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Abstract

We study a class of non-convex optimization problems involving sigmoid functions. We show that sigmoid functions impart a
combinatorial element to the optimization variables and make the global optimization computationally hard. We formulate versions
of the knapsack problem, the generalized assignment problem and the bin-packing problem with sigmoid utilities. We merge
approximation algorithms from discrete optimization with algorithms from continuous optimization to develop approximation
algorithms for these NP-hard problems with sigmoid utilities.
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1. Introduction

The recent national robotic initiative [2] inspires research focus-
ing on the design of robotic partners that help human operators
better interact with the automaton. In complex and informa-
tion rich operations, one of the key roles for these robotic part-
ners is to help human operators efficiently focus their attention.
For instance, consider a surveillance operation that requires hu-
man operators to monitor the evidence collected by autonomous
agents [3, 4]. The excessive amount of information available in
such systems often results in poor decisions by human opera-
tors [5]. In this setting, the robotic partner may suggest to op-
erators the optimal time-duration (attention) to be allocated to
each evidence. To this end, the robotic partner requires efficient
attention allocation algorithms for human operators.

In this paper we study certain non-convex resource allocation
problems with sigmoid utilities. Examples of sigmoid utility
functions include the correctness of human decisions as a func-
tion of the decision time [6, 7, 8], the effectiveness of human-
machine communication as a function of the communication
rate [8], human performance in multiple target search as a func-
tion of the search time [9], advertising response as a function of
the investment [10], and the expected profit in bidding as a
function of the bidding amount [11]. We present versions of
the knapsack problem, the bin-packing problem, and the gen-
eralized assignment problem in which each item has a sigmoid
utility. If the utilities are step functions, then these problems re-
duce to the standard knapsack problem, the bin-packing prob-
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lem, and the generalized assignment problem [12, 13], respec-
tively. Similarly, if the utilities are concave functions, then
these problems reduce to standard convex resource allocation
problems [14]. We will show that with sigmoid utilities opti-
mization problems become a hybrid of discrete and continuous
optimization problems.

Knapsack problems [15, 12, 13] have been extensively stud-
ied. A considerable emphasis has been on the discrete knap-
sack problem [12] and knapsack problems with concave util-
ities; a survey is presented in [16]. Non-convex knapsack
problems have also received a significant attention. Kamesh-
waran et al [17] study knapsack problems with piecewise linear
utilities. Moré et al [18] and Burke et al [19] study knapsack
problems with convex utilities. In an early work, Ginsberg [20]
studies a knapsack problem in which items have identical sig-
moid utilities. Freeland et al [21] discuss the implications of
sigmoid functions on decision models and present an approxi-
mation algorithm for the knapsack problem with sigmoid util-
ities that replaces the sigmoid functions with their concave en-
velopes, and thus solves the resulting convex problem. In a
recent work, Ağrali et al [22] consider the knapsack problem
with sigmoid utilities and show that this problem is NP-hard.
They relax the problem by constructing concave envelopes of
the sigmoid functions and then determine the global optimal
solution using branch and bound techniques. They also develop
an FPTAS for the case in which decision variables are discrete.

Recently, the topic of attention allocation for human operators
has received a significant attention. In particular, the sigmoid
performance functions of the human operator serving a queue
of decision making tasks have been utilized to develop opti-
mal attention allocation policies for the operator in [23, 24].
An optimal scheduling problem in human supervisory control
has been studied in [25]. The authors determine a sequence
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in which the tasks should be serviced so that the accumulated
reward is maximized.

We study optimization problems with sigmoid utilities. In the
context of resource allocation problems, we show that a sig-
moid utility renders a combinatorial element to the problem and
the amount of resource allocated to the associated item under an
optimal policy is either zero or more than a critical value. Thus,
optimization variables have both continuous and discrete fea-
tures. We exploit this interpretation of optimization variables
and merge algorithms from continuous and discrete optimiza-
tion to develop efficient hybrid algorithms.

We study versions of the knapsack problem, the generalized as-
signment problem and the bin-packing problem in which util-
ities are sigmoid functions of the resource allocated. In par-
ticular, we study the following problems: First, given a set of
items, a single knapsack with a fixed amount of the resource,
and the sigmoid utility of each item, determine the optimal re-
source allocation to each item. Second, given a set of items,
multiple knapsacks with fixed amounts of resource, and the sig-
moid utility of each item-knapsack pair, determine the optimal
assignments of items to knapsacks and the associated optimal
resource allocation to each item. Third, given a set of items with
their sigmoid utilities and an unlimited number of bins with a
fixed amount of the resource available at each bin, determine
the minimum number of bins and a mapping of each item to
some bin such that an optimal allocation in the first problem
allocates a non-zero resource to each item in every bin.

These problems model situations where human operators are
looking at the feeds from a camera network and deciding on
the presence of some malicious activity. The first problem de-
termines the optimal fraction of work-hours an operator should
allocate to each feed such that their overall performance is op-
timal. The second problem determines the optimal assignments
of the feeds to identical and independently working operators as
well as the optimal fraction of work-hours each operator should
allocate to each feed assigned to them such that the overall per-
formance of the team is optimal. Assuming that the operators
work in an optimal fashion, the third problem determines the
minimum number of operators and an assignment of each feed
to some operator such that each operator allocates a non-zero
fraction of work-hours to each feed assigned to them.

For clarity of presentation, the above discussion and discus-
sions later in the paper motivate these problems in the context
of human decision-making. We remark that following up on
the examples of sigmoid performance functions earlier, the so-
lution to these problems can also be used to determine optimal
human-machine communication policies, search strategies, ad-
vertisement duration allocation, and bidding strategies.

The major contributions of this work are fourfold. First, we
investigate the root-cause of combinatorial effects in optimiza-
tion problems with sigmoid utilities. We show that for a sig-
moid function subject to a linear penalty, the optimal allocation
jumps down to zero with increasing penalty rate. This jump
in the optimal allocation imparts combinatorial effects to opti-

mization problems involving multiple sigmoid functions.

Second, we study the knapsack problem with sigmoid utilities.
We exploit the above combinatorial interpretation of the sig-
moid functions and utilize a combination of approximation al-
gorithms for the binary knapsack problems and algorithms for
continuous univariate optimization to determine a constant fac-
tor approximation algorithm for the knapsack problem with sig-
moid utilities.

Third, we study the generalized assignment problem with sig-
moid utilities. We first show that the generalized assignment
problem with sigmoid utilities is NP-hard. We then exploit a
knapsack problem based algorithm for the binary generalized
assignment problem to develop an equivalent algorithm for the
generalized assignment problem with sigmoid utilities.

Fourth and finally, we study the bin-packing problem with sig-
moid utilities. We first show that the bin-packing problem with
sigmoid utilities is NP-hard. We then utilize the solution of the
knapsack problem with sigmoid utilities to develop a next-fit
type algorithm for the bin-packing problem with sigmoid utili-
ties.

The remainder of the paper is organized in the following way.
We highlight the root-cause of combinatorial effects in opti-
mization problems with sigmoid utilities in Section 2. We study
the knapsack problem with sigmoid utilities, the generalized as-
signment problem with sigmoid utilities, and the bin-packing
problem with sigmoid utilities in Sections 3, 4, and 5, respec-
tively. Our conclusions are presented in Section 6.

2. Sigmoid Functions and Linear Penalties

In this section we formally define sigmoid functions, explore
their connections with human decision-making, and study the
maximization of a sigmoid function with a linear penalty.

2.1. Sigmoid functions

A Lipschitz-continuous function f : R≥0 → R≥0 defined by

f (t) = fcvx(t)1(t < tinf) + fcnv(t)1(t ≥ tinf),

where fcvx and fcnv are monotonically non-decreasing convex
and concave functions, respectively, 1(·) is the indicator func-
tion, and tinf is the inflection point. The sub-derivative of a
sigmoid function is unimodal and achieves its maximum at
tinf. Moreover, limt→+∞ ∂ f (t) = 0, where ∂ f represents sub-
derivative of the function f . A typical graph of a smooth sig-
moid function and its derivative is shown in Figure 1.
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Figure 1: A typical sigmoid function and its derivative.
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Remark 1 (Non-smooth sigmoid functions). For ease of pre-
sentation, we focus on smooth sigmoid functions in this pa-
per. The analysis presented here extends immediately to non-
smooth functions by using the sub-derivative instead of the
derivative. �
Remark 2 (Non-monotonic sigmoid functions). In several
interesting budget allocation problems, e.g. [26], the sigmoid
utility is not a non-decreasing function. The approach in this
paper extends to the case of a general sigmoid utility. The
algorithms proposed in this paper also involve certain heuris-
tics that improve the constant-factor solution. These heuristics
exploit the monotonicity of the sigmoid function and will not
hold for a general sigmoid function. We note that even without
the performance-improvement heuristics the solution is within
a constant factor of the optimal. �

2.2. Sigmoid Functions and Human Decision-making

As discussed in the introduction of the paper, sigmoid functions
model the utility in several contexts. We now focus on one
particular context, namely, human decision-making and detail
the significance of sigmoid functions. Consider a scenario in
which a human subject is shown some noisy signal for a given
amount of time, and then the human subject makes a decision
on the presence or absence of the signal. In such scenarios,
the probability of human decision being correct as a function
of the allocated time is modeled well by a sigmoid function.
We now briefly describe some models from the human-factors
and the cognitive psychology literature that suggest that a sig-
moid function is an appropriate measure of the correctness of
the human decision:

Pew’s model: For a two alternative forced choice task, the
probability of the correct decision D1 given that the hy-
pothesis H1 is true and t units of time have been spent to
make the decision is:

P(D1|H1, t) =
p0

1 + e−(at−b) ,

where p0 ∈ [0, 1], a, b ∈ R are some parameters specific
to the human operator [7]. Thus, according to the Pew’s
model, the probability of the correct decision is a sigmoid
function of the time spent to make the decision.

Drift diffusion model: For a two alternative forced choice
task, conditioned on the hypothesis H1, the evolution of
the evidence for decision making is modeled as a drift-
diffusion process [6], that is, for a given drift rate β ∈ R>0,
and a diffusion rate σ ∈ R>0, the evidence Λ at time t is
normally distributed with mean βt and variance σ2t. The
decision is made in favor of H1 if the evidence is greater
than a decision threshold η ∈ R>0. Therefore, the condi-
tional probability of the correct decision D1 given that the
hypothesis H1 is true and t units of time have been spent
to make the decision is:

P(D1|H1, t) =
1

√
2πσ2t

∫ +∞

η

e
−(Λ−βt)2

2σ2 t dΛ,

which is a sigmoid function of the time spent to make the
decision.

Log-normal model: Reaction times of a human operator in
several missions have been studied in [27] and are shown
to follow a log-normal distribution. In this context, a rel-
evant performance function is the probability that the op-
erator reacts within a given time. This corresponds to the
cumulative distribution function of the log-normal distri-
bution which is a sigmoid function of the given time.

2.3. Maximum of a sigmoid function subject to a linear penalty

In order to gain insight into the behavior of sigmoid functions,
we start with a simple problem with a very interesting result.
We study the maximization of a sigmoid function subject to a
linear penalty. In particular, given a sigmoid function f and a
penalty rate c ∈ R>0, we wish to solve the following problem:

maximize
t≥0

f (t) − ct. (1)

The derivative of a sigmoid function is not a one to one mapping
and hence, not invertible. We define the pseudo-inverse of the
derivative of a sigmoid function f with inflection point tinf, f † :
R>0 → R≥0 by

f †(y) =

max{t ∈ R≥0 | f ′(t) = y}, if y ∈ (0, f ′(tinf)],
0, otherwise.

(2)

We now present the solution to problem (1).
Lemma 1 (A sigmoid function with a linear penalty). For the
optimization problem (1), the optimal allocation t∗ is

t∗ := argmax{ f (β) − cβ | β ∈ {0, f †(c)}}.

Proof. The global maximum lies at the point where first deriva-
tive is zero or at the boundary. The first derivative of the ob-
jective function is f ′(t) − c. If f ′(tinf) < c, then the objective
function is a decreasing function of time and the maximum is
achieved at t∗ = 0. Otherwise, a critical point is obtained by
setting first derivative to zero. We note that f ′(t) = c has at
most two roots. If there exist two roots, then only the larger
root lies in the region where the objective function is concave
and hence corresponds to a maximum. Otherwise, the only root
lies in the region where the objective function is concave and
hence corresponds to a local maximum. The global maximum
is determined by comparing the local maximum with the value
of the objective function at the boundary t = 0. This completes
the proof.

The optimal solution to problem (1) for different values of
penalty rate c is shown in Figure 1. One may notice the op-
timal allocation jumps down to zero at a critical penalty rate.
This jump in the optimal allocation gives rise to combinatorial
effects in problems involving multiple sigmoid functions.
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Definition 1 (Critical penalty rate). Given a sigmoid function
f and a linear penalty, we refer to the maximum penalty rate at
which problem (1) has a non-zero solution as the critical penalty
rate. Formally, for a given sigmoid function f and a penalty rate
c ∈ R>0, let the solution of the problem (1) be t∗f ,c, the critical
penalty rate ψ f is defined by

ψ f = max{c ∈ R>0 | t∗f ,c ∈ R>0}.
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Figure 2: Optimal allocations to a sigmoid function as a function of the linear
penalty

3. Knapsack Problem with Sigmoid Utilities

In this section, we consider the knapsack problem (KP) with
sigmoid utilities. We first define the problem and then develop
an approximation algorithm for it.

3.1. KP with Sigmoid Utilities: Problem Description

Consider a single knapsack and N items. Let the utility of item
` ∈ {1, . . . ,N} be a sigmoid function f` : R≥0 → R≥0. Given the
total available resource T ∈ R>0, the objective of the KP with
sigmoid utilities is to determine the resource allocation to each
item such that the total utility of the knapsack is maximized.
Formally, the KP with sigmoid utilities is posed as:

maximize
t�0

N∑
`=1

f`(t`)

subject to
N∑
`=1

t` ≤ T.

(3)

In (3), without loss of generality, we have assumed that the
decision variables in the resource constraint and the sigmoid
utilities in the objective function are unweighted. Indeed, if
the weights on the decision variables in the resource constraint
are non-unity, then the weighted decision variable can be in-
terpreted as a new scaled decision variable; while a weighted
sigmoid utility is again a sigmoid utility.

The KP with sigmoid utilities models the situation in which a
human operator has to perform N decision making tasks within
time T . If the performance of the human operator on task ` is
given by the sigmoid function f`, then the optimal duration allo-
cation to each task is determined by the solution of problem (3).
We now state the following proposition from [22]:
Proposition 2 (Hardness of the KP with sigmoid utilities). The
KP with sigmoid utilities is NP-hard, unless P = NP.
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Figure 3: A sigmoid function and the associated concave envelope.

We now present a simple example to illustrate that a naive con-
cave relaxation of the KP with sigmoid utilities (3) may lead to
an arbitrarily bad performance.
Example 1 (Performance of a naive concave relaxation).
Consider an instance of the KP with sigmoid utilities in which
each sigmoid utility is identical and is defined by f (t) = 1/(1 +

exp(−t + 5)). Let the total available resource be T = 8 units and
the number of items be N = 10. The optimal solution obtained
using the procedure outlined later in the paper is to allocate the
entire resource to a single item and accordingly, allocate zero
resource to every other item. The value of the objective func-
tion under such an optimal policy is 0.9526.

We now consider the solution to this problem obtained by a
popular concave relaxation scheme. In particular, we consider
the solution obtained by replacing each sigmoid function with
its concave envelope (see Figure 3). An optimal solution to the
resulting relaxed maximization problem is t` = T/N, for each
` ∈ {1, . . . ,N}. The value of the objective function under this
solution is 0.1477. Thus, the concave envelope-based policy
performs badly compared to an optimal policy. In fact, the per-
formance of the concave envelope-based policy can be made
arbitrarily bad by increasing the number of items. �

Example 1 highlights that a naive concave envelope based ap-
proach may yield an arbitrarily bad performance. While such a
performance can be improved using existing branch-and-bound
methods [22], but in general, branch-and-bound methods may
have an exponential run time. In the following, we develop an
approximation algorithm for the KP with sigmoid utilities that
is within a constant factor of the optimal and has a polynomial
run time.

3.2. KP with Sigmoid Utilities: Approximation Algorithm

We define the Lagrangian L : RN
>0 × R≥0 × RN

≥0 → R for the
knapsack problem with sigmoid utilities (3) by

L(t, α,µ) =

N∑
`=1

f`(t`) + α(T −
N∑
`=1

t`) + µT t,

where α ∈ R≥0 and µ ∈ RN
≥0 are Lagrange multipliers associ-

ated with the resource constraint and non-negativity constraints,
respectively. Let tinf

` be the inflection point of the sigmoid func-
tion f` and f †

`
be the pseudo-inverse of its derivative as defined

in equation (2). We define the maximum value of the deriva-
tive of the sigmoid function f` by α` = f ′` (tinf

` ). We also define
αmax = max{α` | ` ∈ {1, . . . ,N}}. We will later show that αmax is
the maximum possible value of an optimal Lagrange multiplier
associated with the resource constraint.
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We define the set of inconsistent sigmoid functions by I = {` ∈
{1, . . . ,N} | tinf

` > T }, i.e., the set of sigmoid functions for which
any feasible allocation is in the convex part of the sigmoid func-
tion. Similarly and accordingly, we define the set of consistent
sigmoid functions as {1, . . . ,N} \ I. We will show that for an
inconsistent sigmoid function, the optimal allocation is either
zero or T . We denote the j-th element of the standard basis of
RN by e j.

Since constraints in (3) are linear, the strong duality holds and
in order to solve (3), it suffices to optimize the Lagrangian L.
We will show that for a fixed value of the Lagrange multiplier
α and consistent sigmoid functions, the optimization of the La-
grangian is equivalent to the α-parametrized KP defined by:

maximize
N∑
`=1

x` f`( f †
`

(α))

subject to
N∑
`=1

x` f †
`

(α) ≤ T

x` ∈ {0, 1}, ∀` ∈ {1, . . . ,N}.

(4)

Define F : (0, αmax]→ R≥0 as the optimal value of the objective
function in the α-parametrized KP (4).

For a fixed value of α, (4) is a binary KP which is NP-hard. We
now relax (4) to the following α-parametrized fractional KP:

maximize
N∑
`=1

x` f`( f †
`

(α))

subject to
N∑
`=1

x` f †
`

(α) ≤ T

x` ∈ [0, 1], ∀` ∈ {1, . . . ,N}.

(5)

Define FLP : (0, αmax] → R≥0 as the optimal value of the ob-
jective function in the α-parametrized fractional KP (5). For a
given α, the solution to problem (5) is obtained in the following
way:

(i). sort tasks such that

f1( f †1 (α))

f †1 (α)
≥

f2( f †2 (α))

f †2 (α)
≥ . . . ≥

fN( f †N(α))

f †N(α)
;

(ii). find k := min{ j ∈ {1, . . . ,N} |
∑ j

i=1 f †i (α) ≥ T };
(iii). the solution is xLP

1 = xLP
2 = . . . = xLP

k−1 = 1, xLP
k = (T −∑k−1

i=1 f †i (α))/ f †k (α), and xLP
k+1 = xLP

k+2 = . . . = xLP
N = 0.

A 2-factor solution to the binary KP (4) is obtained by perform-
ing the first two steps in the above procedure, and then picking
the better of the two sets {1, . . . , k − 1} and {k} (see [15, 12] for
details). Let Fapprox : (0, αmax] → R≥0 be the value of the ob-
jective function in the α-parametrized knapsack problem under
such a 2-factor solution.

If the optimal Lagrange multiplier α is known, then the afore-
mentioned procedure can be used to determine a solution to (3)

that is within a constant factor of the optimal. We now focus on
the search for an efficient Lagrange multiplier α. We will show
that an efficient solution can be computed by picking the max-
imizer of FLP as the Lagrange multiplier. The maximizer of a
continuous univariate function can be efficiently searched, but
unfortunately, FLP may admit several points of discontinuity. If
the set of points of discontinuity is known, then the maximizer
over each continuous piece can be searched efficiently. There-
fore, we now determine the set of points of discontinuity of the
function FLP.
Lemma 3 (Discontinuity of FLP). The maximal set of points of
discontinuity of the function FLP is {α1, . . . , αN}.

Proof. For each α ∈ [0, αmax], the α-parametrized fractional KP
is a linear program, and the solution lies at one of the vertex of
the feasible simplex. Note that if f †

`
(α) is a continuous function

for each ` ∈ {1, . . . ,N}, then the vertices of the feasible simplex
are continuous functions of α. Further, the objective function
is also continuous if f †

`
(α) is a continuous function for each

` ∈ {1, . . . ,N}. Therefore, FLP may be discontinuous only if
f †
`

(α) is discontinuous for some `, i.e., α ∈ {α1, . . . , αN}.

In summary, we will show that if each sigmoid function is con-
sistent, then the allocation to each sigmoid function can be writ-
ten in terms of the Lagrange multiplier α, and the KP with sig-
moid utilities (3) reduces to the α-parametrized KP (4). Fur-
ther, an efficient Lagrange multiplier α∗LP can be searched in the
interval (0, αmax], and the α∗LP-parametrized KP can be solved
using standard approximation algorithms to determine a solu-
tion within a constant factor of the optimal. The search of
an efficient Lagrange multiplier is a univariate continuous op-
timization problem and a typical optimization algorithm will
converge only asymptotically, but it will converge to an arbi-
trarily small neighborhood of the efficient Lagrange multiplier
in a finite number of iterations. Thus, a factor of optimality
within an ε neighborhood of the desired factor of optimality,
for any ε > 0, can be achieved in a finite number of iterations.

We utilize these ideas to develop a (2 + ε)-factor approximation
algorithm for the KP with sigmoid utilities in Algorithm 1. The
algorithm comprises of three critical steps: (i) it searches for the
Lagrange multiplier that maximizes the optimal value function
FLP of the α-parametrized fractional KP and utilizes the associ-
ated solution to determine a constant-factor solution to the as-
sociated α-parametrized KP; (ii) it then compares the value of
the objective function corresponding to the obtained constant-
factor solution with the values of the objective function cor-
responding to the allocations of the form Te j, j ∈ {1, . . . ,N},
i.e., the policies that allocate all the resource to a single item
and picks the best among these policies; and (iii) it involves a
performance-improvement heuristic in which the unemployed
resource is allocated to the most beneficial item. Note that step
(ii) takes care of inconsistent sigmoid utilities; in particular, we
will show that the allocation to an item with an inconsistent sig-
moid utility is either zero or T , and thus, if a non-zero resource
is allocated to an item with an inconsistent sigmoid utility, then
every other item is allocated zero resource.
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We now establish the performance of Algorithm 1. We define
an ε-approximate maximizer of a function as a point in the do-
main of the function at which the function attains a value within
ε of its maximum value. We now analyze Algorithm 1. We note
that if the sigmoid utilities are non-smooth, then the standard
KKT conditions in the following analysis are replaced with the
KKT conditions for non-smooth optimization problems [28].

Algorithm 1: KP with Sigmoid Utilities: Approximation Algorithm

Input : f`, ` ∈ {1, . . . ,N},T ∈ R>0 ;
Output : optimal allocations t∗ ∈ RN

≥0;

% search for optimal Lagrange multiplier

1 α∗LP ← argmax{FLP(α) | α ∈ [0, αmax]};

2 determine the 2-factor solution x∗ of α∗LP-parametrized knapsack problem ;

% determine best inconsistent sigmoid function

3 find `∗ ← argmax{ f`(T ) | ` ∈ I};

% pick the best among consistent and inconsistent tasks

4 if f`∗ (T ) > Fapprox(α∗LP) then
t∗ = Te`∗ ;

5 else
t†
`
← x∗

`
f †
`

(α∗LP),∀` ∈ {1, . . . ,N};

% heuristic to improve performance
% pick the best sigmoid function to allocate the remaining resource

6 ¯̀← argmax
{
f`(t
†

`
+ T −

∑N
j=1 t†j ) − f`(t

†

`
) | ` ∈ {1, . . . ,N}

}
;

t∗
`
←

t†
`
, if ` ∈ {1, . . . ,N} \ ¯̀

t†
`

+ T −
∑N

j=1 t†j , if ` = ¯̀;

Theorem 4 (KP with sigmoid utilities). The following state-
ments hold for the KP with sigmoid utilities (3) and the solution
obtained via Algorithm 1:

(i). the solution is within a factor of optimality (2 + ε), for any
ε > 0;

(ii). if an ε-approximate maximizer over each continuous piece
of FLP can be searched using a constant number of func-
tion evaluations, then Algorithm 1 runs in O(N2) time.

Proof. See Appendix.

Corollary 5 (Identical sigmoid functions). If the sigmoid util-
ities in the KP with sigmoid utilities (3) are identical and equal
to f , then an optimal solution t∗ is an N-tuple with m∗ entries
equal to T/m∗ and all other entries zero, where

m∗ = argmax
m∈{1,...,N}

m f (T/m). (6)

Proof. It follows from Algorithm 1 that for identical sigmoid
utilities the optimal non-zero resource allocated is the same for
each item. The number of items with the optimal non-zero re-
source is determined by equation (6), and the statement fol-
lows.

Discussion 1 (Search of the optimal Lagrange multiplier).
The approximate solution to the KP with sigmoid utilities in
Algorithm 1 involves the search for α∗LP, the maximizer of func-
tion FLP. It follows from Lemma 3 that this search corresponds

to the global maximization of N univariate continuous func-
tions. The global maximum over each continuous piece can be
determined using the P-algorithm [29, 30]. If stronger proper-
ties of FLP can be established for a given instance of the KP
with sigmoid utilities, then better algorithms can be utilized,
e.g., (i) if each continuous piece of FLP is differentiable, then
the modified P-algorithm [31] can be used for global optimiza-
tion; (ii) if each continuous piece of FLP is Lipschitz, then one
of the algorithms in [32] can be used for global optimization. �
Example 2. Given sigmoid functions f`(t) = w`/(1 +

exp(−a`t + b`)), ` ∈ {1, . . . , 10} with parameters and associated
weights

a = (a1, . . . , a10) = (1, 2, 1, 3, 2, 4, 1, 5, 3, 6),
b = (b1, . . . , b10) = (5, 10, 3, 9, 8, 16, 6, 30, 6, 12),

and w = (w1, . . . ,w10) = (2, 5, 7, 4, 9, 3, 5, 10, 13, 6).

Let the total available resource be T = 15 units. The optimal
solution and the approximate solution without the heuristic in
step 6 of Algorithm 1 are shown in Figure 4. The approximate
solution with the heuristic in step 6 of Algorithm 1 is the same
as the optimal solution. The value functions F, Fapprox, and FLP
are shown in Figure 5. �
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Figure 4: Optimal allocations and the approximate optimal allocations without
the performance-improvement heuristic.
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Figure 5: Exact and approximate maximum value of the objective function.
The functions FLP, F, Fapprox are shown by solid brown line, black dotted line,
and blue dashed line, respectively. The points of discontinuity of the function
FLP are contained in the set {α1, . . . , αN }.

Remark 3 (Multiple-choice KP with sigmoid utilities). Con-
sider m disjoint classes {N1, . . . ,Nm} of items and a single knap-
sack. The multiple-choice KP is to select one item each from
every class such that the total utility of the selected items is
maximized for a given total available resource. Let the total
available resource be T ∈ R>0, and let the utility of allocating

6



a resource t ∈ R≥0 to item i in class N j be a sigmoid function
fi j : R≥0 → R≥0. The multiple-choice KP with sigmoid utilities
is posed as:

maximize
m∑

i=1

∑
j∈Ni

fi j(ti j)xi j

subject to
m∑

i=1

∑
j∈Ni

ti jxi j ≤ T∑
j∈Ni

xi j = 1, i ∈ {1, . . . ,m}

xi j ∈ {0, 1}, i ∈ {1, . . . ,m}, j ∈ Ni.

(7)

Given a set of classes of tasks, the multiple-choice KP with sig-
moid utilities models a situation where a human operator has
to process one task each from every class within time T . The
performance of the operator on task i from class N j is given
by the sigmoid function fi j. Different tasks in a given class
may be, e.g., observations collected from different sensors in a
given region. The methodology developed in this section ex-
tends to the multiple-choice KP with sigmoid utilities (7). In
particular, problem (7) can be reduced to an α-parameterized
multiple-choice knapsack problem, and the LP relaxation based
2-factor approximation algorithm for the binary multiple choice
knapsack problem [15] can be utilized to determine a 2-factor
algorithm for problem (7). �
Remark 4 (Allocation in queues with sigmoid utilities). The
KP with sigmoid utilities (3) also models the resource alloca-
tion problem in queues with sigmoid server performance func-
tions. In particular, consider a single server queue with a gen-
eral arrival process and a deterministic processing discipline.
Let the tasks arrive according to some process with a mean ar-
rival rate λ. Let the tasks be indexed by the set {1, . . . ,N}, and
let each arriving task be sampled from a stationary probability
vector {p1, . . . , pN}, i.e., at any time the next task arriving to the
queue is indexed ` with probability p`. Let the performance of
the server on a task with index ` be a sigmoid function f` of
the processing time. A stationary policy for such a queue al-
ways allocates a fixed duration t` ∈ R≥0 to a task with index
`. An optimal stationary policy is a stationary policy that maxi-
mizes the expected performance of the server while keeping the
queue stable. The stability constraint on the queue implies that
the average allocation to each task should be smaller than 1/λ.
Accordingly, the optimal stationary policy is determined by:

maximize
t�0

N∑
`=1

p` f`(t`)

subject to
N∑
`=1

p`t` ≤
1
λ
,

which is a KP with sigmoid utilities. �

4. Generalized Assignment Problem with Sigmoid Utilities

In this section, we consider the generalized assignment problem
(GAP) with sigmoid utilities. We first define the problem and

then develop an approximation algorithm for it.

4.1. GAP with Sigmoid Utilities: Problem Description

Consider M bins (knapsacks) and N items. Let T j be the total
available resource at bin j ∈ {1, . . . ,M}. Let the utility of item
i ∈ {1, . . . ,N} when assigned to bin j be a sigmoid function fi j :
R≥0 → R≥0 of the allocated resource ti j. The GAP with sigmoid
utilities determines the optimal assignment of the items to the
bins such that the total utility of the bins is maximized. Note
that unlike the assignment problem, the generalized assignment
problem does not require each item to be allocated to some bin.
Formally, the GAP with sigmoid utilities is posed as:

maximize
M∑
j=1

N∑
i=1

fi j(ti j)xi j

subject to
N∑

i=1

ti jxi j ≤ T j, j ∈ {1, . . . ,M}

M∑
j=1

xi j ≤ 1, i ∈ {1, . . . ,N}

xi j ∈ {0, 1}, i ∈ {1, . . . ,N}, j ∈ {1, . . . ,M}.

(8)

The GAP with sigmoid utilities models a situation where M hu-
man operators have to independently serve N tasks. Operator
j works for a duration T j. The performance of operator j on
task i is given by the sigmoid function fi j. The solution to the
GAP determines optimal assignments of the tasks to the oper-
ators and the associated optimal duration allocations. We now
state the following result about the hardness of the GAP with
sigmoid utilities:
Proposition 6 (Hardness of GAP with sigmoid utilities). The
GAP with sigmoid utilities is NP-hard, unless P = NP.

Proof. The statement follows from the fact that the KP with
sigmoid utilities is a special case of the GAP with sigmoid util-
ities, and is NP-hard according to Proposition 2.

4.2. GAP with Sigmoid Utilities: Approximation Algorithm

We now propose an approximation algorithm for the GAP with
sigmoid utilities. This algorithm is an adaptation of the 3-
factor algorithm for the binary GAP proposed in [33] and is
presented in Algorithm 2. We first introduce some notation.
Let F be the matrix of sigmoid functions fi j, i ∈ {1, . . . ,N}, j ∈
{1, . . . ,M}. Let F∗` denote the `-th column of the matrix F.
For a given matrix E, let us denote E∗k:m, k ≤ m as the sub-
matrix of E comprising of all the columns ranging from the
k-th column to the m-th column. For a given set of allocations
ti j, i ∈ {1, . . . ,N}, j ∈ {1, . . . ,M} and a set Ā ⊆ {1, . . . ,N}, tĀ j
represents the vector with entries ti j, i ∈ Ā. Similarly, for a
given set Iunproc ⊆ {1, . . . ,N}, FIunproc j represents the vector with
entries Fi j, i ∈ Iunproc. Let KP(·, ·) be the function which takes a
set of sigmoid utilities and the total available resource as inputs
and yields allocations according to Algorithm 1.
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Algorithm 2 calls a recursive function GAP(·, ·) with the input
(1, F) to compute an approximate solution to the GAP with sig-
moid utilities. The output of Algorithm 2 comprises a set A
describing assignments of the items to the bins and a matrix t
describing the associated duration allocations.

The function GAP(·, ·) takes an index ` ∈ {1, . . . ,M} and the
matrix of sigmoid utilities f `i j, i ∈ {1, . . . ,N}, j ∈ {`, . . . ,M}
as the input and yields assignments of the items to the bin set
{`, . . . ,M} and the associated duration allocations. The function
GAP(`, F(`)) first determines a temporary set of assignments and
the associated duration allocations for the `-th bin using Algo-
rithm 1 with the sigmoid utilities in the first column of F(`) and
the total available resource at the `-th bin.

The function GAP then decomposes the matrix F(`) into two ma-
trices E1 and E2 such that F(`) = E1 + E2. The matrix E1 is
constructed by (i) picking its first column as the first column of
F(`), (ii) picking the remaining entries of the rows associated
with the items temporarily assigned to the `-th bin as the value
of the sigmoid function in the first column computed at the as-
sociated temporary allocation, and (iii) picking all other entries
as zero. The matrix E2 is chosen as E2 = F(`) − E1. The key
idea behind this decomposition is that the matrix E2 has all the
entires in the first column equal to zero, and thus, effectively
contains only M − ` columns of sigmoid utilities.

The function GAP then removes the first column of E2 , assigns
the resulting matrix to F(`+1), and calls itself with the input
(` + 1, F(`+1)). The recursion stops at ` + 1 = M, in which
case F(`+1) is a column vector, and the assignments and the as-
sociated allocations are obtained using Algorithm 1.

Algorithm 2 also involves a performance-improving heuristic.
According to this heuristic, if the total available resource at a
bin is not completely utilized and there are tasks that are not as-
signed to any bin, then a KP with sigmoid utilities is solved us-
ing the remaining amount of the resource and unassigned tasks.
Likewise, if the total available resource at a bin is not com-
pletely utilized and each task has been assigned to some bin,
then the remaining resource is allocated to the most beneficial
task in that bin.

We now establish performance bounds for the proposed algo-
rithm:
Theorem 7 (GAP with sigmoid utilities). The following state-
ments hold for the GAP with sigmoid utilities (8) and the solu-
tion obtained via Algorithm 2:

(i). the solution is within a factor (3 + ε) of the optimal, for
any ε > 0; and

(ii). Algorithm 2 runs in O(N2M) time, provided the solution
to the KP with sigmoid utilities can be computed in O(N2)
time.

Proof. The proof is an adaptation of the inductive argument for
the binary GAP in [33]. We note that for a single bin, the GAP
reduces to the knapsack problem and Algorithm 1 provides a

Algorithm 2: GAP with Sigmoid Utilities: 3-factor Approximation

Input : fi j, T j, i ∈ {1, . . . ,N}, j ∈ {1, . . . ,M} ;
Output : assignment set A = {A1, . . . , AM} and allocations t ∈ RN×M

≥0 ;

% Initialize

1 F(1) ← F;

% Call function GAP

2 allocations [A, t]← GAP(1, F(1));

% heuristic to improve performance

% assign unassigned tasks to unsaturated bins

3 Iunproc ← {1, . . . ,N} \ ∪M
k=1 Ak;

4 foreach j ∈ {1, . . . ,M} do
5 if

∑
i∈A j ti j < T j and |Iunproc | > 0 then
% solve KP with unprocessed tasks

6 [Ā, t̄]← KP(FIunproc j,T j −
∑

i∈A j ti j);

7 A j ← A j ∪ Ā; tĀ j ← t̄;

8 else if
∑

i∈A j ti j < T j and |Iunproc | = 0 then
% allocate remaining resource to the most rewarding task

9 υ← argmax{ fi j(ti j + T j −
∑

i∈A j ti j) | i ∈ A j};

10 tυ j ← tυ j + T j −
∑

i∈A j ti j;

11 Iunproc ← {1, . . . ,N} \ (A1 ∪ . . .∪ Am) ;

% Function definition

12 function [A(`), t(`)]← GAP(`, F(`))

% Determine temporary the allocations for bin ` using Algorithm 1

13 [Ā, t̄]← KP(F(`)
∗1 ,T`);

14 foreach i ∈ {1, . . . ,N} and j ∈ {1, . . . ,M − ` + 1} do

E1
i j(t)←


F(`)

i1 (t̄i), if i ∈ Ā and j , 1,
F(`)

i1 (t), if j = 1,
0, otherwise;

15 E2(t)← F(`)(t) − E1(t);

16 if ` < M then
% remove first column from E2 and assign it to F(`+1)

17 F(`+1) ← E2
∗2:M−`+1;

18 [A(`+1), t(`+1)]← GAP(` + 1, F(`+1));

19 A` ← Ā \ ∪M
k=`+1 Ak;

20 A(`) ← A` ∪ A(`+1);

21 foreach i ∈ Ā∩∪M
k=`+1 Ak do

t̄i ← 0;

22 t(`) ← [ t̄ t(`+1)];

23 else
A` ← Ā and t(`) ← t̄;

solution within (2 + ε)-factor of the optimal. Consequently, Al-
gorithm 2 provides a solution within (2 + ε)-factor of the opti-
mal, and hence, within (3 + ε)-factor of the optimal.

Assume by the induction hypothesis that Algorithm 2 provides
a solution within (3 + ε)-factor of the optimal for L bins. We
now consider the case with (L + 1) bins. The performance ma-
trix F has two components, namely, E1 and E2. We note that
first column of E2 has each entry equal to zero, and thus, E2

corresponds to a GAP with L bins. By the induction hypoth-

8



esis, Algorithm 2 provides a solution within (3 + ε)-factor of
the optimal with respect to performance matrix E2. We further
note that the first column of E1 is identical to the first column
of F and Algorithm 1 provides a solution within (2 + ε)-factor
of the optimal with respect to this column (bin). Moreover, the
best possible allocation with respect to other entries can con-
tribute to the objective function an amount at most equal to∑N

i=1 fi1(t∗i1). Consequently, the solution obtained from Algo-
rithm 2 is within (3 + ε)-factor of the optimal with respect to
performance matrix E1. Since the solution is within (3 + ε)-
factor of the optimal with respect to both E1 and E2, it follows
that the solution is within (3 + ε)-factor of the optimal with re-
spect to E1 + E2 (see Theorem 2.1 in [33]). The performance
improvement heuristic further improves the value of the objec-
tive function and only improves the factor of optimality. This
establishes the first statement.

The second statement follows immediately from the observa-
tion that Algorithm 2 solves 2M instances of knapsack problem
with sigmoid utilities using Algorithm 1.

Example 3. Consider the GAP with M = 4 and N = 10. Let
the associated sigmoid functions be fi j(t) = 1/(1+exp(−t+bi j)),
where the matrix of parameters bi j is

b =


1 7 2 3 8 7 5 1 3 6
7 9 8 8 6 1 7 4 5 4
6 10 1 2 3 1 9 7 9 5
9 2 4 8 1 2 5 8 6 8

 .
Let the vector of the total resource available at each bin be T =

[5 10 15 20]. The allocations obtained through Algorithm 2
are shown in Figure 6. The corresponding assignment sets are
A1 = {8}, A2 = {10}, A3 = {1, 3, 4, 5}, and A4 = {2, 6, 7, 9}. �
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Figure 6: Allocations for the GAP obtained via Algorithm 2.

5. Bin-packing Problem with Sigmoid Utilities

In this section, we consider the bin-packing problem (BPP) with
sigmoid utilities. We first define the problem and then develop
an approximation algorithm for it.

5.1. BPP with Sigmoid Utilities: Problem Description

Consider N items with sigmoid utilities f`, ` ∈ {1, . . . ,N}, and
a resource T ∈ R>0. Determine the minimum K ∈ N and a
mapping Υ : {1, . . . ,N} → {1, . . . ,K} such that, the optimal

solution to the following KP with sigmoid utilities allocates a
non-zero resource to each item ` ∈ Ai for each i ∈ {1, . . . ,K}:

maximize
∑
`∈Ai

f`(t`)

subject to
∑
`∈Ai

t` ≤ T,
(9)

where Ai is the set of items allocated to the i-th bin, i.e., Ai =

{ j ∈ {1, . . . ,N} | Υ( j) = i}.

The BPP with sigmoid utilities models a situation where one
needs to determine the minimum number of identical operators,
each working for time T , required to optimally serve each of the
N tasks characterized by sigmoid functions f`, ` ∈ {1, . . . ,N}.

We will establish that the standard BPP is a special case of
the BPP with sigmoid utilities, and consequently, the BPP with
sigmoid utilities is NP-hard. To this end, we need to deter-
mine an amount of the resource T such that each of the task
in a given set Ai is allocated a non-zero resource by the so-
lution to (9) obtained from Algorithm 1. We determine such
a T in the following lemma. Before we state the lemma,
we introduce some notation. We denote the critical penalty
rate for the sigmoid function f` by ψ`, ` ∈ {1, . . . ,N}, and let
ψmin = min{ψ` | ` ∈ {1, . . . ,N}}.
Lemma 8 (Non-zero allocations). A solution to the optimiza-
tion problem (9) allocates a non-zero resource to each sigmoid
function f`, ` ∈ Ai, i ∈ {1, . . . ,K}, if

T ≥
∑
`∈Ai

f †
`

(ψmin).

Proof. It suffices to prove that if T =
∑
`∈Ai

f †
`

(ψmin), then ψmin
is the optimal Lagrange multiplier α∗ in Algorithm 1. Note that
if a non-zero resource is allocated to each task, then the solu-
tion obtained from Algorithm 1 is the optimal solution. Since,
t∗` = f †

`
(ψmin), ` ∈ Ai are feasible non-zero allocations, ψmin is

a Lagrange multiplier. We now prove that ψmin is the optimal
Lagrange multiplier. Let Ai = {1, . . . , ai}. By contradiction,
assume that t∗ is not the globally optimal allocation. Without
loss of generality, we assume that the global optimal policy al-
locates zero resource to sigmoid function fai , and let t̄ be the
globally optimal allocation. We observe that

ai−1∑
`=1

f`(t̄`) + fai (0)

≤

ai−1∑
`=1

f`(t̄`) + fai (t
∗
ai

) − ψmint∗ai
(10)

≤

ai∑
`=1

f`(t∗` ) +

ai−1∑
`=1

f ′` (t∗` )(t̄` − t∗` ) − ψmint∗ai
(11)

=

ai∑
`=1

f`(t∗` ) +

ai∑
`=1

ψmin(t̄` − t∗` )

=

ai∑
`=1

f`(t∗` ),

9



where inequalities (10) and (11) follow from the definition
of the critical penalty rate and the concavity to the sigmoid
function at t∗` , respectively. This contradicts our assumption.
Hence, t∗ is the global optimal allocation and this completes
the proof.

We now state the following result about the hardness of the BPP
with sigmoid utilities:
Proposition 9 (Hardness of the BPP with sigmoid utilities).
The BPP with sigmoid utilities is NP-hard, unless P = NP.

Proof. Consider an instance of the standard BPP with items
of size ai ≤ T, i ∈ {1, . . . ,N} and bins of size T . It is well
known [12] that the BPP is NP-hard. Without loss of general-
ity, we can pick N sigmoid functions fi, i ∈ {1, . . . ,N} such that
f †i (ψmin) = ai, for each i ∈ {1, . . . ,N} and some ψmin ∈ R>0.
It follows from Lemma 8 that such an instance of the BPP
with sigmoid utilities is in a one-to-one correspondence with
the aforementioned standard BPP. This establishes the state-
ment.

5.2. BPP with Sigmoid Utilities: Approximation Algorithm

We now develop an approximation algorithm for the BPP with
sigmoid utilities. The proposed algorithm is similar to the stan-
dard next-fit algorithm [12] for the binary bin-packing problem.
The algorithm adds an item to the current bin, and if after the
addition of the item, the optimal policy for the associated KP
with sigmoid utilities allocates a non-zero resource to each item
in the bin, then the algorithm assigns the item to the current bin;
otherwise, it opens a new bin and allocates the item to the new
bin. This approximation algorithm is presented in Algorithm 3.
We now present a formal analysis of this algorithm. We intro-
duce following notations. Let K∗ be the number of bins used
by the optimal solution to the bin-packing problem with sig-
moid utilities, and let Knext-fit be the number of bins used by the
solution obtained through Algorithm 3.

Algorithm 3: BPP with Sigmoid Utilities: Approx. Algorithm

Input : f`, ` ∈ {1, . . . ,N},T ∈ R>0 ;
Output : number of required bins K ∈ N and assignments Υ;

1 K ← 1;AK ← {};

foreach ` ∈ {1, . . . ,N} do
2 AK ← AK ∪{`} ;

3 solve problem (9) for i = K, and find t∗ ;

% if optimal policy drops a task, open a new bin

4 if t∗j = 0, for some j ∈ AK then
K ← K + 1;AK ← {`};

5 Υ(`)← K;

Theorem 10 (BPP with sigmoid utilities). The following state-
ments hold for the BPP with sigmoid utilities (9), and its solu-
tion obtained via Algorithm 3:

(i). the optimal solution satisfies the following bounds

Knext-fit ≥ K∗ ≥
1
T

N∑
`=1

min{T, tinf
` }.

(ii). the solution obtained through Algorithm 3 satisfies

Knext-fit ≤
1
T

(
2

N∑
`=1

min{T, f †
`

(ψmin)} − 1
)
.

(iii). Algorithm 3 provides a solution to the BPP with sigmoid
utilities within a factor of optimality

max{2 min{T, f †
`

(ψmin)} | ` ∈ {1, . . . ,N}}

max{min{T, tinf
`
} | ` ∈ {1, . . . ,N}}

;

(iv). Algorithm 3 runs in O(N3) time, provided the solution to
the KP with sigmoid utilities can be computed in O(N2)
time.

Proof. It follows from Algorithm 1 that if tinf
` < T , then the op-

timal non-zero allocation to the sigmoid function f` is greater
than tinf

` . Otherwise, the optimal non-zero allocation is equal
to T . Therefore, if each sigmoid function gets a non-zero al-
location under the optimal policy, then at least

∑N
`=1 min{T, tinf

` }

resource is required, and the lower bound on the optimal K∗

follows.

It follows from Lemma 8 that if t` = f †
`

(ψmin) amount of the
resource is available for task `, then a non-zero resource is al-
located to it. Therefore, the solution of the bin-packing prob-
lem with bin size T and items of size {min{T, f †

`
(ψmin)} | ` ∈

{1, . . . ,N}} provides an upper bound to the solution of the BPP
with sigmoid utilities. The upper bound to the solution of this
bin-packing problem obtained through the standard next-fit al-
gorithm is (2

∑N
`=1 min{T, f †

`
(ψmin)} − 1)/T , and this completes

the proof of the second statement.

The third statement follows immediately from the first two
statements, and the last statement follows immediately from
the fact that Algorithm 1 is utilized at each iteration of Algo-
rithm 3.

Example 4. For the same set of sigmoid functions as in Ex-
ample 2 and T = 20 units, the solution to the BPP with sigmoid
utilities obtained through Algorithm 3 requires Knext-fit = 3 bins,
and the associated allocations to each task in these bins are
shown in Figure 7. �

6. Conclusions and Future Directions

We studied non-convex optimization problems involving sig-
moid functions. We considered the maximization of a sigmoid
function subject to a linear penalty and showed that the optimal
allocation jumps down to zero at a critical penalty rate. This
jump in the allocation imparts combinatorial effects to the con-
strained optimization problems involving sigmoid functions.
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Figure 7: Allocations to items in each bin. The dot-dashed black lines represent
items assigned to the first bin, the solid red lines represent items assigned to the
second bin, and the dashed green line represent items assigned to the third bin.

We studied three such problems, namely, the knapsack problem
with sigmoid utilities, the generalized assignment problem with
sigmoid utilities, and the bin-packing problem with sigmoid
utilities. We merged approximation algorithms from discrete
optimization with algorithms from continuous optimization to
develop hybrid approximation algorithms for these problems.

There are many possible extensions of this work. A simi-
lar strategy for approximate optimization could be adopted for
other problems involving sigmoid functions, e.g., the network
utility maximization problem, where the utility of each source is
a sigmoid function. Other extensions include problems involv-
ing general non-convex functions and optimization in general
queues with sigmoid characteristics.
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Appendix

A-1. Proof of Theorem 4

We apply the Karush-Kuhn-Tucker necessary conditions [34]
for an optimal solution:
Linear dependence of gradients

∂L
∂t∗
`

(t∗, α∗,µ∗) = f ′` (t∗` ) − α
∗ + µ∗` = 0, for each ` ∈ {1, . . . ,N}.

(A.1)
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Feasibility of the solution

T − 1T
N t∗ ≥ 0 and t∗ � 0. (A.2)

Complementarity conditions

α∗(T − 1T
N t∗) = 0. (A.3)
µ∗` t
∗
` = 0, for each ` ∈ {1, . . . ,N}. (A.4)

Non-negativity of the multipliers

α∗ ≥ 0, µ∗ � 0. (A.5)

Since f` is a non-decreasing function, for each ` ∈ {1, . . . ,N},
the resource constraint should be active, and thus, from comple-
mentarity condition (A.3) α∗ > 0. Further, from equation (A.4),
if t∗` , 0, then µ∗` = 0. Therefore, if a non-zero resource is allo-
cated to the sigmoid function fη, η ∈ {1, . . . ,N}, then it follows
from equation (A.1)

f ′η(t∗η) = α∗. (A.6)

Assuming that each f` is consistent, i.e., tinf
` ≤ T , for each ` ∈

{1, . . . ,N}, the second order condition [34] yields that a local
maxima exists at t∗ only if

f ′′η (t∗η) ≤ 0 ⇐⇒ t∗η ≥ tinf
η . (A.7)

The equations (A.6) and (A.7) yield that the optimal non-zero
allocation to the sigmoid function fη is

t∗η = f †η (α∗). (A.8)

Given the optimal Lagrange multiplier α∗, the optimal non-zero
allocation to the sigmoid function fη is given by equation (A.8).
Further, the optimal set of sigmoid functions with non-zero al-
locations is the solution to the α∗-parametrized KP (4). We
now show that α∗ is the maximizer of F. Since, at least one
task is processed, f ′` (t∗` ) = α, for some ` ∈ {1, . . . ,N}. Thus,
α ∈ [0, αmax]. By contradiction assume that ᾱ is the maximizer
of F, and F(ᾱ) > F(α∗). This means that the allocation cor-
responding to ᾱ yields higher reward than the allocation corre-
sponding to α∗. This contradictions equation (A.8).

If tinf
` > T , for some ` ∈ {1, . . . ,N}, then equation (A.7) does

not hold for any t` ∈ [0,T ]. Since, f` is convex in the interval
[0,T ], the optimal allocation is at the boundary, i.e., t` ∈ {0,T }.
Therefore, as exemplified in Figure 8, the optimal allocation is
either Te` or lies at the projection of the simplex on the hyper-
plane t` = 0. The projection of the simplex on the hyperplane
t` = 0 is again a simplex and the argument holds recursively.

To establish the first statement we note that α∗LP is the maxi-
mizer of FLP, and the α-parametrized fractional KP is a relax-
ation of the α-parametrized KP, hence

FLP(α∗LP) ≥ FLP(α∗) ≥ F(α∗). (A.9)

We further note that α∗ is the maximizer of F and Fapprox is a
suboptimal value of the objective function, hence

F(α∗) ≥ F(α∗LP) ≥ Fapprox(α∗LP) ≥
1
2

FLP(α∗LP), (A.10)

T

T

T

tinf
1

tinf
2

tinf
3

Figure 8: Possible locations of the maximum are shown in green stars and solid
green line. The maximum possible allocation T is smaller than the inflection
point of the third sigmoid function. For any allocation to the third sigmoid
function, the corresponding entry in the Hessian matrix is positive, and the
optimal allocation to the third sigmoid function is 0 or T . Optimal allocation to
the first and the second sigmoid function may lie at the vertex of the simplex,
or at a location where the Jacobian is zero and the Hessian matrix is negative
definite.

where the last inequality follows from the construction of
Fapprox (see 2-factor policy for the binary knapsack problem
in [12]). The value of the objective function at t† in Algorithm 1
is equal to Fapprox(α∗LP). The allocation t† may not saturate
the entire resource T . Since, the sigmoid functions are non-
decreasing with the allocated resource, entire resource must be
utilized, and it is heuristically done in step 6 of Algorithm 1.
This improves the value of the objective function and the fac-
tor of optimality remains at most 2. Finally, since a numerical
method will only compute an ε-approximate maximizer of FLP
in finite time, the factor of optimality increases to (2 + ε).

To establish the last statement, we note that each evaluation
of FLP requires the solution of the α-parametrized fractional
KP and has O(N) computational complexity. According to
Lemma 3, the maximum number of points of discontinuity of
FLP is N + 1. Therefore, if ε-approximate maximizer over each
continuous piece of FLP can be searched using a constant num-
ber of function evaluations, then O(N) computations are needed
over each continuous piece of FLP. Consequently, the Algo-
rithm 1 runs in O(N2) time. �
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