive

ensemble algorithm samples a region with high likelihood of anomaly with high

probability, and, hence, it improves upon the performance of the stationary policy.

We now study the expected detection delay under adaptive ensemble CUSUM

algorithm and compare it with the efficient stationary policy. The anomaly at each

region appears at time 50, 200, 350 and 500, respectively. The expected detection

delay obtained by Monte-Carlo simulations for σ2 = 1 and different thresholds is

shown in Fig. 4.8(a). It can be seen that the adaptive policy improves the detection

delay significantly over the efficient stationary policy for large thresholds. It should

be noted that the detection delay minimization is most needed at large thresholds

because the detection delay is already low at small thresholds. Furthermore,

frequent false alarms are encountered at low thresholds and hence, low thresholds
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are not typically chosen. The expected detection delay obtained by Monte-Carlo

simulations for different value of σ2 and threshold η = 5 is shown in Fig. 4.8(b).

Note that for a given value of σ2, the Kullback-Leibler divergence betweenN (1, σ2)

and N (0, σ2) is 1/2σ2. It can be seen that the adaptive policy improves the

performance of the stationary policy for each value of noise. �

We now apply the adaptive ensemble CUSUM algorithm to a more general

scenario where the anomalous distribution is not completely known. As remarked

earlier, in this case, the CUSUM algorithm should be replaced with the GLR

algorithm. Given the nominal probability density function f 0
k and the anomalous

probability density function f 1
k (·|θ) parameterized by θ ∈ Θ ⊆ R`, for some ` ∈ N,

the GLR algorithm, see [6], works identically to the CUSUM algorithm, except

that the CUSUM statistic is replaced by the statistic

Λk
τ = max

t∈{1,...,τ}
sup
θ∈Θ

τ∑
i=t

log
f 1
k (yi|θ)
f 0
k (yi)

.

Example 4.6 (Generalized Likelihood Ratio). For the same set of data as

in Example 4.5, assume that there are three types of potential anomalies at each

region. Since any combination of these anomalies can occur simultaneously, there

are 7 potential distributions under anomalous conditions. We characterize these

distributions as different hypothesis and assume that the observations under each

hypothesis h ∈ {1, . . . , 8} are sampled from a normal distribution with mean µh
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(a) CUSUM statistic and vehicle routing probabilities under nominal conditions
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(b) CUSUM statistic and vehicle routing probabilities under anomalous conditions

Figure 4.7: Sample evolution of the adaptive ensemble CUSUM algorithm. The dashed-
dotted blue line, dashed green line, solid red line and solid black line with dots represent data
from regions R1,R2,R3 and R4, respectively. The solid brown horizontal line represents the
threshold. The vehicle routing probability is a function of the likelihood of anomaly at each
region. As the likelihood of an anomaly being present at a region increases, also the probability
to survey that region increases. Anomalies appear at region R2, R3 and R4 at times 100, 300
and 500, respectively. Once an anomaly is detected, it is removed and the statistic is reset to
zero.
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(b) Expected detection delay as a function of KL divergence

Figure 4.8: Performance of the adaptive ensemble CUSUM algorithm. The solid black line
represents the theoretical expected detection delay for the efficient stationary policy and the
black × represent the expected detection delay for the adaptive ensemble CUSUM algorithm.

and covariances Σh. Let

µ1 =
[

0
0
0

]
, µ2 =

[
1
0
0

]
, µ3 =

[
0
1
0

]
, µ4 =

[
0
0
1

]
,

µ5 =
[

1
1
0

]
, µ6 =

[
0
1
1

]
, µ7 =

[
1
0
1

]
, µ8 =

[
1
1
1

]
, and

Σ1 =
[

1 0 0
0 1 0
0 0 1

]
,Σ2 =

[ 2 1 0
1 3

2
0

0 0 1

]
,Σ3 =

[ 1 1 0
1 2 1
0 1 3

2

]
,Σ4 =

[ 3
2

0 0
0 1 1
0 1 2

]
,

Σ5 =
[

2 1 0
1 2 1
0 1 1

]
,Σ6 =

[
1 1 0
1 2 1
0 1 2

]
,Σ7 =

[
2 0 1
0 1 1
1 1 2

]
,Σ8 =

[
2 1 1
1 2 1
1 1 2

]
.

We picked region R1 as non-anomalous, while hypothesis 4, 6, and 8 were true

at regions R2,R3, and R4, respectively. The Kullback-Leibler divergence at a

region was chosen as the minimum of all possible Kullback-Leibler divergences at

that region. A sample evolution of the adaptive ensemble CUSUM algorithm with
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GLR statistic replacing the CUSUM statistic is shown in Fig 4.9(a). It can be seen

the performance is similar to the performance in Example 4.5. As an additional

ramification of this algorithm, we also get the likelihood of each hypothesis at

each region. It can be seen in Fig 4.9(b) that the true hypothesis at each region

corresponds to the hypothesis with maximum likelihood. �

4.5 Experimental Results

We first detail our implementation of the algorithms using the Player/Stage

robot control software package and the specifics of our robot hardware. We then

present the results of the experiment.

Robot hardware

We use Erratic mobile robots from Videre Design shown in Fig. 4.10. The

robot platform has a roughly square footprint (40cm× 37cm), with two differential

drive wheels and a single rear caster. Each robot carries an on-board computer

with a 1.8Ghz Core 2 Duo processor, 1 GB of memory, and 802.11g wireless

communication. For navigation and localization, each robot is equipped with a

Hokuyo URG- 04LX laser rangefinder. The rangefinder scans 683 points over

240at 10Hz with a range of 5.6 meters.
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(a) GLR statistic under anomalous conditions
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(b) Normalized likelihood of each hypothesis

Figure 4.9: Sample evolution of the adaptive ensemble CUSUM algorithm with GLR statis-
tic. The dashed-dotted blue line, dashed green line, solid red line and solid black line with
dots represent data from regions R1,R2,R3 and R4, respectively. The solid brown horizontal
line represents the threshold. The vehicle routing probability is a function of the likelihood of
anomaly at each region. As the likelihood of an anomaly being present at a region increases,
also the probability to survey that region increases. Anomalies appear at region R2, R3 and
R4 at times 100, 300 and 500, respectively. Once an anomaly is detected, it is removed and the
statistic is reset to zero. The true hypothesis at each region corresponds to the hypothesis with
maximum likelihood
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Rear caster

ComputerRangefinder

Drive wheel

Figure 4.10: Erratic mobile robot with URG-04LX laser rangefinder.

Localization

We use the amcl driver in Player which implements Adaptive Monte-Carlo

Localization, see [100]. The physical robots are provided with a map of our lab

with a 15cm resolution and told their starting pose within the map (Fig. 4.11).

We set an initial pose standard deviation of 0.9m in position and 12 in orientation,

and request updated localization based on 50 of the sensors range measurements

for each change of 2cm in robot position or 2 in orientation. We use the most

likely pose estimate by amcl as the location of the robot.

Navigation

Each robot uses the snd driver in Player for the Smooth Nearness Diagram

navigation, see [32]. For the hardware, we set the robot radius parameter to 22cm,

obstacle avoidance distance to 0.5m, and maximum speed to 0.2m/s. We let a

robot achieve its target when it is within 10cm of the target.
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Region 1
Region 2

Region 3

Figure 4.11: This figure shows a map of our lab together with our surveillance configuration.
Three erratic robots survey the selected 8 regions (black dots), which have been partitioned
among the robots. Regions 1, 2, and 3 are also considered in Fig. 4.12, where we report the
statistics of our detection algorithm.

Experiment setup

For our experiment we employed our team of 3 Erratic robots to survey our

laboratory. As in Fig. 4.11, a set of 8 important regions have been chosen and

partitioned among the robots. Each robot surveys its assigned regions. In particu-

lar, each robot implements the single robot adaptive ensemble CUSUM algorithm

in its regions. Notice that Robot 1 cannot travel from region 1 to region 3 in a

single hop. Therefore, Robot 1 selects the regions according to a Markov chain

with desired stationary distribution. This Markov chain was constructed using the

Metropolis-Hastings algorithm. In particular, for a set of regions modeled as a

graph G = (V, E), to achieve a desired stationary routing policy q, the Metropolis-
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Region 3

Region 2

Region 1
Robot 1

Robot 2

Robot 3

Figure 4.12: A snapshot of our surveillance experiment, where three robots survey six
locations in our lab (Fig. 4.11). In this figure we show the three regions assigned to the first
robot. Each region correspond to a part of our campus, and observations are taken accordingly.
Notice that Region 3 contains an anomaly (black smoke), and that the CUSUM statistics, which
are updated upon collection of observations, reveal the anomaly (green peak). The transition
probabilities are updated according to our adaptive ensemble CUSUM algorithm.

Hastings algorithm, see [105], picks the transition matrix P with entries:

Pij =



0, if (i, j) /∈ E ,

min
{

1
di
,
qj
qidj

}
if (i, j) ∈ E and i 6= j,

1−
∑n

k=1,k 6=i Pik if (i, j) ∈ E and i = j,

where di is the number of regions that can be visited from region Ri.

Observations (in the form of pictures) are collected by a robot each time a

region is visited. In order to have a more realistic experiment, we map each

location in our lab to a region in our campus. Then, each time a robot visit
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Region 2 Region 2 with anomaly

Region 3 with anomalyRegion 3

Figure 4.13: This figure shows sample pictures from Region 2 and Region 3, both with and
without the anomaly to be detected.

a region in our lab, a picture of a certain region in our campus is selected as

observation (see Fig. 4.12). Pictures have been collected prior to the experiment.

Finally, in order to demonstrate the effectiveness of our anomaly detection

algorithm, some pictures from regions 2 and 3 have been manually modified to

contain an anomalous pattern; see Fig. 4.13. Anomalous pictures are collected

by Robot 1 at some pre-specified time instants (the detection algorithm, however,

does not make use of this information).

Probability density function estimation

In order to implement our adaptive ensemble CUSUM algorithm, the proba-

bility density functions of the observations at the regions in presence and absence
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of an anomaly need to be estimated. For this task, we first collect sample images,

and we register them in order to align their coordinates, see[74]. We then select a

reference image, and compute the difference between the sample pictures and the

reference image. Then, we obtain a coarse representation of each difference image

by dividing the image into blocks. For each difference image, we create a vector

containing the mean value of each block, and we compute the mean and standard

deviation of these vectors. Finally, we fit a normal distribution to represent the

collected nominal data. In order to obtain a probability density distribution of the

images with anomalies, we manually modify the nominal images, and we repeat

the same procedure as in the nominal case.

Experiment results

The results of our experiment are illustrated in Fig. 4.12, Fig. 4.13, and in

the multimedia extension available at http://www.ijrr.org. From the CUSUM

statistics we note that the anomalies in Region 2 and Region 3 are both detected:

indeed both the red curve and the green curve pass the decision threshold. We

also note that few observations are necessary to detect the anomaly. Since the

robots successfully survey the given environment despite sensor and modeling

uncertainties due to real hardware, we conclude that our modeling assumptions

are not restrictive.
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4.6 Conclusions and Future Directions

In this chapter we studied a spatial quickest detection problem in which mul-

tiple vehicles surveil a set of regions to detect anomalies in minimum time. We

developed a novel ensemble CUSUM algorithm to detect an anomaly in any of

the regions. A stochastic vehicle routing policy was adopted in which the vehi-

cle samples the next region to visit from a probability vector. In particular, we

studied (i) stationary policy: the probability vector is a constant function of time;

and (ii) adaptive policy: the probability vector is adapted with time based on the

collected observations. We designed an efficient stationary policy that depends on

the travel time of the vehicles, the processing time required to collect information

at each region, and the anomaly detection difficulty at each region. In adaptive

policy, we modified the efficient stationary policy at each iteration to ensure that

the regions with high likelihood of anomaly are visited with high probability, and

thus, improved upon the performance of the stationary policy. We also mentioned

the methods that extend the ideas in this chapter immediately to the scenario in

which the distributions of the observations in presence and absence of anomaly are

not completely known, but belong to some parametrized family, or to the scenario

in which the observations collected from each region are not independent (e.g., in

the case of dynamic anomalies).
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There are several possible extensions of the ideas considered here. First, in the

case of dependent observations at each region, the current method assumes known

distributions in the presence and absence of anomalies. An interesting direction

is to design quickest detection strategies that are robust to the uncertainties in

these distributions. Second, the anomalies considered in this chapter are always

contained in the same region. It would be of interest to consider anomalies that

can move from one region to another. Third, the policy presented in this chapter

considers an arbitrary partition that satisfy some cardinality constraints. It is of

interest to come up with smarter partitioning policies that take into consideration

the travel times, and the difficulty of detection at each region. Last, to construct

the fastest mixing Markov chain with desired stationary distribution, we relied on

time-homogeneous Markov chains. A time varying Markov chain may achieve a

faster convergence to the desired stationary distribution, see [37]. This is also an

interesting direction to be pursued.
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4.7 Appendix: Probabilistic guarantee to the

uniqueness of critical point

We now provide probabilistic guarantee for Conjecture 4.3. The average de-

tection delay for a single vehicle under a stationary policy q is

δavg(q) =
( n∑
i=1

vi
qi

)( n∑
i=1

qiT̄i +
n∑
i=1

n∑
j=1

qiqjdij

)
,

where vi = wiη̄/Di for each i ∈ {1, . . . , n}. A local minimum of δavg can be can

be found by substituting qn = 1−
∑n−1

j=1 qj, and then running the gradient descent

algorithm from some initial point q0 ∈ ∆n−1 on the resulting objective function.

Let v = (v1, . . . , vn) and T = (T̄1, . . . , T̄n). We assume that the parameters

{v,T , D, n} in a given instance of optimization problem (4.3) and the chosen

initial point q0 are realizations of random variables sampled from some space

K. For a given realization κ ∈ K, let the realized value of the parameters be

{v(κ),T (κ), D(κ), n(κ)}, and the chosen initial point be q0(κ). The associated

optimization problem is:

minimize
q∈∆n(κ)−1

δavg(q |κ), (4.4)

where, for a given realization κ ∈ K, δavg(· |κ) : ∆n(κ)−1 → R>0 ∪{+∞} is defined

by

δavg(q |κ) =
( n(κ)∑
i=1

vi(κ)

qi

)(n(κ)∑
i=1

qiT̄i(κ) +

n(κ)∑
i=1

n(κ)∑
j=1

qiqjdij(κ)
)
.
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For a given realization κ, let gd(· |κ) : ∆n(κ)−1 → ∆n(κ)−1 be the function that

determines the outcome of the gradient descent algorithm applied to the function

obtained by substituting qn(κ) = 1 −
∑n(κ)−1

j=1 qj in δavg(q |κ). In other words,

the gradient descent algorithm starting from point q0(κ) converges to the point

gd(q0(κ) |κ). Consider N1 realizations {κ1, . . . , κN1} ∈ KN1 . Let qoptimal(κ) =

gd( 1
n(κ)

1n(κ) |κ), and define

γ̂ = max{‖gd(q0(κs) |κs)− qoptimal(κs)‖ | s ∈ {1, . . . , N1}}.

It is known from [19] that if N1 ≥ −(log ν1)/µ1, for some µ1, ν1 ∈ ]0, 1[, then,

with at least confidence 1− ν1, it holds

P({q0(κ)∈∆n(κ)−1 | ‖gd(q0(κ) |κ)− qoptimal(κ)‖ ≤ γ̂}) ≥ 1− µ1,

for any realization κ ∈ K.

We sample the following quantities: the value n as uniformly distributed in

{3, . . . , 12}; each coordinate of the n regions in two dimensional space from the

normal distribution with mean 0 and variance 100; the value Ti, for each i ∈

{1, . . . , n}, from the half normal distribution with mean 0 and variance 100; and

the value vi, for each i ∈ {1, . . . , n}, uniformly from ]0, 1[. For a realized value of

n, we chose q0 uniformly in ∆n−1. Let the matrix D be the Euclidean distance

matrix between the n sampled regions.
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We considered N1 = 1000 realizations of the parameters {v,T , D, n} and

initial value q0. The sample sizes were determined for µ1 = 0.01 and ν1 = 10−4.

The value of γ̂ obtained was 10−4. Consequently, the gradient descent algorithm

for the optimization problem (4.3) starting from any feasible point yields the

same solution with high probability. In other words, with at least confidence level

99.99% and probability at least 99%, the optimization problem (4.3) has a unique

critical point at which the minimum is achieved.
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Algorithm 4.3: Single Vehicle Adaptive Ensemble CUSUM

Input : parameters η, Dk, pdfs f0
k , f

1
k , for each k ∈ {1, . . . , n} ;

Output : decision on anomaly at each region ;

1 set Λj0 = 0, for all j ∈ {1, . . . , n}, and τ = 1;

while true do

2 set new prior π1
k = eΛkτ /(1 + eΛkτ ), for each k ∈ {1, . . . , n}

3 set qk =

√
π1
k/Dk∑n

j=1

√
π1
j/Dj

, for each k ∈ {1, . . . , n};

4 sample a region from probability distribution (q1, . . . , qn);

5 collect sample yτ from region k;

6 update the CUSUM statistic at each region

Λjτ =


(

Λkτ−1 + log
f1
k(yτ )

f0
k(yτ )

)+

, if j = k;

Λjτ−1, if j ∈ {1, . . . , n} \ {k};

if Λkτ > η then

7 anomaly detected at region Rk;

8 set Λkτ = 0;

9 set τ = τ + 1 ;
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Chapter 5

Operator Attention Allocation
via Knapsack Problems

In this chapter we study knapsack problems with sigmoid utility. The time

evolution of the performance of a human operator is well modeled by a sigmoid

function (see Section 2.3) and consequently, the knapsack problems with sigmoid

utility well model the resource (attention) allocation problem of a time-constrained

human operator. We study three particular knapsack problems with sigmoid util-

ity, namely, the knapsack problem with sigmoid utility, the generalized assignment

problem with sigmoid utility, and the bin-packing problem with sigmoid utility.

These problems model situations where human operators are looking at the feeds

from a camera network and deciding on the presence of some malicious activ-

ity. The first problem determines the optimal fraction of work-hours an operator

should allocate to each feed such that their overall performance is optimal. The

second problem determines the allocations of the tasks to identical and inde-
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pendently working operators as well as the optimal fraction of work-hours each

operator should allocate to each feed such that the overall performance of the

team is optimal. Assuming that the operators work in an optimal fashion, the

third problem determines the minimum number of operators and an allocation of

each feed to some operator such that each operator allocates non-zero fraction of

work-hours to each feed assigned to them. We study these knapsack problems

under following assumptions on the sigmoid functions:

(A1). Smooth sigmoid functions: For the ease of the presentation, we focus on

smooth sigmoid functions. The analysis presented here extends immediately

to non-smooth functions by using the sub-derivative instead of the derivative

in the following analysis.

(A2). Monotonic sigmoid functions: We assume that the sigmoid functions asso-

ciated with the problem are non-decreasing. In several interesting budget

allocation problems, e.g. [75], the sigmoid utility is not a non-decreasing

function. The approach in this chapter extends to the case of a general

sigmoid utility. The algorithms proposed in this chapter also involve certain

heuristics that improve the constant-factor solution. These heuristics exploit

the monotonicity of the sigmoid function and will not hold for a general sig-
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moid function. We note that even without the performance improvement

heuristics the solution is within a constant factor of optimal.

Note that both these assumptions hold true for sigmoid functions associated with

human performance.

5.1 Sigmoid Function and Linear Penalty

In order to gain insight into the behavior of sigmoid functions, we start with

a simple problem with a very interesting result. We study the maximization of a

sigmoid function subject to a linear penalty. Consider a sigmoid function f and

a penalty rate c ∈ R>0, and the following optimization problem:

maximize
t≥0

f(t)− ct. (5.1)

The derivative of a sigmoid function is not a one to one mapping and hence, not

invertible. We define the pseudo-inverse of the derivative of a sigmoid function f

with inflection point tinf, f † : R>0 → R≥0 by

f †(y) =


max{t ∈ R≥0 | f ′(t) = y}, if y ∈ (0, f ′(tinf)],

0, otherwise.

(5.2)

Notice that the definition of the pseudo-inverse is consistent with Figure 2.1. We

now present the solution to the problem (5.1).

130



Chapter 5. Operator Attention Allocation via Knapsack Problems

Lemma 5.1 (Sigmoid function with linear penalty). For the optimization

problem (5.1), the optimal allocation t∗ is

t∗ := argmax{f(β)− cβ | β ∈ {0, f †(c)}}.

Proof. The global maximum lies at the point where first derivative is zero or at the

boundary. The first derivative of the objective function is f ′(t)− c. If f ′(tinf) < c,

then the objective function is a decreasing function of time and the maximum

is achieved at t∗ = 0. Otherwise, a critical point is obtained by setting first

derivative zero. We note that f ′(t) = c has at most two roots. If there exist two

roots, then only the larger root lies in the region where the objective is concave

and hence corresponds to a maximum. Otherwise, the only root lies in the region

where the objective is concave and hence corresponds to a local maximum. The

global maximum is determined by comparing the local maximum with the value

of the objective function at the boundary t = 0. This completes the proof.

The optimal solution to problem (5.1) for different values of penalty rate c

is shown in Figure 5.1. One may notice the optimal allocation jumps down to

zero at a critical penalty rate. This jump in the optimal allocation gives rise to

combinatorial effects in the problems involving multiple sigmoid functions.

Definition 5.1 (Critical penalty rate). Given a sigmoid function f and a

linear penalty, we refer to the maximum penalty rate at which problem (5.1) has
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a non-zero solution by critical penalty rate. Formally, for a given sigmoid function

f and penalty rate c ∈ R>0, let the solution of the problem (5.1) be t∗f,c, the critical

penalty rate ψf is defined by

ψf = max{c ∈ R>0 | t∗f,c ∈ R>0}.

00 Penalty Rate

O
p
ti

m
al

A
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o
ca

ti
on

ψf

Figure 5.1: Optimal allocation to a sigmoid function as a function of linear penalty

5.2 Knapsack Problem with Sigmoid Utility

In this section, we consider the knapsack problem (KP) with sigmoid utility.

We first define the problem and then develop an approximation algorithm for it.

5.2.1 KP with Sigmoid Utility: Problem Description

Consider a single knapsack and N items. Let the utility of item ` ∈ {1, . . . , N}

be a sigmoid function f` : R≥0 → R≥0. Given total available resource T ∈ R>0,

the objective of the KP with sigmoid utility is to determine the resource allocation

to each item such that the total utility of the knapsack is maximized. Formally,
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the KP with sigmoid utility is posed as:

maximize
t�0

N∑
`=1

f`(t`)

subject to
N∑
`=1

t` ≤ T.

(5.3)

The KP with sigmoid utility models the situation where a human operator

has to perform N decision making tasks within time T . If the performance of

the human operator on task ` is given by sigmoid function f`, then the optimal

duration allocation to each task is determined by the solution of problem (5.3).

We remark that the objective function in problem (5.3) can be a weighted sum

of performance functions as well. Such weights can be absorbed into the perfor-

mance functions yielding a new sigmoid performance function. We now state the

following proposition from [1]:

Proposition 5.2 (Hardness of KP with sigmoid utility). The KP with

sigmoid utility is NP-hard, unless P = NP.

5.2.2 KP with Sigmoid Utility: Approximation Algorithm

We now develop an approximation algorithm for the KP with sigmoid utility.

We define the Lagrangian L : RN
>0 × R≥0 × RN

≥0 → R for the knapsack problem

with sigmoid utility (5.3) by

L(t, α,µ) =
N∑
`=1

f`(t`) + α(T −
N∑
`=1

t`) + µTt.
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Let tinf
` be the inflection point of sigmoid function f` and f †` be the pseudo-

inverse of its derivative as defined in equation (5.2). We define the maximum

value of the derivative of sigmoid function f` by α` = f ′`(t
inf
` ). We also define

αmax = max{α` | ` ∈ {1, . . . , N}}. We will later show that αmax is the maximum

possible value of the Lagrange multiplier α.

We define the set of inconsistent sigmoid functions by I = {` ∈ {1, . . . , N} | tinf
` >

T}. Similarly and accordingly, we define the set of consistent sigmoid functions

as {1, . . . , N} \ I. We denote the j-th element of the standard basis of RN by ej.

Define F : (0, αmax] → R≥0 as the optimal value of the objective function in

the following α-parametrized KP:

maximize
N∑
`=1

x`f`(f
†
` (α))

subject to
N∑
`=1

x`f
†
` (α) ≤ T

x` ∈ {0, 1}, ∀` ∈ {1, . . . , N}.

(5.4)

Define FLP : (0, αmax]→ R≥0 as the optimal value of the objective function in

the following α-parametrized fractional KP:

maximize
N∑
`=1

x`f`(f
†
` (α))

subject to
N∑
`=1

x`f
†
` (α) ≤ T

x` ∈ [0, 1], ∀` ∈ {1, . . . , N}.

(5.5)
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For a given α, the solution to problem (5.5) is obtained in the following way:

(i). sort tasks such that

f1(f †1(α))

f †1(α)
≥ f2(f †2(α))

f †2(α)
≥ . . . ≥ fN(f †N(α))

f †N(α)
;

(ii). find k := min{j ∈ {1, . . . , N} |
∑j

i=1 f
†
i (α) ≥ T};

(iii). the solution is xLP
1 = xLP

2 = . . . = xLP
k−1 = 1, xLP

k = (T −
∑k−1

i=1 f
†
i (α))/f †k(α),

and xLP
k+1 = xLP

k+2 = . . . = xLP
N = 0.

A 2-factor solution to the binary KP (5.4) is obtained by picking the better of

the sets of tasks {1, . . . , k − 1} and {k} (see [54, 57] for details). Let Fapprox :

(0, αmax] → R≥0 be the value of the objective function in the α-parametrized

knapsack problem under such 2-factor solution.

We now state the following important property of the function FLP:

Lemma 5.3 (Discontinuity of FLP). The maximal set of points of discontinuity

of the function FLP is {α1, . . . , αN}.

Proof. For each α ∈ [0, αmax], the α-parametrized fractional KP is a linear pro-

gram, and the solution lies at one of the vertex of the feasible simplex. Note

that if f †` (α) is a continuous function for each ` ∈ {1, . . . , N}, then the vertices

of the feasible simplex are continuous functions of α. Further, the objective func-

tion is also continuous if f †` (α) is a continuous function for each ` ∈ {1, . . . , N}.
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Therefore, the function FLP may be discontinuous only if f †` (α) is discontinuous

for some `, i.e., α ∈ {α1, . . . , αN}.

We will show that if each sigmoid function is consistent, then the allocation to

each sigmoid function can be written in terms of the Lagrange multiplier α, and

the KP with sigmoid utility (5.3) reduces to α-parametrized KP (5.4). Further,

the optimal Lagrange multiplier α∗ can be searched in the interval ]0, αmax], and

the α∗-parametrized KP can be solved using standard approximation algorithms

to determine a solution within a constant factor of optimality. The search of

the optimal Lagrange multiplier is a univariate continuous optimization problem

and a typical optimization algorithm will determine the exact optimal Lagrange

multiplier only asymptotically, but it will converge to an arbitrarily small neigh-

borhood of the optimal Lagrange multiplier in finite number of iterations. Thus,

a factor of optimality within an ε neighborhood of the desired factor of optimality,

for any ε > 0, can be achieved in a finite number of iterations. We utilize these

ideas to develop a (2 + ε)-factor approximation algorithm for KP with sigmoid

utility in Algorithm 5.1. This algorithm searches for the Lagrange multiplier that

maximizes the optimal value function FLP of the α-parametrized fractional KP

and truncates the associated solution to determine a constant-factor solution to

the knapsack problem with sigmoid utility. This algorithm also involves a per-

formance improvement heuristic in which the unemployed resource is allocated to
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the most beneficial task amongst those with zero resource. We note that if the

sigmoid utilities are non-smooth, then the standard KKT conditions in the follow-

ing analysis are replaced with the KKT conditions for non-smooth optimization

problems [44].

We define an ε-approximate maximizer of a function as a point in the domain

of the function at which the function attains a value within ε of its maximum

value. We now analyze Algorithm 5.1.

Theorem 5.4 (KP with sigmoid utility). The following statements hold for

the KP with sigmoid utility (5.3) and the solution obtained via Algorithm 5.1:

(i). the solution is within factor of optimality (2 + ε), for any ε > 0;

(ii). if ε-approximate maximizer over each continuous piece of FLP can be searched

using a constant number of function evaluations, then the Algorithm 5.1 runs

in O(N2) time.

Proof. We apply the Karush-Kuhn-Tucker necessary conditions [60] for an optimal

solution:

Linear dependence of gradients

∂L

∂t∗`
(t∗, α∗,µ∗) = f ′`(t

∗
`)− α∗ + µ∗` = 0, for each ` ∈ {1, . . . , N}. (5.6)
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Algorithm 5.1: KP with Sigmoid Utility: Approximation Algorithm

Input : f`, ` ∈ {1, . . . , N}, T ∈ R>0 ;

Output : optimal allocations t∗ ∈ RN≥0;

% search for optimal Lagrange multiplier

1 α∗LP ← argmax{FLP(α) | α ∈ [0, αmax]};

2 determine the 2-factor solution x∗ of α∗LP-parametrized knapsack problem ;

% determine best inconsistent sigmoid function

3 find `∗ ← argmax{f`(T ) | ` ∈ I};

% pick the best among consistent and inconsistent tasks

4 if f`∗(T ) > Fapprox(α∗LP) then

t∗ = Te`∗ ;

5 else

t†` ← x∗`f
†
` (α∗LP),∀` ∈ {1, . . . , N};

% heuristic to improve performance

% pick the best sigmoid function with zero resource

6 t∗` ←


t†`, if ` ∈ {1, . . . , N} \ ¯̀

T −
∑N
`=1 t

†
`, if ` = ¯̀;

Feasibility of the solution

T − 1T
Nt
∗ ≥ 0 and t∗ � 0. (5.7)
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Complementarity conditions

α∗(T − 1T
Nt
∗) = 0. (5.8)

µ∗` t
∗
` = 0, for each ` ∈ {1, . . . , N}. (5.9)

Non-negativity of the multipliers

α∗ ≥ 0, µ∗ � 0. (5.10)

Since f` is a non-decreasing function, for each ` ∈ {1, . . . , N}, the constraint (5.7)

should be active, and thus, from complementarity condition (5.8) α∗ > 0. Further,

from equation (5.9), if t∗` 6= 0, then µ∗` = 0. Therefore, if a non-zero resource is al-

located to sigmoid function fη, η ∈ {1, . . . , N}, then it follows from equation (5.6)

f ′η(t
∗
η) = α∗. (5.11)

Assuming each f` is consistent, i.e., tinf
` ≤ T , for each ` ∈ {1, . . . , N}, the second

order condition [60] yields that a local maxima exists at t∗ only if

f ′′η (t∗η) ≤ 0 ⇐⇒ t∗η ≥ tinf
η . (5.12)

The equations (5.11) and (5.12) yield that optimal non-zero allocation to sigmoid

function fη is

t∗η = f †η(α∗). (5.13)

Given the optimal Lagrange multiplier α∗, the optimal non-zero allocation to

the sigmoid function fη is given by equation (5.13). Further, the optimal set of
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sigmoid functions with non-zero allocations is the solution to the α∗-parametrized

knapsack problem (5.4). We now show that α∗ is maximizer of F . Since, at

least one task is processed, w`f
′
`(t
∗
`) = α, for some ` ∈ {1, . . . , N}. Thus, α ∈

[0, αmax]. By contradiction assume that ᾱ is the maximizer of F , and F (ᾱ) >

F (α∗). This means that the allocation corresponding to ᾱ yields higher reward

than the allocation corresponding to α∗. This contradictions equation (5.13).

If tinf
` > T , for some ` ∈ {1, . . . , N}, then equation (5.12) does not hold for

any t` ∈ [0, T ]. Since, f` is convex in the interval [0, T ], the optimal allocation

for maximum is at the boundary, i.e., t` ∈ {0, T}. Therefore, as exemplified

in Figure 5.2, the optimal allocation is either Te` or lies at the projection of the

simplex on the hyperplane t` = 0. The projection of the simplex on the hyperplane

t` = 0 is again a simplex and the argument holds recursively.

To establish the first statement we note that α∗LP is maximizer of FLP, and

the α-parametrized fractional knapsack problem is relaxation of α-parametrized

knapsack problem, hence

FLP(α∗LP) ≥ FLP(α∗) ≥ F (α∗). (5.14)

We further note that α∗ is maximizer of F and Fapprox is sub-optimal value of the

objective function, hence

F (α∗) ≥ F (α∗LP) ≥ Fapprox(α∗LP) ≥ 1

2
FLP(α∗LP), (5.15)
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Figure 5.2: Possible locations of the maximum are shown in green stars and solid green
line. The maximum possible allocation T is smaller than the inflection point of the third
sigmoid function. For any allocation to the third sigmoid function, the corresponding entry in
the Hessian matrix is positive, and the optimal allocation to third sigmoid function is 0 or T .
Optimal allocation to the first and second sigmoid function may lie at the vertex of simplex, or
at a location where Jacobian is zero and Hessian matrix is negative definite.

where the last inequality follows from the construction of Fapprox (see 2-factor

policy for binary knapsack problem [57]). The value of objective function at

allocation t† in Algorithm 5.1 is equal to Fapprox(α∗LP). The allocation t† may

not saturate the total available resource T . Since, the sigmoid functions are non-

decreasing function of the allocated resource, the total resource must be utilized,

and it is heuristically done in step 6 of the Algorithm 5.1. This improves the value

of the objective function and the factor of optimality remains at most 2. Finally,

since a numerical method will only compute ε-approximate maximizer of FLP in

finite time, the factor of optimality increases to (2 + ε).
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To establish the last statement, we note that each evaluation of FLP requires

the solution of fractional KP and has O(N) computational complexity. According

to Lemma 5.3 that the maximum number of points of discontinuity of FLP is

N + 1. Therefore, if ε-approximate maximizer over each continuous piece of FLP

can be searched using a constant number of function evaluations, then O(N)

computations are needed over each continuous piece of FLP. Consequently, the

Algorithm 5.1 runs in O(N2) time.

Corollary 5.5 (Identical sigmoid functions). If the sigmoid functions in

the KP with sigmoid utility (5.3) are identical and equal to f , then the optimal

solution t∗ is an N -tuple with m∗ entries equal to T/m∗ and all other entries zero,

where

m∗ = argmax
m∈{1,...,N}

m f(T/m). (5.16)

Proof. It follows from Algorithm 5.1 that for identical sigmoid functions the op-

timal non-zero resource allocated is the same for each sigmoid function. The

number of sigmoid functions with optimal non-zero resource is determined by

equation (5.16), and the statement follows.

Discussion 5.1 (Search of the optimal Lagrange multiplier). The ap-

proximate solution to the KP with sigmoid utility in Algorithm 5.1 involves the

search for α∗LP, the maximizer of function FLP. It follows from Lemma 5.3 that

142



Chapter 5. Operator Attention Allocation via Knapsack Problems

this search corresponds to the global maximization of N univariate continuous

functions. The global maximum over each continuous piece can be determined

using the P -algorithm [58, 20]. If for a given instance of the KP with sigmoid

utility, stronger properties of FLP can be established, then better algorithms can

be utilized, e.g., (i) if each continuous piece of FLP is differentiable, then the mod-

ified P -algorithm [21] can be used for global optimization; (ii) if each continuous

piece of FLP is Lipschitz, then one of the algorithms in [41] can be used for the

global optimization. �

Example 5.1. Given sigmoid functions f`(t) = w`/(1 + exp(−a`t + b`)), ` ∈

{1, . . . , 10} with parameters and associated weights

a = (a1, . . . , a10) = (1, 2, 1, 3, 2, 4, 1, 5, 3, 6),

b = (b1, . . . , b10) = (5, 10, 3, 9, 8, 16, 6, 30, 6, 12),

and w = (w1, . . . , w10) = (2, 5, 7, 4, 9, 3, 5, 10, 13, 6),

and total resource T = 15 units. The optimal solution and the approximate solu-

tion without the heuristic in step 6 of the Algorithm 5.1 are shown in Figure 5.3.

The approximate solution with the performance improvement heuristic in step 6 of

the Algorithm 5.1 gives the same solution as the optimal solution. The functions

F, Fapprox, and FLP are shown in Figure 5.4. �
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Figure 5.3: Optimal allocations and the approximate optimal allocations without perfor-
mance improvement heuristic.
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Figure 5.4: Exact and approximate maximum value of the objective function. The functions
FLP, F, Fapprox are shown by solid brown line, black dotted line, and blue dashed line, respec-
tively. The points of discontinuity of function FLP are at points where the Lagrange multiplier
has value in the set {α1, . . . , αN}.

Remark 5.1 (Multiple-Choice KP with Sigmoid Utility). Consider m dis-

joint classes {N1, . . . , Nm} of tasks and a single knapsack. The multiple-choice

KP is to pick one task each from every class such that the total utility of the tasks

is maximized for given total available resource. Let the total available resource be

T ∈ R>0, and let the utility of allocating resource t ∈ R≥0 to task i in class Nj be

a sigmoid function fij : R≥0 → R≥0. The multiple-choice KP with sigmoid utility
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is posed as:

maximize
m∑
i=1

∑
j∈Ni

fij(tij)xij

subject to
m∑
i=1

∑
j∈Ni

tijxij ≤ T

∑
j∈Ni

xij = 1,

xij ∈ {0, 1},

(5.17)

for each i ∈ {1, . . . ,m} and j ∈ Ni. The multiple-choice KP with sigmoid utility

models a situation where a human operator has to process one task each from a

given classes of tasks within time T . The performance of the operator on task

i from class Nj is given by sigmoid function fij. The different tasks in a given

class may be, e.g., observations collected from different sensors in a given region.

The methodology developed in this section extends to a multiple-choice KP with

sigmoid utility (5.17). In particular, the problem (5.17) can be reduced to an

α-parameterized multiple-choice knapsack problem, and the LP relaxation based

2-factor approximation algorithm for the binary multiple choice knapsack prob-

lem [54] can be utilized to determine a 2-factor algorithm for the problem (5.17).

�
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5.3 Generalized Assignment Problem with Sig-

moid Utility

In this section, we consider the generalized assignment problem (GAP) with

sigmoid utility. We first define the problem and then develop an approximation

algorithm for it.

5.3.1 GAP with Sigmoid Utility: Problem Description

Consider M bins (knapsacks) and N items. Let Tj be the capacity of bin

j ∈ {1, . . . ,M}. Let the utility of item i ∈ {1, . . . , N} when allocated to bin i be

a sigmoid function fij : R≥0 → R≥0 of the allocated recourse tij. The GAP with

sigmoid utility determines the optimal assignment of the items to bins such that

the total utility of the bins is maximized. Formally, the GAP with sigmoid utility

is posed as:

maximize
M∑
j=1

N∑
i=1

fij(tij)xij

subject to
N∑
i=1

tijxij ≤ Tj,

M∑
j=1

xij ≤ 1,

xij ∈ {0, 1},

(5.18)
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for each i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}. The GAP with sigmoid utility models

a situation where M human operators have to independently serve N tasks. The

operator j works for a duration Tj. The performance of human operator j on task

i is given by sigmoid function fij. The solution to the GAP determines optimal

assignments of the tasks to the operators and the optimal time-duration to be

allocated to each processed task. We now state the following result about the

hardness of the GAP with sigmoid utility:

Proposition 5.6 (Hardness of GAP with sigmoid utility). The generalized

assignment problem with sigmoid utility is NP-hard, unless P = NP.

Proof. The statement follows from the fact that knapsack problem with sigmoid

utility is a special case of the generalized assignment problem with sigmoid utility,

and is NP -hard according to Proposition 5.2.

5.3.2 GAP with Sigmoid Utility: Approximation Algo-

rithm

We now propose an approximation algorithm for the GAP with sigmoid utility.

This algorithm is an adaptation of the 3-factor algorithm for the binary GAP

proposed in [27] and is presented in Algorithm 5.2. In Algorithm 5.2, F is the

matrix of sigmoid functions fij, F
(j)
∗1 represents first column of matrix F (j), and
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E2
∗2:M−j+1 represents matrix E2 with first column removed. Similarly, FIunprocj

represents the vector with entries Fij, i ∈ Iunproc, and tĀj represents the vector

with entries tij, i ∈ Ā. The algorithm calls a recursive function, namely, GAP(·, ·)

(defined in Algorithm 5.3) to compute the solution of GAP with sigmoid utility.

The solution comprises of a set A describing assignment of tasks to bins and t

describes associated duration allocations. The function GAP utilizes the solution

to KP with sigmoid utility at each recursion to compute the solution to the GAP

with sigmoid utility. In particular, the function KP(·, ·) determines the set of tasks

to be processed Ā, and allocations t̄ according to Algorithm 5.1. The key element

of the algorithm is the decomposition of the performance matrix at each recursion.

In particular, the performance matrix F is decomposed into E1 and E2 at each

recursion, where E1 corresponds to the current bin and allocations to it according

to Algorithm 5.1, and E2 corresponds to a GAP with smaller number of bins. The

performance is efficient with respect to the component E1 due to effectiveness of

Algorithm 5.1, while component E2 recursively reduces to the single bin case,

i.e., to the KP with sigmoid utility. The algorithm also involves a performance

improving heuristic. According to this heuristic, if the resource of a bin is not

completely utilized and there are tasks that are not assigned to any bin, then a

KP with sigmoid utility is solved using remaining resource and unassigned tasks.

Likewise, if the resource of a bin is not completely utilized and each task has
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been assigned to some bin, then the remaining resource is allocated to the most

beneficial task in that bin. We now state some properties of this algorithm:

Theorem 5.7 (GAP with sigmoid utility). The following statements hold for

the GAP with sigmoid utility (5.18) and the solution obtained via Algorithm 5.2:

(i). the solution is within a factor (3 + ε) of optimal, for any ε > 0; and

(ii). the Algorithm 5.2 runs in O(N2M) time, provided the solution to KP with

sigmoid utility can be computed in O(N2) time.

Proof. The proof is an adaptation of the inductive argument for the binary GAP

in [27]. We note that for a single bin, the GAP reduces to the knapsack problem

and Algorithm 5.1 provides a solution within (2 + ε)-factor of optimal. Conse-

quently, Algorithm 5.2 provides a solution within (2 + ε)-factor of optimal, and

hence, within (3 + ε)-factor of optimal. Assume by induction hypothesis that

Algorithm 5.2 provides a solution with (3 + ε)-factor of optimal for L bins. We

now consider the case with (L + 1) bins. The performance matrix F has two

components, namely, E1 and E2. We note that first column of E2 has each entry

equal to zero, and thus, E2 corresponds to a GAP with L bins. By the induc-

tion hypothesis, Algorithm 5.2 provides a solution within (3 + ε)-factor of optimal

with respect to performance matrix E2. We further note that the first column

of E1 is identical to the first column of F and Algorithm 5.1 provides a solution
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Algorithm 5.2: GAP with Sigmoid Utility: 3-factor Approximation

Input : fij , Tj , i ∈ {1, . . . , N}, j ∈ {1, . . . ,M} ;

Output : assignment set A = {A1, . . . , AM} and allocations t ∈ RN×M≥0 ;

% Initialize

1 F (1) ← F ;

% Call function GAP(Algorithm 5.3)

2 allocations [A, t]← GAP(1, F (1));

% heuristic to improve performance

% assign unassigned tasks to unsaturated bins

3 Iunproc ← {1, . . . , N} \ ∪mi=1Ai;

4 foreach j ∈ {1, . . . ,M} do

5 if
∑
i∈Aj tij < Tj and |Iunproc| > 0 then

% solve KP with unprocessed tasks

6 [Ā, t̄]← KP(FIunprocj , Tj −
∑
i∈Aj tij);

7 Aj ← Aj ∪ Ā; tĀj ← t̄;

8 else if
∑
i∈Aj tij < Tj and |Iunproc| = 0 then

% allocate remaining resource to the most rewarding task

9 `← argmax{fij(tij + Tj −
∑
i∈Aj tij) | i ∈ Aj};

10 t`j ← t`j + Tj −
∑
i∈Aj tij ;

11 Iunproc ← {1, . . . , N} \ (A1 ∪ . . .∪Am) ;
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within (2 + ε)-factor of optimal with respect to this column (bin). Moreover,

the best possible allocation with respect to other entries can contribute at most∑N
i=1 fi1(t∗i1) value to the objective function. Consequently, the solution obtained

from Algorithm 5.2 is within (3 + ε)-factor with respect to performance matrix

E1. Since the solution is within (3 + ε)-factor of optimal with respect to both E1

and E2, it follows that the solution is within (3+ ε)-factor of optimal with respect

to E1 + E2 (see Theorem 2.1 in [27]). The performance improvement heuristic

further improves the value of the objective function and only improves the factor

of optimality. This establishes the first statement.

The second statement follows immediately from the observation that Algo-

rithm 5.2 solves 2M instances of knapsack problem with sigmoid utility using

Algorithm 5.1.

Example 5.2. Consider the GAP with M = 4 and N = 10. Let the associated

sigmoid functions be fij(t) = 1/(1+exp(−t+bij)), where the matrix of parameters

bij is

b =



1 7 2 3 8 7 5 1 3 6

7 9 8 8 6 1 7 4 5 4

6 10 1 2 3 1 9 7 9 5

9 2 4 8 1 2 5 8 6 8


.
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Let the vector of total resource at each bin be T = [5 10 15 20]. The optimal

allocations obtained through Algorithm 5.2 in Figure 5.5. The corresponding

assignment sets are A1 = {8}, A2 = {10}, A3 = {1, 3, 4, 5}, and A4 = {2, 6, 7, 9}.
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Figure 5.5: Allocations for the GAP obtained via Algorithm 5.2.

5.4 Bin-packing Problem with Sigmoid Utility

In this section, we consider the bin-packing problem (BPP) with sigmoid util-

ity. We first define the problem and then develop an approximation algorithm for

it.

5.4.1 BPP with Sigmoid Utility: Problem Description

Consider N sigmoid functions f`, ` ∈ {1, . . . , N}, and a resource T ∈ R>0.

Determine the minimum K ∈ N and a mapping Υ : {1, . . . , N} → {1, . . . , K}

such that, for each i ∈ {1, . . . , K}, the optimal solution to the KP with sigmoid
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utility

maximize
∑
`∈Ai

f`(t`)

subject to
∑
`∈Ai

t` ≤ T,

(5.19)

where Ai = {j | Υ(j) = i}, allocates non-zero resource to each sigmoid function

f`, ` ∈ Ai.

The BPP with sigmoid utility models a situation where one needs to determine

the minimum number of identical operators, each working for time T , required to

optimally serve each of the N tasks characterized by functions f`, ` ∈ {1, . . . , N}.

We denote the critical penalty rate for sigmoid function f` by ψ`, ` ∈ {1, . . . , N},

and let ψmin = min{ψ` | ` ∈ {1, . . . , N}}. We now state a relevant property of the

solution to the KP with sigmoid utility:

Lemma 5.8 (Non-zero allocations). A solution to the optimization prob-

lem (5.19) allocates non-zero resource to each sigmoid function f`, ` ∈ Ai, i ∈

{1, . . . , K}, if

T ≥
∑
`∈Ai

f †` (ψmin).

Proof. It suffices to prove that if T =
∑

`∈Ai f
†
` (ψmin), then ψmin is the optimal

Lagrange multiplier α∗ in Algorithm 5.1. Note that if a non-zero duration is allo-

cated to each task, then the solution obtained from Algorithm 5.1 is the optimal

solution. Since, t∗` = f †` (ψmin), ` ∈ Ai are feasible non-zero allocations, ψmin is a

153



Chapter 5. Operator Attention Allocation via Knapsack Problems

Lagrange multiplier. We now prove that ψmin is the optimal Lagrange multiplier.

Let Ai = {1, . . . , ai}. By contradiction, assume that t∗ is not the globally optimal

allocation. Without loss of generality, we assume that the global optimal policy

allocates zero resource to sigmoid function fai , and let t̄ be the globally optimal

allocation. We observe that

ai−1∑
`=1

f`(t̄`) + fai(0)

≤
ai−1∑
`=1

f`(t̄`) + fai(t
∗
ai

)− ψmint
∗
ai

(5.20)

≤
ai∑
`=1

f`(t
∗
`) +

ai−1∑
`=1

f ′`(t
∗
`)(t̄` − t∗`)− ψmint

∗
ai

(5.21)

=

ai∑
`=1

f`(t
∗
`) +

ai∑
`=1

ψmin(t̄` − t∗`)

=

ai∑
`=1

f`(t
∗
`),

where inequalities (5.20) and (5.21) follow from the definition of critical penalty

and the concavity to the sigmoid function at t∗` , respectively. This contradicts

our assumption. Hence, t∗ is the global optimal allocation and this completes the

proof.

We now state the following result about the hardness of the BPP with sigmoid

utility:

Proposition 5.9 (Hardness of BPP with sigmoid utility). The BPP with

sigmoid utility is NP -hard, unless P = NP .
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Proof. Consider an instance of standard BPP with items of size ai ≤ T, i ∈

{1, . . . , N} and bins of size T . It is well known [57] that BPP is NP -hard. With-

out loss of generality, we can pick N sigmoid functions fi, i ∈ {1, . . . , N} such

that f †i (ψmin) = ai, for each i ∈ {1, . . . , N} and some ψmin ∈ R>0. It follows

from Lemma 5.8 that such an instance of BPP with sigmoid utility is in one-to-

one correspondence with the aforementioned standard BPP. This establishes the

statement.

5.4.2 BPP with Sigmoid Utility: Approximation Algo-

rithm

We now develop an approximation algorithm for BPP with sigmoid utility.

The proposed algorithm is similar to the standard next-fit algorithm [57] for the

binary bin-packing problem, and adds a sigmoid function to a bin if optimal pol-

icy for the associated KP with sigmoid utility allocates non-zero resource to each

sigmoid function; otherwise, it opens a new bin. The approximation algorithm

is presented in Algorithm 5.4. We now present a formal analysis of this algo-

rithm. We introduce following notations. Let K∗ be the optimal solution of the

bin-packing problem with sigmoid utility, and Knext-fit be the solution obtained

through Algorithm 5.4. We first present the following important property of op-

timization problem (5.19).
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Theorem 5.10 (BPP with sigmoid utility). The following statements hold for

the BPP with sigmoid utility (5.19), and its solution obtained via Algorithm 5.4:

(i). the optimal solution satisfies the following bounds

Knext-fit ≥ K∗ ≥ 1

T

N∑
`=1

min{T, tinf
` }.

(ii). the solution obtained through Algorithm 5.4 satisfies

Knext-fit ≤
1

T

(
2

N∑
`=1

f †` (ψmin)− 1

)
.

(iii). the Algorithm 5.4 provides a solution to the BPP with sigmoid utility within

a factor of optimality

max{2f †` (ψmin) | ` ∈ {1, . . . , N}}
max{min{T, tinf

` } | ` ∈ {1, . . . , N}}
;

(iv). the Algorithm 5.4 runs in O(N3) time, provided the solution to KP with

sigmoid utility can be computed in O(N2) time.

Proof. It follows from Algorithm 5.1 that if tinf
` < T , then the optimal non-zero

allocation to sigmoid function f` is greater than tinf
` . Otherwise, the optimal non-

zero allocation is equal to T . Therefore, if each sigmoid function gets a non-zero

allocation under the optimal policy, then at least
∑N

`=1 min{T, tinf
` } resource is

required, and the lower bound on the optimal K∗ follows.
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It follows from Lemma 5.8 that if resource t` = f †` (ψmin) is available for task

` ∈ {1, . . . , N}, then a non-zero resource is allocated to it. Therefore, the solu-

tion of the bin-packing problem with bin size T and items of size {f †` (ψmin) | ` ∈

{1, . . . , N}} provides an upper bound to the solution of the BPP with sigmoid

utility. The upper bound to the solution of this bin-packing problem obtained

through the standard next-fit algorithm is (2
∑N

`=1 f
†
` (ψmin)−1)/T , and this com-

pletes the proof of the second statement.

The third statement follows immediately from the first two statements, and

the last statement follows immediately from the fact the Algorithm 5.1 is utilized

at each iteration of the Algorithm.

Example 5.3. For the same set of sigmoid functions as in Example 5.1 and

T = 20 units, the solution to the BPP with sigmoid utility obtained through

Algorithm 5.4 requires Knext-fit = 3 bins, and the optimal allocations to each task

in these bins are shown in Figure 5.6. �
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Figure 5.6: Allocations to sigmoid functions in each bin. The dot-dashed black lines represent
tasks allocated to first bin, the solid red lines represent tasks allocated to second bin, and the
dashed green line represent tasks allocated to third bin.
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5.5 Conclusions and Future Directions

We studied non-convex optimization problems involving sigmoid functions. We

considered the maximization of a sigmoid function subject to a linear penalty and

showed that the optimal allocation jumps down to zero at a critical penalty rate.

This jump in the allocation imparts combinatorial effects to the constrained opti-

mization problems involving sigmoid functions. We studied three such problems,

namely, the knapsack problem with sigmoid utility, the generalized assignment

problem with sigmoid utility, and the bin-packing problem with sigmoid util-

ity. We merged approximation algorithms from discrete optimization with algo-

rithm from continuous optimization to develop hybrid approximation algorithms

for these problems.

There are many possible extensions of this work. A similar strategy for ap-

proximate optimization could be adopted for other problems involving sigmoid

functions, e.g., the network utility maximization problem, where the utility of

each source is a sigmoid function. Other extensions include problems involving

general non-convex functions and optimization in queues with sigmoid character-

istics.
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Algorithm 5.3: Function GAP(j, F (j))

% Function definition

1 function [A(j), t(j)]← GAP(j, F (j))

% Determine allocations for bin j using Algorithm 5.1

2 [Ā, t̄]← KP(F
(j)
∗1 , Tj);

3 foreach i ∈ {1, . . . , N} and k ∈ {1, . . . ,M − j + 1} do

E1
ik(t)←



F
(j)
i1 (t̄i), if i ∈ Ā and k 6= 1,

F
(j)
i1 (t), if k = 1,

0, otherwise;

4 E2(t)← F (j)(t)− E1(t);

5 if j < M then

% remove first column from E2 and assign it to F (j+1)

6 F (j+1) ← E2
∗2:M−j+1;

7 [A(j+1), t(j+1)]← GAP(j + 1, F (j+1));

8 Aj ← Ā \ ∪Mi=j+1Ai;

9 A(j) ← Aj ∪A(j+1);

10 foreach i ∈ Ā∩∪Mi=j+1Ai do

t̄i ← 0;

11 t(j) ← [̄t t(j+1)];

12 else

Aj ← Ā and t(j) ← t̄;
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Algorithm 5.4: BPP with Sigmoid Utility: Approximation Algorithm

Input : f`, ` ∈ {1, . . . , N}, T ∈ R>0 ;

Output : number of required bins K ∈ N and assignments Υ;

1 K ← 1;AK ← {};

foreach ` ∈ {1, . . . , N} do

2 AK ← AK ∪{`} ;

3 solve problem (5.19) for i = K, and find t∗ ;

% if optimal policy drops a task, open a new bin

4 if t∗j = 0, for some j ∈ AK then

K ← K + 1; AK ← {`};

5 Υ(`)← K;
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Chapter 6

Attention Allocation in Decision
Making Queues

In this chapter we consider the problem of optimal time duration allocation

for a human operator. The decision making tasks arrive at a given rate and are

stacked in a queue. A human operator processes these tasks on the first-come first-

serve basis (see Figure 6.1.) The human operator receives a unit reward for the

correct decision, while there is no penalty for a wrong decision. We assume that

the tasks can be parametrized by some variable and the variable takes value in a

finite set D ⊆ R. Let the performance of the operator on a task with parameter

d ∈ D be a function fd : R≥0 → [0, 1) of the duration operator allocates to the

task. As discussed in Section 2.3, the human performance function fd is well

modeled by a sigmoid function. In this chapter we only consider smooth sigmoid

functions.
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We study two particular problems. First, in Section 6.1, we consider a static

queue with latency penalty, that is, the scenario where the human operator has

to perform N ∈ N decision making tasks, but each task loses value at a constant

rate per unit delay in its processing. Second, in Sections 6.2 and 6.3 we consider a

dynamic queue of decision making tasks where each task loses value at a constant

rate per unit delay in its processing. The loss in the value of a task may occur

due to the processing deadline on the task. In other words, the latency penalty

is a soft constraint that captures the processing deadline on the task. For such a

decision making queue, we are interested in the optimal time-duration allocation

to each task. Alternatively, we are interested in the arrival rate that will result in

the desired accuracy for each task. We intend to design a decision support system

that tells the human operator the optimal time-duration allocation to each task.

We remark that the processing deadlines on the tasks can be incorporated as

hard constraints as well, but the resulting optimization problem is combinatorially

hard. For instance, if the performance of the human operator is modeled by a

step function with the jump at the inflection point and the deadlines are incorpo-

rated as hard constraints, then the resulting optimization problem is equivalent

to the N -dimensional knapsack problem [54]. The N -dimensional knapsack prob-

lem is NP -hard and admits no fully polynomial time approximation algorithm for

N ≥ 2. The standard [54] approximation algorithm for this problem has factor
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of optimality N + 1 and hence, for large N , may yield results very far from the

optimal. The close connections between the knapsack problems with step func-

tions and sigmoid functions (see Chapter 5) suggest that efficient approximation

algorithms may not exist for the problem formulation where processing deadlines

are modeled as hard constraints.

λ
incoming tasks outgoing tasks

queue length
n

operator
performance

Figure 6.1: Problem setup. The decision making tasks arrive at a rate λ. These tasks are
served by a human operator with sigmoid performance. Each task loses value while waiting in
the queue.

6.1 Static queue with latency penalty

6.1.1 Problem description

Consider that the human operator has to perform N ∈ N decision making tasks

in a prescribed order (task labeled ”1” should be processed first, etc.) Let the

human operator allocate duration t` to the task ` ∈ {1, . . . , N}. Let the difficulty

of the task ` be d` ∈ D. According to the importance of the task, a weight

w` ∈ R≥0 is assigned to the task `. The operator receives a reward w`fd`(t`) for
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allocating duration t` to the task `, while they incur a latency penalty c` per unit

time for the delay in its processing. The objective of the human operator is to

maximize their average benefit and the associated optimization problem is:

maximize
t∈RN≥0

1

N

N∑
`=1

(
w`fd`(t`)− (c` + · · ·+ cN)t`

)
, (6.1)

where t = {t1, . . . , tN} is the duration allocation vector.

6.1.2 Optimal solution

We can now analyze optimization problem (6.1).

Theorem 6.1 (Static queue with latency penalty). For the optimization

problem (6.1), the optimal allocation to task ` ∈ {1, . . . , N} is

t∗` ∈ argmax
{
w`fd`(β)− (c` + · · ·+ cN)β

∣∣ β ∈ {0, f †d`((c` + . . .+ cN)/w`)}
}
.

Proof. The proof is similar to the proof of Lemma 5.1.

Remark 6.1 (Comparison with a concave utility). The optimal duration

allocation for the static queue with latency penalty decreases to a critical value

with increasing penalty rate, then jumps down to zero. In contrast, if the perfor-

mance function is concave instead of sigmoid, then the optimal duration allocation

decreases continuously to zero with increasing penalty rate. �
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6.1.3 Numerical Illustrations

We now present an example to elucidate on the ideas presented in this section.

Example 6.1 (Static queue and heterogeneous tasks). The human operator

has to serve N = 10 heterogeneous tasks and receives an expected reward fd`(t) =

1/(1 + exp(−a`t + b`)) for an allocation of duration t secs to task `, where d`

is characterized by the pair (a`, b`). The following are the parameters and the

weights associated with each task:

(a1, . . . , aN) = (1, 2, 1, 3, 2, 4, 1, 5, 3, 6),

(b1, . . . , bN) = (5, 10, 3, 9, 8, 16, 6, 30, 6, 12), and

(w1, . . . , wN) = (2, 5, 7, 4, 9, 3, 5, 10, 13, 6).

Let the vector of penalty rates be

c = (0.09, 0.21, 0.21, 0.06, 0.03, 0.15, 0.3, 0.09, 0.18, 0.06)

per second. The optimal allocations are shown in Figure 6.1.3. The importance

and difficulty level of a task are encoded in the associated weight and the inflection

point of the associated sigmoid function, respectively. The optimal allocations

depend on the difficulty level, the penalty rate, and the importance of the tasks.

For instance, task 6 is a relatively simple but less important task and is dropped.

On the contrary, task 8 is a relatively difficult but very important task and is

processed. �
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Figure 6.2: Static queue with latency penalty. The optimal allocations depends of the
difficulty level, the penalty rate and the importance of the tasks.

6.2 Dynamic queue with latency penalty

In the previous section, we developed policies for static queue with latency

penalty. We now consider dynamic queue with latency penalty, that is, the sce-

nario where the tasks arrive according to a stochastic process and wait in a queue

to get processed. We assume the tasks lose value while waiting in the queue. The

operator’s objective is to maximize their infinite horizon reward. In the following

we pose the problem as an MDP and study its properties.

6.2.1 Problem description

We study the optimal policies for the human operator serving a queue of

decision making tasks. We now define various components of the problem:

Description of Tasks: We make following assumptions on the decision making

tasks: (i) tasks arrive according to Poisson process with rate λ ∈ R>0; (ii) each
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task is parameterized by a variable d ∈ D, where D is a finite set of parameters

for the task; (iii) a task with parameter d ∈ D is characterized by a triplet of

operator’s performance function fd, the latency penalty rate cd, and the weight

wd assigned to the task; (iii) the parameter associated with each task is sampled

from a probability distribution function p : D → [0, 1]. Let the realized parameter

for task ` ∈ N be d`. Thus, the operator receives a compensation wd`fd`(t`) for

a duration allocation t` to task `, while they incur a latency penalty cd` per unit

time for the delay in its processing. The objective of the operator is to maximize

their infinite horizon expected reward. To this end, the support system suggests

the optimal time duration that the human operator should allocate to a given

task. We assume that such time-duration is suggested at the start of a stage and

is not modified during the stage. We now formulate this optimization problem as

an MDP, namely, Γ.

Description of MDP Γ: Let the stage ` ∈ N of the MDP Γ be initiated with

the processing of task `. We now define the elements of the MDP Γ:

(i) Action and State variables: We choose the action variable at stage ` as the

time-duration to be allocated to task `, denoted by t` ∈ R≥0. We choose the state

variable at stage ` as the vector of parameters d` ∈ Dn` associated with each task

in the queue, where n` ∈ N is the queue length at stage `. Note that the definition

of the stage and the state variable are consistent under the following assumption:
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Assumption 6.1 (Non-empty queue). Without loss of generality, we assume

that the queue is never empty. If queue is empty at some stage, then the operator

waits for the next task to arrive, and there is no penalty for such waiting time.�

(ii) Reward Structure: We define the reward r : Dn` × R≥0 → R obtained by

allocating duration t to the task ` by

r(d`, t) = wd`fd`(t)−
1

2

( `+n`−1∑
i=`

cdi +

`+n′`−1∑
j=`

cdj

)
t,

where d` ∈ Dn
′
` is the vector of penalty rates for the tasks in the queue and n′` is

the queue length just before the end of stage `.

Note that the queue length while a task is processed may not be constant,

therefore, the latency penalty is computed as the average of the latency penalty

for the tasks present at the start of processing the task and the latency penalty for

the tasks present at the end of processing the task. Such averaging is consistent

with the expected number of arrivals being a linear function of time for Poisson

process.

(iii) Value function:

The MDP with finite horizon length N ∈ N maximizes the value function

VN : Dn1 × B({1, . . . , N} × D∞,R≥0)→ R defined by

VN(d1, t
finite) =

N∑
`=1

E[r(d`, t
finite(`,d`))],
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where n1 ∈ N is the initial queue length, D∞ = ∪i∈NDi, and B({1, . . . , N} ×

D∞,R≥0) is the space of bounded below functions defined from {1, . . . , N} ×D∞

to R≥0. B({1, . . . , N} × D∞,R≥0) represents the space of policies, that is, the

duration allocation as a function of stage and state. We will focus on stationary

policies and for stationary policies, the policy space reduces to B(D∞,R≥0)

Under a stationary policy tstat, the infinite horizon average value function of

the MDP Vavg : Dn1 × B(D∞,R≥0)→ R is defined by

Vavg(d1, t
stat) = lim

N→+∞

1

N
VN(d1, t

stat).

We also define the infinite horizon discounted value function Vα : Dn1×B(D∞,R≥0)→

R by

Vα(d1, t
stat) =

+∞∑
`=1

α`−1E[r(d`, t
stat(d`))],

where α ∈ (0, 1) is the discount factor.

6.2.2 Properties of optimal solution

We now study some properties of the MDP Γ and its solution. Let V ∗α :

Dn1 → R≥0 denote the optimal infinite horizon α-discounted value function. We

also define Nmax = bmax{wdψfd/cd | d ∈ D}c.

Lemma 6.2 (Properties of MDP Γ). The following statements hold for the

MDP Γ and its infinite horizon average value function:
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(i). there exists a solution to the MDP Γ;

(ii). an optimal stationary policy allocates zero duration to the task ` if n` >

Nmax;

Proof. It can be verified that the conditions presented in Section 2.1 hold for MDP

Γ and the optimal discounted value function exists. To prove the existence of a

solution to the the average value formulation of the MDP Γ, we note that

Vα(d1, t) =
+∞∑
`=1

α`−1E[r(d`, t`)] ≤
wmax − cmin

(1− α)
,

for each d1 ∈ Dn1 , where n1 is initial queue length, wmax = max{wd | d ∈ D} and

cmin = min{cd | d ∈ D}. Therefore, V ∗α (d1) ≤ (wmax − cmin)/(1 − α). Moreover,

V ∗α (d1) ≥ Vα(d1,0) = 0. Hence, |V ∗α (d1) − V ∗α (d0)| ≤ 2|wmax − cmin|/(1 − α), for

any d0 ∈ Dn0 , n0 ∈ N. Thus, the conditions of Theorem 5.2 in [3] hold and this

establishes the first statement.

We now establish the second statement. We note that for a state associated

with queue length n > Nmax, the reward is non-positive and is zero only if the

allocation at that stage is zero. Moreover, for a Poisson arrival process, the

probability that the queue length is non-decreasing increases with the allocation at

current stage. Thus a positive allocation increases the probability of non-positive

reward at future stages. Therefore, a zero duration allocation for n > Nmax

maximizes the reward at current stage and maximizes the probability of getting
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positive rewards at future stages. Consequently, the optimal stationary policy

allocates zero duration for a queue length greater than Nmax.

6.3 Receding Horizon Solution to dynamic queue

with latency penalty

We rely on the certainty-equivalent receding horizon framework [9, 23, 62] to

approximately solve the MDP Γ. In the certainty-equivalent approximation, the

future uncertainties are replaced with their expected values [9]. For an allocation

of duration t` at stage `, the expected number of arrivals for a Poisson process

with rate λ is λt`. Accordingly, the evolution of the queue length under certainty-

equivalent approximation is

n̄`+1 = max{1, n̄` − 1 + λt`},

where n̄` represents predicted queue length at stage ` under certainty-equivalent

approximation, and n̄1 = n1. The certainty-equivalent approximation also re-

places the parameters of tasks that have not yet arrived by their expected values,

and accordingly, assigns them the expected performance function f̄ : R≥0 → [0, 1),

the expected importance w̄, and the expected latency penalty c̄ defined by

f̄(t) =
1

w̄
Ep[wdfd(t)],
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w̄ = Ep[wd], and c̄ = Ep[cd], respectively, where Ep[·] represents the expected value

with respect to the measure p.

The receding horizon framework solves a finite horizon optimization problem

at each iteration. We denote the receding horizon policy that solves a N -horizon

certainty-equivalent problem at each stage by N -RH policy. We now study such

certainty-equivalent finite horizon optimization problem.

6.3.1 Certainty-equivalent finite horizon optimization

We now study the finite horizon optimization problem with horizon length

N that the certainty-equivalent receding horizon policy solves at each iteration.

Given horizon length N , current queue length n`, the realization of the sigmoid

functions f1, . . . , fn` , the associated latency penalties c1, . . . , cn` and the impor-

tance levels w1, . . . , wn` . In certainty-equivalent problem, the true parameters of

the tasks are used for the tasks that have already arrived, while the expected

values of the parameters are used for the tasks that have not yet arrived. In par-

ticular, if current queue length is less than the horizon length, i.e., n` < N , then

we define the reward associated with task j ∈ {1, . . . , N} by

rj =


rrlzd
j , if 1 ≤ j ≤ n`,

rexp
j , if n` + 1 ≤ j ≤ N,

(6.2)
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where rrlzd
j = wjfj(tj) − (

∑n`
i=j ci + (n̄j − n` − j + 1)c̄)tj − c̄λt2j/2 is the reward

computed using the realized parameters, and rexp
j = w̄f̄(tj)−c̄(n̄`−j+1)tj−c̄λt2j/2

is the reward computed using the expected values of the parameters. If the current

queue length is greater than the horizon length, i.e., n` ≥ N , then we define all

the reward using realized parameters, i.e., rj = rrlzd
j , for each j ∈ {1, . . . , N}.

maximize
t�0

1

N

N∑
j=1

rj

subject to n̄j+1 = max{1, n̄j − 1 + λtj}, n̄1 = n`,

(6.3)

where t = {t1, . . . , tN} is the duration allocation vector.

The optimization problem (6.3) is difficult to handle analytically. For the

special case in which tasks are identical, we provide a procedure to determine the

exact solution to problem (6.3) in the Appendix of this chapter. This procedure

also provides insights into the implication of sigmoid performance function on the

optimal policy. For the general case, we resort to the discretization of the action

and the state space and utilize the backward induction algorithm to approximately

solve the dynamic program (6.3). Let us define maximum allocation to any task

τmax = max{f †d(cd/wd) | d ∈ D}. We now state the following results on the

efficiency of discretization:
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Lemma 6.3 (Discretization of state and action space). For the optimiza-

tion problem (6.3) and the discretization of the action and the state space with a

uniform grid of width ε > 0, the following statements hold:

(i). the state space and the action space can be restricted to compact spaces

[1, Nmax + 1], and [0, τmax], respectively;

(ii). the policy obtained through the discretized state and action space in within

O(ε) of optimal;

(iii). the computational complexity of the solution is O(N/ε2).

Proof. It follows from Lemma 5.1 that for n̄j > max{wdψfd/cmin | d ∈ D}, rj +

c̄λt2j/2 achieves its global maximum at tj = 0. Hence, for n̄j > max{wdψfd/cmin | d ∈

D}, rj achieves its global maximum at tj = 0. Moreover, the certainty-equivalent

queue length at a stage k > j is a non-decreasing function of of the allocation at

stage j. Thus, the reward at stage k > j decreases with allocation tj. Therefore,

the optimal policy for the optimization problem (6.3) allocates zero duration at

stage j if n̄j > max{wdψfd/cmin | d ∈ D}, and subsequently, the queue length

decreases by unity at next stage. Thus, any certainty-equivalent queue length

greater than max{wdψfd/cmin | d ∈ D} can be mapped to Nmax + frac, where

frac is the fractional part of the certainty-equivalent queue length. Consequently,

the state space can be restricted to the compact set [1, Nmax + 1]. Similarly, for
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tj > τmax, the reward at stage j in optimization problem (6.3) is a decreasing

function of the allocation tj, and the rewards at stages k > j are decreasing func-

tion of allocation tj. Therefore, the allocation to each task is less than τmax. This

completes the proof of the first statement.

Since the action variable and the state variable in problem (6.3) belong to com-

pact sets and the reward function and the state evolution function is Lipschitz, it

follows from Section 2.1 that the value function obtained using the discretized ac-

tion and state space is within O(ε) of the optimal value function. This establishes

the second statement.

The third statement is an immediate consequence of the fact that computa-

tional complexity of a finite horizon dynamic program is the sum over stages of the

product of cardinalities of the state space and the action space in each stage.

6.3.2 Performance of receding horizon algorithm

We now derive performance bounds on the receding horizon procedure. First,

we determine a global upper bound on the performance of any policy for the MDP

Γ. Then, we develop a lower bound on the performance of 1-RH policy. Without

loss of generality, we assume that the initial queue length is unity. If the initial

queue length is non-unity, then we drop tasks till queue length is unity. Note that

this does not affect the infinite horizon average value function. We also assume
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that the latency penalty is small enough to ensure an optimal non-zero duration

allocation if only one task is present in the queue, that is, cd ≤ wdψfd , for each

d ∈ D. We now introduce some notation. For a given λ and d ∈ D, define

ccrit
d = min

{
c ∈ R>0 | argmax{t ∈ R≥0 | wdfd(t)− ct− c̄λt2/2} = 0

}
.

Moreover, let cmax
d be the optimal value of the following optimization problem:

maximize
xid∈{0,1}

Nmax−1∑
i=1

∑
d∈D

cdxid

subject to
Nmax−1∑
i=1

∑
d∈D

cdxid < ccrit
d − cd

∑
d∈D

xid ≤ 1, for each i ∈ {1, . . . , Nmax − 1}.

Let tcrit
d = argmax{wdfd(t)−(cd+c

max
d )t−c̄λt2/2 | t ∈ R≥0}, and τmax

d = f †d(cd/wd),

for each d ∈ D. Let tunit be the 1-RH policy.

Theorem 6.4 (Bounds on performance). For the MDP Γ and 1-RH policy

the following statements hold:

(i). the average value function satisfy the following upper bound

Vavg(d1, t) ≤ max
d∈D

{
wdfd(τ

max
d )− cdτmax

d

}
,

for each n1 ∈ N and any policy t;

(ii). the average value function satisfy the following lower bound for 1-RH policy:

Vavg(d1, t
unit) ≥ min

d∈D

wdfd(t
crit
d )− (cd + cmax

d )tcrit
d − c̄λtcrit

d
2
/2

λτmax + e−λτmax
,
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for each n1 ∈ N.

Proof. We start by establishing the first statement. We note that the reward

at stage ` is r(d`, t`) ≤ wd`fd`(t`) − cd`t`. It follows from Lemma 5.1 that the

maximum value wd`fd`(t`)− cd`t` is achieved at t` = τmax
d`

. Therefore, the reward

at each stage is upper bounded by max{wdfd(τmax
d ) − cdτ

max
d | d ∈ D} and the

first statement follows.

To establish the second statement, we note that if some new tasks arrive at a

stage, then the optimal policy processes at least one of these tasks or processes

at least one task already in the queue. Therefore, the optimal policy processes at

least one task for each set of tasks arrived. The minimum reward obtained after

processing task d is wdfd(t
crit
d )− (cd + cmax

d )tcrit
d − c̄λtcrit

d
2
/2. If narr is the number

of arrived tasks, the fraction of tasks processed is 1/narr. Under Assumption 6.1,

the expected number of arrivals at stage ` for a Poisson process is E[narr] =

λt` + e−λt`P(n` = 1), where the second term corresponds to the situation when

the queue becomes empty after processing task ` and the operator waits for new

task. Since 1/narr is a convex function and E[narr] ≤ λτmax + e−λτmax , it follows

from the Jensen’s inequality that the expected fraction of tasks processed is greater

than 1/(λτmax + e−λτmax). This completes the proof of the last statement.

Similar bounds can be derived for the N -RH policy. Since the future queue

length increases with increasing t1, the total penalty increases in problem (6.3)
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with increasing t1. Thus, with increasing N , the receding horizon policy drops

tasks at a smaller critical penalty ccrit
d . Consequently, the total penalty on each

task decreases and the performance improves.

6.3.3 Numerical Illustrations

We now elucidate on the concepts discussed in this section with an example.

Example 6.2 (RH policy). Suppose that the human operator has to serve a

queue of tasks with Poisson arrival at the rate λ per sec. The set of the tasks is the

same as in Example 6.1 and each task is sampled uniformly from this set. 1-RH

and 10-RH policies for a sample evolution of the queue at an arrival rate λ = 0.5

per second are shown in Figure 6.3 and 6.4, respectively. The sequence of tasks

arriving is the same for both the policies. The RH policy tends to drop the tasks

that are difficult and unimportant. The difficulty of the tasks is characterized

by the inflection point of the associated sigmoid functions. The queue length

under the 1-RH policy is higher than the 10-RH policy. A comparison of the RH

policies is shown in Figure 6.5. We obtained these performance curves through

Monte-Carlo simulations. �

Remark 6.2 (Comparison with a concave utility). With the increasing

penalty rate as well as the increasing arrival rate, the time duration allocation de-

creases to a critical value and then jumps down to zero for the dynamic queue with
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latency penalty. In contrast, if the performance function is concave instead of sig-

moid, then the duration allocation decreases continuously to zero with increasing

penalty rate as well as increasing arrival rate. �
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Figure 6.3: 10-RH policy for a sample evolution of the dynamic queue with latency penalty.
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Figure 6.4: 1-RH policy for a sample evolution of the dynamic queue with latency penalty.

Discussion 6.1 (Optimal arrival rate). The performance of the RH policy

as a function of the arrival rate is shown in Figure 6.5. It can be seen that the

expected benefit per unit task, that is, the value of the average value function

under the RH policy, decreases slowly till a critical arrival rate and then starts

decreasing quickly. This critical arrival rate corresponds to the situation where
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Figure 6.5: Empirical expected benefit per unit task and per unit time. The dashed-dotted
black curve represents the 10-RH policy and the solid red curve represents the 1-RH policy,
respectively.

a new task is expected to arrive as soon as the operator finishes processing the

current task. The objective of the designer is to achieve a good performance on

each task and therefore, the arrival rate should be picked close to this critical

arrival rate. If each task is identical and is characterized by d ∈ D, then it can be

verified that the critical arrival rate is λcrit
d = 1/τ crit

d , where τ crit
d = f †d(2cd/wd). In

the context of heterogeneous tasks, if each task is sampled from p, then the critical

arrival rate is
∑

d∈D p(d)λcrit
d . In general, designer may have other performance

goals for the operator, and accordingly, may choose higher task arrival rate. �

6.4 Conclusions

We presented optimal servicing policies for the queues where the performance

function of the server is a sigmoid function. First, we considered a queue with

no arrival and a latency penalty. It was observed that the optimal policy may

drop some tasks. Second, a dynamic queue with latency penalty was considered.
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We posed the problem in an MDP framework and proposed an approximate so-

lution in the certainty-equivalent receding horizon optimization framework. We

derived performance bounds for the proposed solution and suggested guidelines

for choosing the expected arrival rate for the queue.

The decision support system designed in this chapter assumes that the arrival

rate of the tasks as well as the parameters in the performance function are known.

An interesting open problem is to come up with policies which perform an online

estimation of the arrival rate and the parameters of the performance function

and simultaneously determine the optimal allocation policy. Another interesting

problem is to incorporate more human factors into the optimal policy, for example,

situational awareness, fatigue, etc. The policies designed in this chapter rely

on first-come first-serve discipline to process tasks. It would be of interest to

study problems with other processing disciples, for example, preemptive queues.

We focused on open loop optimization of human performance interacting with

automata. A significant future direction is to incorporate human feedback and

study closed loop policies that are jointly optimal for the human operator as well

as the automaton. Some preliminary results in this direction as presented in [98].
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6.5 Appendix: Finite horizon optimization for

identical tasks

In this section, we consider the special case of the finite horizon optimization

problem (6.3) in which tasks are identical and propose a procedure to obtain

the exact solution. We remark that even if the tasks are heterogeneous, many a

times extensive experiments can not be done to determine operator’s performance

on each task. Under such circumstances, each task is treated as identical and a

performance function associated with average data is used for each task. We also

note that the optimal human attention allocation policy is needed to counter the

information overload situations. The information overload situations correspond

to the heavy traffic regime of the queue and we focus on this particular regime. In

the following, we denote the sigmoid function and the latency penalty associated

with each task by f and c, respectively. Let the inflection point associated with

f be tinf. We assume that the weight associated with each task is unity. We

note that under the heavy-traffic regime the certainty-equivalent queue length is

n̄` = n1−`+1+λ
∑`−1

j=1 tj. Substituting the certainty-equivalent queue length into

the objective function of the optimization problem (6.3), we obtain the function
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J : RN
≥0 → R defined by

J(t) :=
1

N

N∑
`=1

(
f(t`)− c(n1 − `+ 1)t` − cλt`

N∑
j=1,j 6=`

tj −
cλt2`

2

)
,

where c is the penalty rate, λ is the arrival rate, and n1 is the initial queue length.

Thus, the optimization problem (6.3) is equivalent to

maximize
t�0

J(t). (6.4)

Assume that the solution to the optimization problem (6.3) allocates a strictly

positive time only to the tasks in the set Tproc ⊆ {1, . . . , N}, which we call the

set of processed tasks. (Accordingly, the policy allocates zero time to the tasks in

{1, . . . , N} \ Tproc). Without loss of generality, assume

Tproc := {η1, . . . , ηm},

where η1 < · · · < ηm and m ≤ N . A duration allocation vector t is said to be

consistent with Tproc if only the tasks in Tproc are allocated non-zero duration.

Lemma 6.5 (Properties of maximum points). For the optimization prob-

lem (6.4), and a set of processed tasks Tproc, the following statements hold:

(i). a global maximum point t∗ satisfy t∗η1 ≥ t∗η2 ≥ . . . ≥ t∗ηm ;

(ii). a local maximum point t† consistent with Tproc satisfies

f ′(t†ηk) = c(n1 − ηk + 1) + cλ

m∑
i=1

t†ηi , for all k ∈ {1, . . . ,m}; (6.5)
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(iii). the system of equations (6.5) can be reduced to

f ′(t†η1) = P(t†η1), and t†ηk = f †(f ′(t†η1)− c(ηk − η1)),

for each k ∈ {2, . . . ,m}, where P : R>0 → R∪{+∞} is defined by

P(t) =


p(t), if f ′(t) ≥ c(ηm − η1),

+∞, otherwise,

where p(t) = c(n1 − η1 + 1 + λt+ λ
∑m

k=2 f
†(f ′(t)− c(ηk − η1)));

(iv). a local maximum point t† consistent with Tproc satisfies

f ′′(tηk) ≤ cλ, for all k ∈ {1, . . . ,m}.

Proof. We start by proving the first statement. Assume t∗ηj < t∗ηk and define the

allocation vector t̄ consistent with Tproc by

t̄ηi =



t∗ηi , if i ∈ {1, . . . ,m} \ {j, k},

t∗ηj , if i = k,

t∗ηk , if i = j.

It is easy to see that

J(t∗)− J(t̄) = (ηj − ηk)(t∗ηj − t
∗
ηk

) < 0.

This inequality contradicts the assumption that t∗ is a global maximum of J .
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To prove the second statement, note that a local maximum is achieved at the

boundary of the feasible region or at the set where the Jacobian of J is zero. At

the boundary of the feasible region RN
≥0, some of the allocations are zero. Given

the m non-zero allocations, the Jacobian of the function J projected on the space

spanned by the non-zero allocations must be zero. The expressions in the theorem

are obtained by setting the Jacobian to zero.

To prove the third statement, we subtract the expression in equation (6.5) for

k = j from the expression for k = 1 to get

f ′(tηj) = f ′(tη1)− c(ηj − η1). (6.6)

There exists a solution of equation (6.6) if and only if f ′(tη1) ≥ c(ηj − η1). If

f ′(tη1) < c(ηj − η1) + f ′(0), then there exists only one solution. Otherwise, there

exist two solutions. It can be seen that if there exist two solutions t±j , with

t−j < t+j , then t−j < tη1 < t+j . From the first statement, it follows that only possible

allocation is t+j . Notice that t+j = f †(f ′(tη1)−c(ηj−η1)). This choice yields feasible

time allocation to each task ηj, j ∈ {2, . . . ,m} parametrized by the time allocation

to the task η1. A typical allocation is shown in Figure 6.7(a). We further note that

the effective penalty rate for the task η1 is c(n1− η1 + 1) + cλ
∑m

j=1 tηj . Using the

expression of tηj , j ∈ {2, . . . ,m}, parametrized by tη1 , we obtain the expression

for P .
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To prove the last statement, we observe that the Hessian of the function J is

∂2J

∂t2
= diag(f ′′(tη1), . . . , f

′′(tηm))− cλ1m1Tm,

where diag(·) represents a diagonal matrix with the argument as diagonal entries.

For a local maximum to exist at non-zero duration allocations {tη1 , . . . , tηm}, the

Hessian must be negative semidefinite. A necessary condition for Hessian to be

negative semidefinite is that diagonal entries are non-positive.

We refer to the function P as the effective penalty rate for the first processed

task. A typical graph of P is shown in Figure 6.7(b). Given Tproc, a feasible

allocation to the task η1 is such that f ′(tη1)−c(ηj−η1) > 0, for each j ∈ {2, . . . ,m}.

For a given Tproc, we define the minimum feasible duration allocated to task η1

(see Figure 6.7(a)) by

τ1 :=


min{t ∈ R≥0 | f ′(t) = c(ηm − η1)}, if f ′(tinf) ≥ c(ηm − η1),

0, otherwise.

0

0

0
Time

0

δ1 δ2

Figure 6.6: Second derivative of a sigmoid function.
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Let f ′′max be the maximum value of f ′′. We now define the points at which the

function f ′′ − cλ changes its sign (see Figure 6.6):

δ1 :=


min{t ∈ R≥0 | f ′′(t) = cλ}, if cλ ∈ [f ′′(0), f ′′max],

0, otherwise,

δ2 :=


max{t ∈ R≥0 | f ′′(t) = cλ}, if cλ ≤ f ′′max,

0, otherwise.
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Figure 6.7: (a) Feasible allocations to the second processed task parametrized by the allo-
cation to the first processed task. (b) The penalty rate and the sigmoid derivative as a function
of the allocation to the first task.

Theorem 6.6 (Finite horizon optimization). Given the optimization prob-

lem (6.4), and a set of processed tasks Tproc. The following statements are equiv-

alent:

(i). there exists a local maximum point consistent with Tproc;
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(ii). one of the following conditions hold

f ′(δ2) ≥ P(δ2), or (6.7)

f ′(τ1) ≤ P(τ1), f ′(δ1) ≥ P(δ1), and δ1 ≥ τ1. (6.8)

Proof. A critical allocation to task η1 is located at the intersection of the graph

of the reward rate f ′(tη1) and the effective penalty rate P(tη1). From Lemma 6.5,

a necessary condition for the existence of a local maximum at a critical point is

f ′′(tη1) ≤ cλ, which holds for tη1 ∈ (0, δ1]∪ [δ2,∞). It can be seen that if condi-

tion (6.7) holds, then the function f ′(tη1) and the effective penalty function P(tη1)

intersect in the region [δ2,∞[. Similarly, condition (6.8) ensures the intersection of

the graph of the reward function f ′(tη1) with the effective penalty function P(tη1)

in the region (0, δ1].
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[82] D. K. Schmidt. A queuing analysis of the air traffic controller’s work load.

IEEE Transactions on Systems, Man & Cybernetics, 8(6):492–498, 1978.

201



Bibliography

[83] L. I. Sennott. Stochastic Dynamic Programming and the Control of Queueing

Systems. Wiley, 1999.

[84] T. Shanker and M. Richtel. In new military, data overload can be deadly.

The New York Times, January 16, 2011.

[85] D. Siegmund. Sequential Analysis: Tests and Confidence Intervals. Springer,

1985.

[86] S. L. Smith and D. Rus. Multi-robot monitoring in dynamic environments

with guaranteed currency of observations. In IEEE Conf. on Decision and

Control, pages 514–521, Atlanta, GA, USA, December 2010.

[87] S. L. Smith, M. Schwager, and D. Rus. Persistent robotic tasks: Monitoring

and sweeping in changing environments. IEEE Transactions on Robotics,

28(2):410–426, 2012.

[88] D. N. Southern. Human-guided management of collaborating unmanned ve-

hicles in degraded communication environments. Master’s thesis, Electrical

Engineering and Computer Science, Massachusetts Institute of Technology,

May 2010.

202



Bibliography

[89] K. Srivastava, D. M. Stipanovic̀, and M. W. Spong. On a stochastic robotic

surveillance problem. In IEEE Conf. on Decision and Control, pages 8567–

8574, Shanghai, China, December 2009.

[90] V. Srivastava and F. Bullo. Hybrid combinatorial optimization: Sample

problems and algorithms. In IEEE Conf. on Decision and Control and Eu-

ropean Control Conference, pages 7212–7217, Orlando, FL, USA, December

2011.

[91] V. Srivastava and F. Bullo. Stochastic surveillance strategies for spatial

quickest detection. In IEEE Conf. on Decision and Control and European

Control Conference, pages 83–88, Orlando, FL, USA, December 2011.

[92] V. Srivastava and F. Bullo. Knapsack problems with sigmoid utility: Ap-

proximation algorithms via hybrid optimization. European Journal of Op-

erational Research, October 2012. Submitted.

[93] V. Srivastava, R. Carli, F. Bullo, and C. Langbort. Task release control for

decision making queues. In American Control Conference, pages 1855–1860,

San Francisco, CA, USA, June 2011.

[94] V. Srivastava, R. Carli, C. Langbort, and F. Bullo. Attention allocation for

decision making queues. Automatica, February 2012. Submitted.

203



Bibliography

[95] V. Srivastava, F. Pasqualetti, and F. Bullo. Stochastic surveillance strategies

for spatial quickest detection. International Journal of Robotics Research,

April 2012. to appear.

[96] V. Srivastava, K. Plarre, and F. Bullo. Adaptive sensor selection in se-

quential hypothesis testing. In IEEE Conf. on Decision and Control and

European Control Conference, pages 6284–6289, Orlando, FL, USA, Decem-

ber 2011.

[97] V. Srivastava, K. Plarre, and F. Bullo. Randomized sensor selection in

sequential hypothesis testing. IEEE Transactions on Signal Processing,

59(5):2342–2354, 2011.

[98] V. Srivastava, A. Surana, and F. Bullo. Adaptive attention allocation in

human-robot systems. In American Control Conference, pages 2767–2774,
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