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DISTRIBUTED RANDOM CONVEX PROGRAMMING VIA
CONSTRAINTS CONSENSUS∗

L. CARLONE† , V. SRIVASTAVA‡ , F. BULLO§ , AND G. C. CALAFIORE¶

Abstract. This paper discusses distributed approaches for the solution of random convex pro-
grams (RCPs). RCPs are convex optimization problems with a (usually large) number N of randomly
extracted constraints; they arise in several application areas, especially in the context of decision-
making under uncertainty; see [G. C. Calafiore, SIAM J. Optim., 20 (2010), pp. 3427–3464; G. C.
Calafiore and M. C. Campi, IEEE Trans. Automat. Control, 51 (2006), pp. 742–753]. We here con-
sider a setup in which instances of the random constraints (the scenario) are not held by a single
centralized processing unit, but are instead distributed among different nodes of a network. Each
node “sees” only a small subset of the constraints, and may communicate with neighbors. The ob-
jective is to make all nodes converge to the same solution as the centralized RCP problem. To this
end, we develop two distributed algorithms that are variants of the constraints consensus algorithm
[G. Notarstefano and F. Bullo, Proceedings of the 46th IEEE Conference on Decision and Control,
New Orleans, LA, 2007, pp. 927–932; G. Notarstefano and F. Bullo, IEEE Trans. Automat. Control,
56 (2011), pp. 2247–2261]: the active constraints consensus algorithm, and the vertex constraints
consensus (VCC) algorithm. We show that the active constraints consensus algorithm computes
the overall optimal solution in finite time, and with almost surely bounded communication at each
iteration of the algorithm. The VCC algorithm is instead tailored for the special case in which the
constraint functions are convex also with respect to the uncertain parameters, and it computes the
solution in a number of iterations bounded by the diameter of the communication graph. We further
devise a variant of the VCC algorithm, namely quantized vertex constraints consensus (qVCC), to
cope with the case in which communication bandwidth among processors is bounded. We discuss
several applications of the proposed distributed techniques, including estimation, classification, and
random model predictive control, and we present a numerical analysis of the performance of the
proposed methods. As a complementary numerical result, we show that the parallel computation of
the scenario solution using the active constraints consensus algorithm significantly outperforms its
centralized equivalent.
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1. Introduction. Uncertain optimization problems arise in several engineering
applications, for instance, system design and production management, identification
and control, manufacturing, and finance; see, e.g., [6]. Uncertainty arises due to the
presence of imprecisely known parameters in the problem description. For instance,
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a system design problem may be affected by the uncertainty in the values of some
system components, and control problems can be affected by the inexact knowledge
of system model and of the disturbances acting on the system. In the case of uncer-
tain convex optimization problems where the uncertainty in the problem description
has a stochastic model (e.g., one assumes random uncertain parameters, with some
given probability distribution), the random convex program (RCP) paradigm recently
emerged as an effective methodology to compute “probabilistically robust” solutions;
see, e.g., [7, 8, 9].

An instance of an RCP problem typically results in a standard convex program-
ming problem with a large number N of constraints. There are two main reasons for
which it is interesting to explore distributed methods for solving RCP instances: first,
the number N of constraints may be too large to store or solve on a single process-
ing unit; second, there exist application endeavors in which the problem description
(objective function and constraints) is naturally distributed among different nodes of
an interconnected system. This may happen, for instance, when system constraints
depend on measurements acquired by different interacting sensors.

In the past few decades, the perspective for solving such large-scale or multinode
problems has switched from centralized approaches to distributed ones. In the former
approach, problem data are either resident on a single node or transmitted by each
node to a central computation unit that solves the (global) optimization problem. In
distributed approaches, the computation is distributed among nodes that must reach a
consensus on the overall problem solution through local computation and internodal
communication. The advantages of the distributed setup are essentially threefold:
(i) distributing the computation burden and the memory allocation among several
processors; (ii) reducing communication by avoiding gathering all available data to a
central node; (iii) increasing the robustness of the systems with respect to failures of
the central computational unit.

Following this distributed optimization philosophy, we here consider a network of
agents or processors that has to solve an RCP in a distributed fashion. Each node
in the network knows a subset of the constraints of the overall RCP, and the nodes
communicate with each other with the purpose of determining the solution of the
overall problem. Our solution methodology relies on each node iteratively exchanging
a small set of relevant constraints and determining the solution to the RCP in finite
time. This methodology is in fact a variation of the constraints consensus algorithm
proposed in [4] and further developed in [5].

Related work. Distributed and parallel optimization have received significant
attention in the literature. In earlier works [10, 11], Lagrangian-based decomposi-
tion techniques are used to develop decentralized algorithms for large-scale optimiza-
tion problems with separable cost functions. In the seminal work [12], Tsitsiklis
investigates the parallel computation of the minimum of a smooth convex function
under a setup in which each processor has partial knowledge of the global cost func-
tion, and they exchange information about the gradients of their local cost functions
to compute the global solution. Recently, Ned́ıc and Ozdaglar [13] generalize the
setup of [12] to distributed computation and provide results on the convergence rate
and error bounds for unconstrained problems in synchronous networks. In a sim-
ilar spirit, Zhu and Mart́ınez [14] study the primal-dual subgradient algorithm for
the distributed computation of the optimal solution of a constrained convex opti-
mization problem with inequality and equality constraints. Wei, Ozdaglar, and Jad-
babaie [15] study a distributed Newton method under a setup in which each node
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has partial knowledge of the cost function, and the optimization problem has linear
global constraints. Boyd et al. [16] propose a technique based on dual-decomposition
that alternates the updates on different components of the optimization variable.
In all these approaches, the proposed algorithms converge to the global solution
asymptotically.

An alternative approach to distributed optimization [4, 5, 17, 18] is based on the
following idea: nodes exchange a small set of constraints at each iteration and converge
in finite time to a consensus set of constraints that determines the global solution of
the optimization problem. In particular, Notarstefano and Bullo [4, 5] propose the
constraints consensus algorithm for abstract optimization, while Bürger et al. [17, 18]
present a distributed simplex method for solving linear programs. The algorithms
studied in this paper belong to the latter class of algorithms that converge in finite
time. Particularly, our first algorithm, the active constraints consensus, is an adap-
tation to the RCP context of the constraints consensus algorithm in [5]. Both these
algorithms work under similar setups, have a similar approach, and have very similar
properties. The main difference between the two algorithms is in the computation of
the set of constraints to be transmitted at each iteration. This computation for the
algorithm in [5] may need to solve a number of convex programs that grows linearly
in the number of constraints and subexponentially in the dimension of the problem,
while the algorithm considered here always requires the solution of only one convex
program. This lower local computation comes at the expense of potentially larger
communication at each iteration. In particular, the number of constraints exchanged
at each iteration may be higher for the active constraints consensus algorithm than
the constraints consensus algorithm.

Paper structure and contributions. In section 2 we recall some prelimi-
nary concepts on the constraints of convex programs (support constraints, active
constraints, etc.). In section 3 we introduce the main distributed random convex pro-
gramming model, and we describe the setup in which the problem has to be solved.
The active constraints consensus algorithm is presented and analyzed in section 4. In
the active constraints consensus algorithm, each node at each iteration solves a local
optimization problem and transmits to its neighbors the constraints that are tight
at the solution (i.e., that are satisfied with equality). We show that the active con-
straints consensus algorithm converges to the global solution in finite time and that it
requires almost surely bounded communication at each iteration. We give some nu-
merical evidence of the fact that the active constraints consensus algorithm converges
in a number of iterations that is linear in the communication graph diameter. We
also provide numerical evidence that parallel implementation of the active constraints
consensus algorithm significantly reduces the computation time over the centralized
computation time. As a side result, we show that the active constraints consensus
algorithm may distributively compute the solution of any convex program and that it
is particularly effective when the dimension of the decision variable is small compared
with the number of constraints.

For the special case when the constraints of the RCP are convex in the uncertain
parameters, we develop the vertex constraints consensus (VCC) algorithm in section 5.
In the VCC algorithm, each node at each iteration constructs the convex hull of the
uncertain parameters, which define local constraints, and transmits its extreme points
to the neighbors. We prove that the VCC algorithm converges to the global solution in
a number of iterations equal to the diameter of the communication graph. Moreover,
we devise a quantized vertex constraints consensus (qVCC) algorithm in which each



632 CARLONE, SRIVASTAVA, BULLO, AND CALAFIORE

node has a bounded communication bandwidth and does not necessarily transmit all
the extreme points of the convex hull at each iteration. We provide theoretical bounds
on the number of the iterations required for the qVCC algorithm to converge.

Further, we show in section 6 that each of the proposed algorithms can be easily
modified to enable a distributed constraints removal strategy that discards outlying
constraints, in the spirit of the RCPV (RCP with violated constraints) framework
described in [2]. In section 7 we present several numerical examples and applications
of the proposed algorithms to distributed estimation, distributed classification, and
parallel model predictive control. Conclusions are drawn in section 8.

2. Preliminaries on convex programs. Consider a generic d-dimensional con-
vex program

P [C] : min
x∈X

a�x subject to

fj(x) ≤ 0 ∀j ∈ {1, . . . , N},
(2.1)

where x ∈ X is the optimization variable, X ⊂ R
d is a compact and convex domain,

a ∈ R
d is the objective direction, and fj : R

d → R, j ∈ {1, . . . , N}, are convex
functions defining the problem constraints. We use the notation C

.
= {c1, . . . , cN} to

denote the set of constraints for problem P [C], where each element cj ∈ C denotes
the corresponding constraint fj(x) ≤ 0. The presence of the compact domain X is a
technical requirement that guarantees boundedness of the objective and attainment of
the solution in the optimization problem. However, this requirement is not restrictive
in practice, since realistic design problems typically involve a priori bounds on the
admissible range of the variables, and these ranges naturally define a domain X .
Moreover, the setX may also encode deterministic constraints (e.g., the nonnegativity
constraints of (7.2) in section 7). We denote the solution of problem P [C] by x∗(C)
and the corresponding optimal value by J∗(C); we assume by convention that x∗(C) =
NaN and J∗(C) = ∞ whenever the problem is infeasible. We now introduce some
definitions in accordance with [2].

Definition 2.1 (support constraint set). The support constraint set, Sc(C) ⊆ C,
of problem P [C] is the set of c ∈ C such that J∗(C\{c}) < J∗(C).

The cardinality of the set of support constraints is upper bounded by d+ 1, and
this upper bound reduces to d if the problem is feasible; see Lemmas 2.2 and 2.3 in [2].

Definition 2.2 (invariant and irreducible constraint set). A constraint set S ⊆
C is said to be invariant for problem P [C] if J∗(S) = J∗(C). A constraint set S ⊆ C
is said to be irreducible if S ≡ Sc(S).

Definition 2.3 (nondegenerate problems). Problem P [C] is said to be nonde-
generate when Sc(C) is invariant.

Definition 2.4 (essential constraint sets). An invariant constraint set S ⊆ C
of minimal cardinality is said to be an essential set for problem P [C]. The collection
of all essential sets of problem P [C] is denoted as Es(C).

Definition 2.5 (constraints in general position). Constraints fj(x) ≤ 0, j ∈
{1, . . . , N}, are said to be in general position if the index set {i ∈ {1, . . . , N} : fi(x) =
0} has cardinality no larger than d for all x ∈ X. In other words, the constraints are
in general position if no more than d of the N surfaces fj(x) = 0, j ∈ {1, . . . , N},
intersect at any point of the domain X.

Feasible convex programs may have more than one solution; i.e., several values
of the optimization variable may attain the same optimal objective value. The con-
vex program P [C] satisfies the unique minimum condition if problem P [Ci] admits a



DISTRIBUTED RANDOM CONVEX PROGRAMMING 633

unique solution for any Ci ⊆ C. A convex program that does not satisfy the unique
minimum condition can be modified into an equivalent problem that satisfies the
unique minimum condition by applying a suitable tie-breaking rule1 (e.g., choosing
the lexicographic smallest solution within the set of optimal solutions); see [2]. Ac-
cordingly and without loss of generality, in the following we consider convex programs
satisfying the unique minimum condition. We conclude this section with the following
definition.

Definition 2.6 (active constraint set). The active constraint set Ac(C) ⊆ C of
a feasible problem P [C] is the set of constraints that are tight at the optimal solution
x∗(C), that is, Ac(C) = {cj, j ∈ {1, . . . , N} : fj(x

∗(C)) = 0}. By convention, the
active constraint set of an infeasible problem is the empty set.

2.1. Properties of the constraint sets. We now study some properties of the
constraint sets in a convex program. We first state the properties of monotonicity
and locality in convex programs.

Proposition 2.7 (monotonicity and locality [19, 2]). For the convex optimiza-
tion problem P [C], constraint sets C1, C2 ⊆ C, and a generic constraint c ∈ C, the
following properties hold:

(i) Monotonicity: J∗(C1) ≤ J∗(C1 ∪C2).
(ii) Locality: if J∗(C1) = J∗(C1 ∪C2), then

(2.2) J∗(C1 ∪{c}) > J∗(C1) ⇐⇒ J∗(C1 ∪C2 ∪{c}) > J∗(C1 ∪C2).

Let the number of different essential sets in C be ne, and let Esi(C) be the ith
essential set. The following proposition discusses the relationships between support,
essential, and active constraint sets.

Proposition 2.8 (properties of the constraint sets). The following statements
hold for the constraint sets of a feasible problem P [C]:

(i) The set of active constraints contains the set of support constraints, that is,
Ac(C) ⊇ Sc(C).

(ii) The set of active constraints contains the union of all the essential sets, that
is, Ac(C) ⊇ ∪ne

i=1 Esi(C).
Proof. See Appendix A.1.
We now state an immediate consequence of Proposition 2.8.
Corollary 2.9 (invariance of active constraint set). The active constraint set

of problem P [C] is an invariant constraint set for P [C].

3. Distributed random convex programming. In this section, we first recall
some basic concepts of (standard) random convex programming [2], and then we define
our setup for distributed random convex programming in section 3.2.

3.1. Definition and properties of random convex programs. An RCP is
a convex optimization problem of the form

P [C] : min
x∈X

a�x subject to

f(x, δ(j)) ≤ 0, j ∈ {1, . . . , N},
(3.1)

1Practical examples of tie-breaking rules are reported in Appendix I of [1] and Appendix A
of [3]. An example that is closer to the discussion of this paper is provided in [5, Example II.1]. In
particular, the authors show how to recast a generic linear problem into one satisfying the uniqueness
condition and discuss how this ensures monotonicity and locality, which are required for constraints
consensus.
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where δ(j) are N independent and identically distributed (iid) samples of a random
parameter δ ∈ Δ ⊆ R

� having probability distribution P, and f(x, δ) : Rd ×Δ → R

is convex in x, for any δ ∈ Δ (the dependence of f on δ can instead be generic).
The multisample ω

.
= {δ(1), δ(2), . . . , δ(N)} is called a scenario, and the solution of

problem (3.1) is called a scenario solution. Notice that, a priori (i.e., before any
sample is actually extracted), ω is a random variable with probability distribution
P
N (the N -fold product of the marginal distribution P). For a given realization

ω̃
.
= {δ̃(1), δ̃(2), . . . , δ̃(N)} of ω, an instance of the RCP (3.1) has precisely the format

of the convex program in (2.1), for fj(x)
.
= f(x, δ̃(j)), and for this reason, with slight

abuse of notation, we kept the name P [C] for (3.1). Clearly, the set of constraints C
depends on the multisample ω, i.e., C = C(ω).

A key feature of an RCP is that we can bound a priori the probability that the
scenario solution remains optimal for further realization of the uncertainty [2]. We
introduce the following definition.

Definition 3.1 (violation probability). The violation probability Viol∗(ω) of
the RCP (3.1) is defined as

Viol∗(ω) .
= P{δ ∈ Δ : J∗ (C (ω ∪ {δ})) > J∗ (C (ω))},

where J∗ (C (ω)) denotes the optimal value of (3.1), and J∗ (C (ω ∪ {δ})) denotes the
optimal value of a modification of problem (3.1), where a further random constraint
f(x, δ) ≤ 0 is added to the problem.

If problem (3.1) is nondegenerate with probability one, then the violation proba-
bility of the solution satisfies

(3.2) P{ω ∈ ΔN : Viol∗(ω) ≤ ε} ≥ 1− Φ(ε; ζ − 1, N),

where Φ(ε; q,N)
.
=

∑q
j=0

(
N
j

)
εj(1 − ε)N−j is the cumulative distribution function

of a binomial random variable, and ζ is equal to d, if the problem is feasible with
probability one, and is equal to d+1, otherwise; see Theorem 3.3 of [2]. Furthermore,
if one knows a priori that problem (3.1) is feasible with probability one, then the
violation probability Viol∗(ω) also represents the probability with which the optimal
solution x∗(ω) of (3.1) violates a further random constraint, that is,

Viol∗(ω) = P{δ ∈ Δ : f(x∗(ω), δ) > 0};
see section 3.3 in [2].

For a given β ∈ (0, 1), the bound in (3.2) is implied by

(3.3) P{ω ∈ ΔN : Viol∗(ω) ≤ 2(log β−1 + ζ − 1)/N} ≥ 1− β.

In practice, one chooses a confidence level 1− β close to 1 and picks N large enough
to achieve a desired bound on the probability of violation. These bounds on the
violation probability depend neither on the uncertainty set Δ nor on the probability
distribution of δ over Δ. Hence, the RCP framework relaxes the basic assumptions
underlying robust and chance-constrained optimization [2].

Remark 1 (distributed scenario optimization). Equations (3.2)–(3.3) provide
a priori guarantees on the robustness of the scenario solution; i.e., they bound the
violation probability before the realization ω̃ of the random multisample ω is actually
extracted. Once the realization ω̃ is extracted, the RCP (3.2) becomes a standard
convex program. In this paper we deal with the distributed solution of such a prob-
lem instance, i.e., a given realization of an RCP. For simplicity of notation, in the
following sections we use δ(j) (instead of δ̃(j)) to denote a realization of the jth sam-
ple, and we remark that, unless specified otherwise, these are no longer intended as
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random variables but are given vectors, since the distributed algorithms are applied
a posteriori, i.e., after the extraction of the multisample.

3.2. A distributed setup for random convex programs. We next describe
a distributed formulation of an RCP problem instance. The proposed formulation
is similar to the distributed abstract optimization setup in [4, 5]. Consider a sys-
tem composed of n interacting nodes (e.g., processors, sensors, or, more generically,
agents). We model internodal communication by a directed graph G with vertex set
{1, . . . , n}: a directed edge (i, j) exists in the graph if node i can transmit information
to node j. We assume that the directed graph G is strongly connected, that is, it con-
tains a directed path from each vertex to any other vertex. Let Nin(i) and Nout(i) be
the set of incoming and outgoing neighbors of agent i, respectively. Let the diameter
of the graph G be diam(G). We state the distributed random programming problem
as follows.

Problem 1 (distributed random convex programming). A networked system
with a strongly connected communication graph has to compute the scenario solution
for an instance of the random convex program (3.1), under the following setup:

(i) Each node knows the objective direction a and the domain X;
(ii) each node initially knows only a subset Ci ⊆ C of the constraints of problem

(3.1) (the local constraint set), ∪n
i=1Ci = C;

(iii) a generic node i can receive information from the incoming neighbors Nin(i)
and can transmit information to the outgoing neighbors Nout(i).

Let Ni
.
= |Ci|, for each i ∈ {1, . . . , n}, and let N = |C|. Since each node has only

partial knowledge of problem constraints, it needs to cooperate with the other nodes
to compute the solution of P [C]. Note that we assume the domain X to be known
by all nodes. This is a mild assumption in practice, since, as mentioned in section 2,
X describes problem-specific constraints (e.g., nonnegativity of some variables). An
iteration at a node is initiated when the node receives local information from each of
its neighbors. In the following, we assume that, at any iteration t ∈ Z≥0, node i in
the network is able to solve local convex optimization problems of the form

P [Li(t)] : min
x∈X

a�x subject to

fj(x) ≤ 0 ∀ cj ∈ Li(t),
(3.4)

where Li : Z≥0 → pow(C) is the subset of constraints that is locally known at node
i at time t (possibly with |Li| � |C|), and pow(C) represents the set of all subsets
of C

.
= {c1, . . . , cN}. We refer to the solution of problem (3.4) as the local solution

x∗
i (t)

.
= x∗(Li(t)) and to the associated value of the objective function as the local

optimal value J∗
i (t)

.
= J∗(Li(t)) (under the convention that x∗

i (t) = NaN and J∗
i (t) =

∞ for infeasible problems).

4. Active constraints consensus algorithm. In this section we describe the
active constraints consensus distributed algorithm to solve the RCP (3.1). We assume
that a generic node i at time t can store a small candidate constraint set Ai(t), the local
optimal solution x∗

i (t), and the local optimal objective J∗
i (t). In the active constraints

consensus algorithm, each node initially solves the local convex program P [Ci], finds
the active constraints Ac(Ci), and initializes Ai(0) = Ac(Ci), x

∗
i (0) = x∗(Ci), and

J∗
i (0) = J∗(Ci). At each iteration t of the algorithm, node i receives the objective

values J∗
j (t) and the candidate sets Aj(t) from the incoming neighbors, j ∈ Nin(i),

and builds the constraint set in the following way:

Li(t+ 1) = Ai(t)∪
(∪j∈Nin(i) Aj(t)

)∪Ci.
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Algorithm 1: Active Constraints Consensus

Input : a, X, Ci, and dm = diam(G);
Output : x∗(C), J∗(C), and Ac(C);

% Initialization:

Ai(0) = Ac(Ci), J∗
i (0) = J∗(Ci), x∗

i (0) = x∗(Ci), and ncc = 1;
t = 0;

% ACC iterations:

while ncc < 2dm + 1 and J∗
i (t) < ∞ do

% Poll neighbors and build:

Li(t + 1) = Ai(t)∪
(∪j∈Nin(i)

Aj(t)
)∪Ci;

J̃∗
i (t+ 1) = maxj∈Nin(i)

J∗
j (t);

% Check infeasibility:

if J̃∗
i (t + 1) = ∞ then

Ai(t+ 1) = ∅, J∗
i (t+ 1) = ∞, x∗

i (t+ 1) = NaN;
exit;

% Update candidate set:

Ai(t + 1) = Ac (Li(t + 1)), J∗
i (t + 1) = J∗ (Li(t + 1)), x∗

i (t + 1) = x∗ (Li(t + 1));

% Update ncc for stopping condition:

if J∗
i (t + 1) = J∗

i (t) then

ncc = ncc+ 1;
else

ncc = 1;

t = t + 1;

return x∗
i (t), J

∗
i (t), Ai(t);

Each node then solves problem P [Li(t+ 1)] and updates the local quantities, setting
Ai(t+1) = Ac(Li(t+1)), x∗

i (t+1) = x∗(Li(t+1)), and J∗
i (t+1) = J∗(Li(t+1)). We

note that the solution to P [Li(t + 1)] requires the objective direction a and domain
X to be known at node i. The algorithm is iterated until a stopping condition is
met (see Remark 2). The details of the algorithm to be executed by each node i,
i ∈ {1, . . . , n}, are reported as a pseudocode in Algorithm 1. The key properties of the
active constraints consensus algorithm are summarized in the following proposition.

Proposition 4.1 (properties of the active constraints consensus algorithm). For
a distributed RCP (Problem 1) and the active constraints consensus algorithm (Algo-
rithm 1), the following statements hold:

(i) The local optimal objective J∗
i (t) is monotonically nondecreasing with the it-

erations t;
(ii) the local optimal objective and the local solution converge in a finite number

T of iterations to the optimal value J∗(C) and the scenario solution x∗(C) of
the RCP;

(iii) for each node i, the local candidate set Ai(T ) coincides with the active set
Ac(C) of the RCP;

(iv) if constraints in C are in general position, at each iteration of Algorithm 1,
each node transmits to each of the outgoing neighbors its current objective
value J∗

i (t) and at most d constraints.
Proof. The proof of the proposition is an adaptation of the proof of Theorem IV.4

in [5]. We report the proof in Appendix A.2. The main difference in the proofs is
that we tailor the demonstration to the exchange of active constraints (instead of the
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constraints in the basis) and we consider explicitly the case of infeasible programs.
Remark 2 (stopping rule for the active constraints consensus algorithm). An

important fact for the demonstration of claim (i) of Proposition 4.1 is that if the local
optimal objective J∗

i (t) at one node does not change for 2diam(G)+ 1 iterations, then
convergence has been reached. This fact can be used for implementing a local stopping
condition: node i stores an integer (ncc in Algorithm 1) that counts the number of
iterations in which the local optimal objective has not changed (ncc is an acronym for
“no change counter”). Then the node can stop the algorithm as soon as this counter
reaches the value 2diam(G) + 1. The node can also stop iterating the algorithm when
an infeasible instance is discovered in its local problem or within the local problems
of its neighbors. In particular, as soon as node i discovers infeasibility, it sets its
objective to J∗

i = ∞ and propagates it to the neighbors; as a consequence, all nodes
detect the infeasibility in at most diam(G) iterations. For simplicity we let the nodes
exchange the local objectives at every iteration; however, it is worth noticing that the
objectives from the neighbors serve only as infeasibility flags, i.e., they influence the
algorithm only when J∗

j = ∞ for some j ∈ Nin(i).
Remark 3 (comparison with constraints consensus algorithm [5]). The constraints

consensus algorithm [5] also distributively computes the solution of a convex program
and is, in fact, identical to the active constraints consensus algorithm whenever the
active constraint set and the essential constraint set (basis) are identical. However, in
general, the constraints consensus algorithm requires the nodes to compute a basis of
the local set of constraints at each iteration, and such a computation may be expensive.
In particular, for the computation of a basis of a degenerate d-dimensional problem
with Ni constraints, the algorithm proposed in [5] requires the solution of a number of
convex optimization problems that depends linearly on Ni and subexponentially on d.
On the other hand, the active set computation in the active constraints consensus
algorithm requires the solution of at most one convex program. Particularly, if the
local solution x∗

i (t) satisfies all incoming neighbors constraints, then no optimization
problem is solved, and the update rule of the active constraints consensus algorithm
requires only to check whether some of the incoming constraints are active. This lower
computational expense is achieved at the price of a potentially higher communication
cost. In particular, the active constraints consensus algorithm transmits the set of
active constraints at each iteration, and the active constraint set is a superset of each
basis.

Remark 4 (distributed convex programming and constraints exchange). The
active constraints consensus algorithm can be used for the distributed computation
of the solution of any convex program. The distributed strategy is particularly ad-
vantageous when the dimension of the decision variable is small and the number of
constraints is large (as in the RCP setup), since in this case the nodes exchange only
a small subset of constraints of the local constraint sets. Moreover, each constraint
fj(x)

.
= f(x, δ(j)) of an RCP is parameterized in the realization δ(j); therefore “ex-

changing” the constraint fj(x) reduces to transmitting the vector δ(j) ∈ R
�.

5. Vertex constraints consensus algorithms. In this section, we propose
distributed algorithms for RCPs, specialized to the case of constraints that are convex
with respect to the parameter δ.

Assumption 1 (convex uncertainty). For any given x ∈ X , the function f(x, δ)
in (3.1) is convex in δ ∈ Δ.

Consider an instance of the RCP in (3.1). Let the feasible set of problem P [C]
be Sat(C)

.
= {x ∈ X : f(x, δ(j)) ≤ 0 for all j ∈ {1, . . . , N}} (set of variables
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x that satisfy all constraints in C [2]). Let co(C) denote the convex hull of vectors
δ(j) ∈ Δ, j ∈ {1, . . . , N}, and let vert(C) ⊆ C denote the constraints
corresponding to the vectors that form the vertices of co(C). We now state the
following lemma.

Lemma 5.1 (invariance of the vertex set). If problem (3.1) satisfies Assumption 1,
then vert(C) ⊆ C is an invariant constraint set.

Proof. In order to demonstrate that vert(C) is invariant we show that every x̄
that satisfies the constraints in vert(C) also satisfies the constraints in C\vert(C).
Assume that x̄ satisfies the constraints cj ∈ vert(C), where a generic constraint cj
is in the form f(x̄, δ(j)) ≤ 0. Now consider a constraint c̄ in the set C\vert(C),
corresponding to the vector δ̄. Since δ̄ is in the convex hull having vertices {δ(j) :
cj ∈ vert(C)}, it can be written as a convex combination of the vertices as follows:
δ̄ =

∑
cj∈vert(C) τjδ

(j), with
∑

cj∈vert(C) τj = 1 and τj ≥ 0. Therefore, for Jensen’s in-

equality, it holds that f(x̄, δ̄) = f(x̄,
∑

cj∈vert(C) τjδ
(j)) ≤ ∑

cj∈vert(C) τjf(x̄, δ
(j)) ≤ 0,

which proves that also the constraint c̄ ∈ C\vert(C) is satisfied at x̄.
As a consequence of the above lemma, the problem P [vert(C)] is equivalent to

the problem P [C] in the sense that they admit the same solution. We now present
the VCC algorithm.

5.1. The vertex constraints consensus algorithm. The VCC algorithm as-
sumes that at time t a generic node i in the network can store a candidate set Vi(t)
that is initialized to Vi(0) = vert(Ci) (i.e., it computes the convex hull of the vectors
δ(j), cj ∈ Ci, and stores the constraints associated with the vertices of the con-
vex hull). At each iteration t of the VCC algorithm, node i receives the candidate
sets Vj(t) from the incoming neighbors, j ∈ Nin(i), and builds the constraint set
Li(t + 1) = Vi(t)∪

(∪j∈Nin(i) Vj(t)
)
. Then, the node updates its candidate set with

the following rule: Vi(t+1) = vert
(
Li(t+1)

)
. The algorithm is iterated for diam(G)

iterations, as summarized in Algorithm 2. After the main loop, each node can com-
pute the optimal solution x∗

i (t) and the optimal objective J∗
i (t) by using the set Vi(t)

and exploiting the knowledge of the objective direction a and the domain X .

Algorithm 2: Vertex Constraints Consensus (VCC)

Input : a, X, Ci, and dm = diam(G);
Output : x∗(C), J∗(C), and vert(C);

% Initialization:

Vi(0) = vert(Ci);
t = 0;

% VCC iterations:

while t < dm do

% Poll neighbors and build:

Li(t + 1) = Vi(t)∪
(∪j∈Nin(i)

Vj(t)
)
;

% Update candidate set:

Vi(t + 1) = vert (Li(t + 1));

t = t + 1;

% Compute optimal solution and optimal objective:

x∗
i (t) = x∗(Vi(t)), J∗

i (t) = J∗(Vi(t));

return x∗
i (t), J

∗
i (t), Vi(t);
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Proposition 5.2 (properties of the VCC algorithm). For a distributed random
convex program (Problem 1) that satisfies Assumption 1, and the VCC algorithm
(Algorithm 2), the following statements hold:

(i) The local optimal objective J∗
i (t)

.
= J∗(Vi(t)) is monotonically nondecreasing

with the iterations t;
(ii) in T ≤ diam(G) iterations the local solution at a generic node i coincides with

the scenario solution of the RCP;
(iii) for each node i the local candidate set Vi(T ) satisfies Vi(T ) = vert(C) ⊇

Sc(C).
Proof. See Appendix A.3.
Remark 5 (computational complexity of convex hull). At each iteration of the

VCC algorithm each node computes and transmits the convex hull of a set of vectors
in R

�. There is an extensive literature on the complexity of convex hull computation
and on the expected number of vertices in the convex hull; see, e.g., [20, 21, 22].
In particular, it is known that the convex hull of N points in R

� can be com-
puted in O(N logN +N ��/2�) iterations. Moreover, for N points uniformly sampled
from the interior of an �-dimensional polytope, there exist algorithms (see, e.g., [22])
that construct the convex hull in O(N) average time, and the resulting hull has an
O((logN)�−1) expected number of vertices.

Remark 6 (distributed uncertain linear programs). A remarkable context in which
the VCC algorithm can be applied is that of uncertain linear programs.

Consider an RCP instance of a standard-form uncertain linear program

min
x∈X

a�x subject to

u�
i

(
z(j)

)
x+ vi

(
z(j)

) ≤ 0 for each i ∈ {1, . . . , r}, and j ∈ {1, . . . , N},
(5.1)

whereX is a polytope and z(j) are iid realizations of some random uncertain parameter
z ∈ Z, where Z is some arbitrary space entering the data ui(z) ∈ R

d, vi(z) ∈ R in
an arbitrary way. For given realizations of z, problem (5.1) is linear in x; however,
since ui(z), vi(z) may be generic nonconvex functions, the constraints are nonconvex
in z and the problem does not satisfy Assumption 1 in general. However, we can
easily transform the problem into one satisfying Assumption 1: we define the random
parameters δi = δi(z)

.
= [u�

i (z) vi(z)] ∈ R
1×(d+1) and we reparameterize (5.1) as

min
x∈X

a�x subject to

δ
(j)
i [x� 1]� ≤ 0 for each i ∈ {1, . . . , r}, and j ∈ {1, . . . , N},

(5.2)

where δ
(1)
i , . . . , δ

(N)
i are realizations of δi. Clearly, each constraint δ

(j)
i [x� 1]� ≤ 0 is

now a linear function of δi, hence Assumption 1 is satisfied, and the VCC algorithm
can be applied to problem (5.2), operating on the vertices of the convex hull of the

δ
(j)
i parameters. Also, problem (5.2) can be formally cast in the standard RCP format
(3.1) by setting f(x, δ) = maxi∈{1,...,r} δi[x� 1], where δ contains the collection of the
δi, i ∈ {1, . . . , r}.

Remark 7 (constraints reexamination). The active constraints consensus algo-
rithm requires each node i to reexamine its local constraint set Ci at each iteration.
This reexamination is attributed to the fact that a constraint that is not active at
a given iteration may become active at a later iteration (see [5] for a similar argu-
ment for the constraints consensus algorithm). The VCC algorithm, instead, requires
knowledge of Ci only for the initialization, and utilizes only the current candidate
set and newly received constraints to determine the new candidate set. At a generic
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iteration t of the VCC algorithm at node i, any constraint that lies in the interior of
the computed convex hull co(Li(t)) will never belong to any candidate set at future
iterations (a point in the interior of the convex hull will lie in the interior of any
future convex hull; therefore, it cannot be one of its vertices), and therefore, it can be
discarded.

We conclude this section by noticing that the update rule of the VCC algorithm
is independent of the objective direction a. Therefore, each node does not need to
know the objective direction to reach consensus on the set of constraints defining the
feasible set of problem P [C]. However, agents use the objective direction a in the
final computation of x∗

i (t) and J∗
i (t).

5.2. Quantized VCC algorithm. The size of the constraint set to be trans-
mitted at each iteration of the VCC algorithm may grow exponentially with the
dimension of the parameter vector. Such communication at each iteration of the al-
gorithm may not be sustainable for nodes with a limited communication bandwidth.
In this section, we address this issue and modify the VCC algorithm to develop the
quantized VCC (qVCC) algorithm. The qVCC algorithm differs from the VCC algo-
rithm on the following fronts: (i) each node can transmit at most a fixed number m
of constraints in a single communication round (bounded communication bandwidth),
and (ii) a generic node i at time t stores an ordered set, called the transmission set,
Ti(t), along with the candidate set, Vi(t). The algorithm works as follows. Each node
initializes Vi(0) = Ti(0) = vert(Ci); i.e., both sets contain the constraints corre-
sponding to the vertices of the convex hull co(Ci). At each iteration t of the qVCC
algorithm, each node selects the first m constraints in Ti(t), defining the current mes-
sage Mi(t), and transmits Mi(t) to the outgoing neighbors. When a node receives the
messages Mj(t) from the incoming neighbors, j ∈ Nin(i), it builds the constraint set
Li(t+1) = Vi(t)∪

(∪j∈Nin(i) Mj(t)
)
. Then, node i updates its candidate set with the

following rule: Vi(t+1) = vert
(
Li(t+1)

)
. Moreover, it updates the transmission set

with the rule Ti(t+ 1) = Ti(t)\{Mi(t)∪
(
Vi(t)\Vi(t+ 1)

)} ⊕ {Vi(t+ 1)\Vi(t)}, where
⊕ denotes the concatenation of two ordered sets. Roughly speaking, the updated
transmission set, Ti(t + 1), is obtained from the previous one, Ti(t), by removing
(i) the constraints transmitted at time t, i.e., Mi(t); (ii) the constraints that disap-
peared from the candidate set after the update, i.e., Vi(t)\Vi(t+1); and (iii) by adding
the constraints that became part of the candidate set after the update, Vi(t+1)\Vi(t).
Note that the set Ti(t) has to be ordered to implement a first-in-first-out (FIFO) strat-
egy for transmitting constraints to the neighbors. The algorithm is iterated until a
stopping condition is met. The qVCC algorithm for node i is summarized in Algo-
rithm 3. For simplicity, a centralized stopping condition is presented in Algorithm 3;
however, we describe a distributed stopping condition later in Corollary 5.4.

Properties of the qVCC algorithm are summarized in Proposition 5.3. Here,
we let Nmax be the maximum number of local constraints assigned to a node, i.e.,
Nmax = maxi∈{1,...,n} Ni, and let dmax be the maximum in-degree of a node in the
network, i.e., dmax = maxi∈{1,...,n} |Nin(i)|.

Proposition 5.3 (properties of the qVCC algorithm). For a distributed random
convex program (Problem 1) that satisfies Assumption 1, and the qVCC algorithm
(Algorithm 3), the following statements hold:

(i) The local optimal objective function J∗
i (t)

.
= J∗(Vi(t)) is monotonically non-

decreasing in the iterations t;

(ii) in T ≤ �Nmax

m � (dmax+1)diam(G)−1
dmax

iterations, the local solution at a generic node
i converges to the scenario solution of the RCP;
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Algorithm 3: Quantized Vertex Constraints Consensus (qVCC)

Input : a, X, Ci, dm = diam(G), m;
Output : x∗(C), J∗(C), and vert(C);

% Initialization:

Vi(0) = vert(Ci), Ti(0) = vert(Ci), and stop = 0;
t = 0;

% qVCC iterations:

while stop = 0 do

% Build local message Mi(t) by selecting the first m constraints in Ti(t)

% Poll neighbors and build:

Li(t + 1) = Vi(t)∪
(∪j∈Nin(i)

Mj(t)
)
;

% Update candidate set and transmission set:

Vi(t + 1) = vert (Li(t + 1));

Ti(t + 1) = Ti(t)\{Mi(t)∪
(
Vi(t)\Vi(t+ 1)

)} ⊕ {Vi(t + 1)\Vi(t)};
% Check stopping condition:

if (all nodes have empty transmission set) then

stop = 1;

t = t + 1;

% Compute optimal solution and optimal objective:

x∗
i (t) = x∗(Vi(t)), J∗

i (t) = J∗(Vi(t));

return x∗
i (t), J

∗
i (t), Vi(t);

(iii) for each node i the local candidate set Vi(T ) satisfies Vi(T ) = vert(C) ⊇
Sc(C).

Proof. See Appendix A.4.
We notice that the upper bound on T obtained in Proposition 5.3 corresponds to

the worst case in which all constraints in the local sets need to be transmitted among
the nodes. In principle, this bound can be used as a stopping condition for the qVCC
algorithm; however, the bound may be pessimistic in practice, and therefore we now
present an alternative distributed stopping rule for the qVCC algorithm.

Corollary 5.4 (stopping rule for the qVCC algorithm). For the qVCC algo-
rithm, if at time t all the transmission sets Ti(t), i ∈ {1, . . . , n}, are empty, then the
qVCC algorithm has converged to the scenario solution of the random convex pro-
gram P [C]. Moreover, such a situation can be autonomously detected by each node in
diam(G) iterations.

Proof. If at time t the transmission sets are empty, a generic node i satisfies
Vi(t+1) = Vi(t) (no message is received from the incoming neighbors). Moreover, the
update rule of the transmission set becomes Ti(t + 1) = Ti(t)\{Mi(t)∪

(
Vi(t)\Vi(t+

1)
)} ⊕ {Vi(t+ 1)\Vi(t)} = ∅. Therefore, the local candidate set and the transmission

set remain unchanged for all future iterations, i.e., the qVCC algorithm has converged.
Regarding the second statement, we notice that each node having nonempty

transmission set can communicate this situation to all other nodes in diam(G) it-
erations. Therefore, if for diam(G) iterations no node notifies that the local trans-
mission set is nonempty, all transmission sets need be empty, and convergence is
reached.

According to Corollary 5.4, one may implement the stopping condition of
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Algorithm 3 through the exchange of binary flags among nodes. In particular, each
node with a nonempty transmission set reports this information to the neighbors by
broadcasting a binary flag, and each node may stop iterating the algorithm if no flag
is received for diam(G) iterations.

6. Distributed RCP with violated constraints. The RCP framework allows
the generalization of the probabilistic guarantees of the scenario solution to the case
in which r constraints are purposely violated with the aim of improving the objective
value J∗(C). Given a problem P [C] and a set Rr ⊂ C, with |Rr| = r, RCP theory
provides a bound for the probability that the solution x∗(C\Rr) satisfies a future
realization of the random constraints; see [2] (recall that in our notation x∗(C\Rr) is
the optimal solution of an RCP with constraint set C\Rr).

In this section we study distributed strategies for removing constraints from an
RCP. The RCP theory allows generic constraints removal procedures, with the only
requirement being that the procedure is permutation invariant (i.e., changing the order
of the constraints in C must not change the constraints removed by the procedure).
We now present a distributed procedure for removing r constraints. The procedure
works as follows: at each outer iteration, the nodes perform one of the distributed
algorithms presented before (i.e., ACC, VCC, or qVCC). After attaining convergence,
each node selects the constraint c with largest Lagrange multiplier (since nodes share
the same set of candidate constraints after convergence, they will choose the same
constraint), and each node removes the constraint c from the local constraint set.
The distributed procedure is then repeated for r outer iterations (i.e., it terminates
after removing the desired number of constraints, r). The distributed constraints
removal procedure is summarized in Algorithm 4. The acronym CC in Algorithm 4
refers to one of the distributed algorithms presented in the previous sections (i.e.,
ACC, VCC, or qVCC).

We now state some properties of the distributed constraints removal procedure.
Proposition 6.1 (distributed constraints removal). The distributed constraints

removal procedure in Algorithm 4 is permutation invariant. Moreover, if the active
constraints consensus algorithm is used for distributed computation of the solution
to the RCP in Algorithm 4, and assuming that strong duality holds, then the set of

Algorithm 4: Distributed Constraints Removal

Input : a, X, dm = diam(G), and r;
Output : x∗(C\Rr), J∗(C\Rr), and Rr ;

% Initialization:

η = 0, Rη = ∅;
% Outer iterations:

while η < r do

compute [x∗
η , J

∗
η , Lη ] = CC(a, X,Ci, dm, [m]);

select c ∈ Lη with largest Lagrange multiplier;

Ci = Ci\{c}, and Rη+1 = Rη ∪{c};
η = η + 1;

% Compute optimal solution and optimal objective:

[x∗
r , J

∗
r , Lr] = CC(a, Ci, dm, [m]);

return x∗
r , J

∗
r , Rr ;
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removed constraints corresponds to the set computed with the centralized constraints
removal based on marginal costs [2].

Proof. We start by establishing the first statement. We consider the case in which
the active constraints consensus algorithm is used for implementing the distributed
removal procedure. It follows from Proposition 4.1 that the local candidate set at each
node after convergence coincides with the set of active constraints. Neither the set of
active constraints nor the Lagrange multipliers depend on the order of the constraints
in C, and therefore the removal procedure is permutation invariant. The permutation
invariance of the distributed constraints removal based on the VCC algorithm can
be demonstrated using similar arguments. The second statement is a straightforward
consequence of the fact that, when strong duality holds, the active constraints are the
only ones that have associated Lagrange multipliers greater than zero (complementary
slackness); therefore, after performing the active constraints consensus algorithm,
each node is guaranteed to know all the constraints with nonzero Lagrange multipliers,
from which it can select the one with the largest multiplier.

The constraints removal based on marginal costs [2] iteratively removes con-
straints with largest Lagrange multiplier from the initial set of constraints C. The
practical importance of Proposition 6.1 is twofold. First, we can devise a distributed
strategy (Algorithm 4) that removes outlying constraints from the original RCP and
improves the optimal objective. This is relevant when the constraints are connected
to noisy measurements of an unknown parameter and we are interested in discarding
outliers in a distributed fashion. An application of Algorithm 4 to distributed esti-
mation with outliers is reported in section 7.4. Second, the proposition guarantees
that the distributed removal strategy allows us to discard the same constraints as a
centralized strategy; this is a desirable condition since the effectiveness of the removal
strategy influences the optimal objective of the RCP with violated constraints. We
conclude this section with some comments on the trade-off between the use of the
ACC and the VCC algorithms in the distributed removal procedure (Algorithm 4).
First, we notice that the active constraints consensus algorithm is able to return a
constraint set only in feasible problems (otherwise the active constraint set is empty
by convention); therefore, the ACC-based removal procedure applies only to feasible
problem instances. On the other hand, under Assumption 1, the VCC-based removal
procedure applies in the infeasible case as well. However, when using the VCC (or
the qVCC), it is not possible to establish the parallel with the centralized case, since
it is possible to have constraints with nonzero Lagrange multipliers that are not in
the set computed by the VCC algorithm.

7. Applications and numerical examples.

7.1. Distributed ellipsoidal estimation. In this section we discuss the prob-
lem of determining a confidence ellipsoid for an unknown random parameter. We
study this problem considering three settings: (i) nodes in a network can directly
measure the parameter (section 7.1.1), (ii) nodes can measure a linear function of
the parameter (section 7.1.2), and (iii) nodes may take linear measurements of the
parameter using possibly different measurement models (section 7.1.3).

7.1.1. Computing a confidence ellipsoid. In this section we discuss the prob-
lem of determining a confidence ellipsoid for an unknown random parameter y ∈ R

q

for which N iid realizations y(j), j ∈ {1, . . . , N}, are available. We consider first
the case in which all the N realizations are collected at a single unit that solves the
problem in a centralized way, and then outline a distributed setup of this problem in
Remark 8.
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A generic (bounded) ellipsoid, parameterized by its center ŷ ∈ R
q and shape

matrix Wy ∈ R
q×q, Wy � 0, is represented as

(7.1) Ey = {y ∈ R
q : (y − ŷ)�Wy(y − ŷ) ≤ 1}.

As a measure of size of Ey we consider the volume, which is proportional to the square
root of the determinant of W−1

y . Then, the problem of finding the smallest ellipsoid
enclosing the given realizations can be stated in the form of the convex optimization
problem,

min
ŷ,Wy	0

log det(W−1
y ) subject to

(y(j) − ŷ)�Wy(y
(j) − ŷ) ≤ 1 for each j ∈ {1, . . . , N},

(7.2)

where log det(·) returns the logarithm of the determinant of a positive definite ma-
trix. The number of variables in this problem is q(q+3)/2, corresponding to q variables
describing the center ŷ, plus q(q+1)/2 variables describing the free entries in the sym-
metric matrix Wy . We can convert the optimization problem (7.2) into an equivalent
one having linear cost function by introducing a slack variable (see Remark 3.1 in [2]);
the dimension of the problem with linear objective is then d = q(q + 3)/2 + 1. Since
the vectors y(j) are iid realizations of the random variable y, problem (7.2) clearly
belongs to the class of RCPs. Moreover, this problem is always feasible, and its solu-
tion is unique (see, for instance, section 3.3 in [23]). Therefore, we can apply (3.3) to
conclude a priori, i.e., before knowing the actual realizations, that with high proba-
bility 1 − β (here, β is typically set to a very low value, say β = 10−9) the ellipsoid
computed via (7.2) is a (1−ε)-confidence ellipsoid for y, with ε = 2(log β−1+d−1)/N .
In other words, we know with practical certainty that Ey contains y with probability
larger than 1 − ε, i.e., it encloses a probability mass of at least 1 − ε of y. Further-
more, we observe that the constraints in (7.2) are convex functions also with respect
to the “uncertainty” terms y(j); hence this problem satisfies Assumption 1, enabling
the application of the VCC or qVCC algorithm.

Remark 8 (distributed computation of measurement ellipsoid). The solution to
the optimization problem (7.2) can be computed in a distributed fashion using any of
the algorithms proposed in this paper; for instance, one may consider a setup in which
n nodes are available, and each node initially knows Ni local realizations of y, with∑n

i=1 Ni = N . The application of the ACC, the VCC, or the qVCC algorithm entails
that each node iteratively exchanges a subset of realizations y(j) with its neighbors
in order to reach a consensus on the set of realizations defining the optimal solution
to (7.2).

7.1.2. Ellipsoidal parameter estimation in a linear model. We now ex-
tend the previous setup and consider the case in which linear measurements y of an
unknown parameter θ are used to infer an ellipsoid of confidence for the parameter
itself. Consider the classical situation in which y is related to θ via a linear model

(7.3) y = Fθ,

with F ∈ R
q×p, where θ is the input parameter and y is a measured output. Suppose

that θ(1), . . . , θ(N) are N iid realizations of the unobservable parameter θ, and that
y(1), . . . , y(N) are the corresponding observed measurements y(i) = Fθ(i). We first
consider the centralized case in which a single node uses the measurements to infer an
ellipsoid of confidence for θ. Given the observations y(1), . . . , y(N), we can compute
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a unique minimum-size ellipsoid Ey containing the observations by solving problem
(7.2). From the reasoning in section 7.1.1 we know with practical certainty that Ey is
a (1−ε)-confidence ellipsoid for y. Now, the condition y ∈ Ey, together with the linear
relation in (7.3), implies that the set of parameters θ that is compatible with output
y ∈ Ey is a (possibly unbounded) ellipsoid E described by the quadratic inequality
condition (Fθ − ŷ)�Wy(Fθ − ŷ) ≤ 1, that is,

(7.4)

[
θ
1

]� [
F�WyF F�Wy ŷ

∗ ŷ�Wy ŷ − 1

] [
θ
1

]
≤ 0.

Since y ∈ Ey if and only if θ ∈ E , and since with practical certainty P{y ∈ Ey} ≥ 1− ε,
we also have that P{θ ∈ E} ≥ 1 − ε, and hence we found a region E within which θ
must be contained with probability no smaller than 1− ε.

In the next section, we provide an extension of this linear estimation framework
to a distributed setup in which n nodes collect linear measurements of θ, using possibly
heterogeneous models.

7.1.3. Ellipsoidal parameter estimation in heterogeneous network. Sup-
pose that there are ns subsets of nodes, say V1, . . . ,Vns , such that each node in Vj

uses the same linear measurement model,

(7.5) yi = Fjθ for each i ∈ Vj ,

and it collects Ni measurements,

y
(k)
i = Fjθ

(k) for each k ∈ {1, . . . , Ni},

where θ(k), k ∈ {1, . . . , Ni}, are iid. Moreover, it is assumed that realizations of θ
available at a node i are independent from realizations available at node j for each
i, j. We here detail the procedure for computing a confidence ellipsoid for θ by first
assuming a centralized case in which all measurements from nodes in Vj are available
at a central node, and then we refer to Remark 9 for an outline of the corresponding
distributed implementation.

If all measurements from nodes in Vj are available to a central computational unit,
then this unit can first construct (by solving problem (7.2)) an ellipsoid of confidence

Ej
y for the collective measurements y

(k)
i , i ∈ Vj , k ∈ {1, . . . , Ni},

Ej
y = {y : (y − ŷj)

�Wj(y − ŷj) ≤ 1},

and then infer an ellipsoid of confidence Ej for θ according to (7.4),

Ej =
{
θ ∈ R

p :

[
θ
1

]� [
F�
j WjFj F�

j Wj ŷj
∗ ŷ�j Wj ŷj − 1

] [
θ
1

]
≤ 0

}
.

This procedure can be repeated for each Vj , j ∈ {1, . . . , ns}, thus obtaining ns el-
lipsoidal sets Ej that (with practical certainty) contain θ with probability no smaller
than 1 − εj . “Fusing” the information from all the confidence ellipsoids Ej, a stan-
dard probabilistic argument leads to stating that (again with practical certainty) the
unknown parameter is contained in the intersection I = ∩ns

j=1Ej with probability no

smaller than μ
.
=

∏ns

j=1(1 − εj). Clearly, any set that contains the intersection I has
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a probability no smaller than μ of containing θ. We may then find an ellipsoid E
covering the intersection I as follows. We describe the to-be-computed ellipsoid E as

[
θ
1

]� [
W Wθ̂

∗ θ̂�Wθ̂ − 1

] [
θ
1

]
≤ 0,

where θ̂ is the center of the ellipsoid and W � 0 is its shape matrix. Then a sufficient
condition for E to contain I can be obtained through the so-called S-procedure [24]:
if there exist ns scalars τj ≥ 0, j ∈ {1, . . . , ns}, such that

[
W Wθ̂

∗ θ̂�Wθ̂ − 1

]
−

ns∑
j=1

τj

[
F�
j WjFj F�

j Wj ŷj
∗ ŷ�j Wj ŷj − 1

]
� 0,

then E ⊇ ∩ns

j=1Ej . Defining a vector θ̃ = Wθ̂, we can write the previous condition as

[
W −∑ns

j=1 τj(F
�
j WjFj) θ̃ −∑ns

j=1 τj(F
�
j Wj ŷj)

∗ −1−∑n
j=1 τj(ŷ

�
j Wj ŷj − 1)

]

+

[
0p

θ̃�

]
W−1

[
0p

θ̃�

]�
� 0,

where 0p is a matrix in R
p×p with all zero entries. Using the Schur complement rule,

this latter condition is equivalent to the following LMI in W , θ̃, and τ1, . . . , τns :⎡
⎢⎣

W −∑ns

j=1 τj(F
�
j WjFj) θ̃ −∑ns

j=1 τj(F
�
j Wj ŷj) 0p

∗ −1−∑n
j=1 τj(ŷ

�
j Wj ŷj − 1) θ̃�

∗ ∗ W

⎤
⎥⎦ � 0.(7.6)

Then, the shape matrix W of the minimum volume ellipsoid E ⊇ I can be computed
by solving the following convex program:

min
θ̃,W	0,τ1≥0,...,τns≥0

log det(W−1)

subject to (7.6).
(7.7)

After obtaining the optimal solution of problem (7.7), the center of the minimum

volume ellipsoid can be computed as θ̂ = W−1θ̃.
Remark 9 (distributed estimation in heterogeneous network). A distributed im-

plementation of the procedure previously described goes as follows. We assume that
each node i ∈ {1, . . . , n} knows all the measurement models {F1, . . . , Fns} and ac-
quires Ni measurements according to its own model Fj ; see (7.5). Each node i then

maintains ns different local constraint sets Cj
i , j ∈ {1, . . . , ns}, simultaneously and

initializes the jth set Cj
i to the local measurements set of node i, if i ∈ Vj , or to

the empty set, otherwise. Then, each node runs a distributed constraints consensus
algorithm (either ACC, or VCC, or qVCC) simultaneously on each of its local con-
straint sets. In this way, upon convergence, each node has all the optimal ellipsoids
Ej , j ∈ {1, . . . , ns}. Once this consensus is reached, each node can compute locally
the enclosing ellipsoid E ⊇ ∩ns

j=1Ej by solving the convex program (7.7).
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7.1.4. Numerical results on distributed ellipsoid computation. We now
elucidate on the distributed ellipsoid computation with some numerical examples. In
particular, we demonstrate the effectiveness of our algorithms for (i) distributed com-
putation of the enclosing ellipsoid when each node can measure the random parameter
θ with the same measurement model, (ii) parallel computation of the enclosing ellip-
soid, and (iii) distributed computation of the enclosing ellipsoid when each node can
measure only some components of the random parameter θ.

Example 1 (distributed estimation in homogeneous sensor network). Consider the
setup in which n sensors measure a random variable θ, using the same measurement
model y = Fθ (homogeneous sensor network), where we set for simplicity F = Ip
(the identity matrix of size p). We assumed θ ∈ R

2 to be distributed according to the
following mixture distribution:

θ =

{
γ1 with probability 0.95,
γ2 + 10γ1 with probability 0.05,

where γ1 ∈ R
2 is a standard Normal random vector and γ2 ∈ R

2 is uniformly dis-
tributed in [−1, 1]2. The overall number of measurements (acquired by all nodes) is
N = 20000; the size of the local constraint sets is N/n. We consider the case in which
the nodes in the network solve the RCP in (7.2) using one of the algorithms proposed
in this paper. We consider two particular graph topologies: chain graphs and geo-
metric random graphs. For the geometric random graph, we picked nodes uniformly
in the square [0, 1]2 and chose a communication radius rc > 2

√
2
√
log(n)/n to en-

sure that the graph is strongly connected with high probability [25]. In Table 7.1 we
report the maximum number of iterations and the maximum number of exchanged
constraints for each algorithm. Statistics are computed over 20 experiments. The
active constraints consensus algorithm requires nodes to exchange a small number of
constraints, and it converges in a number of iterations that grows linearly in the graph
diameter. For the VCC algorithm, the maximum number of iterations for convergence
is equal to the graph diameter. For the considered problem instances, the number
of constraints to be exchanged among the nodes is small. We picked m = 5 for the
qVCC algorithm. Table 7.1 reports the number of iterations required by the qVCC
to meet the halting conditions described in Corollary 5.4.

Example 2 (parallel computation of confidence ellipsoid). In this example we
consider the same setup as in Example 1, but we solve the RCP (7.2) in a distributed
fashion assuming a complete communication graph. A complete communication graph

Table 7.1

Distributed computation in homogeneous sensor network: maximum number of iterations, max-
imum number of exchanged constraints, and diameter for different graph topologies, and for each of
the proposed algorithms.

Diameter
ACC VCC qVCCNo.

nodes Iter. Constr. Iter. Constr. Iter. Constr.

Geometric
random
graph

10 1 5

6

1

19

6

5
50 2 7 2 8
100 3 10 3 9
500 5 16 5 13
10 10 36

5

10

23

21

5
Chain 50 50 187 50 101
graph 100 100 375 100 200

500 500 1910 500 1000
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describes a parallel computation setup in which each processor can interact with every
other processor. In this case, we focus on the active constraints consensus algorithm.
In Figure 7.1 we report the dependence of the number of iterations on the number of
nodes, number of constraints, and dimensions of the parameter y = θ to be estimated.
In the considered problem instances the iterations of the active constraints consensus
algorithm do not show any dependence on these three factors. In Figure 7.2 we show
some statistics on the number of exchanged constraints. In particular, we compare
the number of constraints exchanged among nodes at each communication round
with the dimension d = p(p + 3)/2 + 1 (recall that p = q in this example) of the
RCP (section 7.1.1): in Proposition 4.1 we concluded that the number of constraints
exchanged at each communication round is bounded by d. Figure 7.2 shows that
in the considered problem instances, the number of constraints is below this upper
bound, which is shown as a dashed line. For space reasons we do not report results
on the dependence of the number of exchanged constraints on the total number of
constraints N and on the number of nodes n. In our test the number of exchanged
constraints was practically independent of these two factors and remained below 5 in
all tests.
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(a) Iterations versus number of nodes.
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Fig. 7.1. Parallel computation of confidence ellipsoid using the active constraints consensus
algorithm. (a) Number of iterations required for convergence with different numbers of nodes, with
fixed number of constraints N = 20000, and fixed dimension p = 2 of θ; (b) number of iterations for
different numbers of constraints, with fixed number of nodes n = 50 and fixed dimension p = 2; (c)
number of iterations for different dimensions of θ, with fixed number of nodes n = 50 and number of
constraints N = 20000. In each figure the cross denotes the average number of iterations, whereas
the bar defines the maximum and the minimum observed number of iterations.
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Fig. 7.2. Parallel computation of confidence ellipsoid using the active constraints consensus
algorithm. The bars represent number of constraints exchanged among nodes for different dimensions
p of θ, with fixed number of constraints N = 20000 and fixed number of nodes n = 50. The cross
denotes the average number of constraints, whereas the bar defines the maximum and the minimum
observed numbers of exchanged constraints. The dashed line denotes maximum number of constraints
in generic position d = p(p + 3)/2 + 1.
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Fig. 7.3. Parallel computation of confidence ellipsoid. The solid black line represents the paral-
lel computation time required for solving the RCP using the active constraints consensus algorithm,
and the dashed line represents the computation time required for centralized solution of the RCP.

In Figure 7.3 we compare the computational effort required by the active con-
straints consensus algorithm in the parallel setup with a standard centralized solver
in charge of solving the convex program (7.2). We used CVX/SeDuMi [26] as a cen-
tralized parser/solver, and we compared the computation times required to solve the
problem, for different numbers of nodes, numbers of constraints, and dimensions of
the parameter θ. The use of the active constraints consensus algorithm provides a
remarkable advantage in terms of computational effort. For a large number of con-
straints, this advantage is significant even for a small number of processors.

Remark 10 (computational advantage of the active constraints consensus algo-
rithm). The computational complexity of a centralized approach for convex pro-
gramming depends on the actual algorithm used for the solution, and it is typically
a function of the number of variables d and the number of constraints N . For a fixed
dimension d, the complexity of a generic algorithm can be approximately estimated
as O(Nα), where the scalar α depends on the problem instance (see Lecture 5 in
[27]). At each iteration of the active constraints consensus algorithm, instead, each
node i solves a smaller convex program with at most N

n + d(n − 1) constraints (lo-
cal constraints plus at most d constraints received by the remaining n − 1 nodes in
the network). As discussed in the previous section, numerical evidence shows that
the number of iterations depends only on the diameter of the graph and, according
to Figure 7.1, it is always below 5 in a parallel setup (complete graph). Therefore,
the asymptotic complexity of the active constraints consensus algorithm in a parallel
setup amounts to O (

(Nn + d(n− 1))α
)
. Assuming that N � n (which is common in

the RCP framework), the bound simplifies to O (
(Nn )

α
)
. Therefore, the computation

complexity reduces by order of 1
nα when passing from a centralized solver to a parallel

implementation using the active constraints consensus algorithm.
Example 3 (distributed estimation in heterogeneous sensor network). We now

consider the distributed computation of a parameter ellipsoid in a network with n
nodes. We assume that half of the nodes in the network take measurements of θ ∈ R

2

according to the measurement model y1 = F1θ, where F1 = [1 0]; the remaining nodes
use the measurement model y2 = F2θ, where F2 = [0 1]. We consider θ distributed
according to a mixture distribution, as in Example 1. The nodes acquires 20000 mea-
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Table 7.2

Distributed estimation in heterogeneous sensor network: maximum number of iterations, maxi-
mum number of exchanged constraints, and diameter for different graph topologies for the ACC and
VCC algorithms.

Diameter
ACC VCCNo.

nodes Iter. Constr. Iter. Constr.

Geometric
random
graph

10 1 4

4

1

4
50 2 7 2
100 3 10 3
500 5 16 5
10 10 28

4

10

4
Chain 50 50 148 50
graph 100 100 298 100

500 500 1498 500
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Fig. 7.4. Distributed estimation in heterogeneous sensor network: the black dots are 100 re-
alizations of the random parameter θ = [θ1 θ2]�. Nodes with measurement model 1 can measure
y1 = F1θ = [1 0] θ = θ1 and compute the corresponding measurement set E1

y (shown as a solid
blue line) and the set E1 (the strip delimited by dashed blue lines) of parameters compatible with
E1
y . Similarly, nodes with measurement model 2 can measure y2 = F2θ = [0 1] θ = θ2 from which

the network builds the set E2
y (shown as a solid magenta line) and the set E2 (the strip delimited by

dashed magenta lines) of parameters compatible with E2
y . From the sets E1 and E2, each node can

compute the bounding ellipsoid E ⊇ E1∩E2, by solving problem (7.7). (See online version for color.)

surements for each measurement model. They then estimate the set E according to
Remark 9. In Table 7.2 we report some statistics related to the computation of the
sets E1 and E2 using the ACC and the VCC algorithms; see Remark 9. After the com-
putation of E1 and E2, each node can locally retrieve the set E solving problem (7.7);
see Figure 7.4.

According to section 7.1.3 we can conclude that for j ∈ {1, 2}, with confidence
level 1 − β = 1 − 10−8, Ej is a (1 − εj)-confidence ellipsoid for θ, with εj = 2 · 10−3.
Then, with practical certainty the ellipsoid E is a μ-confidence ellipsoid for θ, with
μ = (1− ε1)(1− ε2) ≈ 0.995.
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Fig. 7.5. Binary linear classification: two clouds of points having labels +1 (full circles) and −1
(empty circles), respectively, need to be separated by a hyperplane H, which maximizes the margin
of separation between the classes.

7.2. Distributed linear classification. A classical problem in binary linear
classification is to determine a linear decision surface (a hyperplane) separating two
clouds of binary labeled multidimensional points, so that all points with label +1
fall on one side of the hyperplane and all points with label −1 on the other side;
see Figure 7.5. Formally, one is given a set of data points (features) bj ∈ R

p, j ∈
{1, . . . , N}, and the corresponding class label lj ∈ {−1,+1}, and seeks a suitable
hyperplane H = {s ∈ R

p : θ�s+ ρ = 0}, with θ ∈ R
p and ρ ∈ R, such that features

with different labels belong to different half-spaces with respect to H, and the margin
of separation between the classes is maximized (maximum margin classifier; see [28]).
If the features are linearly separable, then the optimal separating hyperplane solves
the following minimization problem [29]:

min
θ,ρ

‖θ‖2 subject to

lj(bj
�θ + ρ) ≥ 1 for each j ∈ {1, . . . , N}.

(7.8)

To deal with possibly infeasible problem instances (i.e., nonlinearly separable data),
it is common to include a slack variable, allowing (but penalizing) misclassification:

min
θ,ρ,ν≥0

‖θ‖2 + ν subject to

lj(bj
�θ + ρ) ≥ 1− ν for each j ∈ {1, . . . , N}.

(7.9)

If the observed datum/label pairs δ(j) = (bj , lj), j ∈ {1, . . . , N}, are interpreted as
realizations of a random datum/label variable δ = (b, l), then problem (7.9) is an
instance of the following RCP in dimension d = p+ 3:

min
θ,ρ,φ≥0,ν≥0

φ subject to(7.10)

lj(bj
�θ + ρ) ≥ 1− ν for each j ∈ {1, . . . , N},(7.11)

‖θ‖2 + ν ≤ φ.
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Such an RCP is always feasible, and it admits a unique optimal solution with probabil-
ity one; see, e.g., [29]. Therefore, we can apply (3.3) to conclude that with practical
certainty the hyperplane H, obtained as a solution of (7.10), remains an optimal
separating hyperplane also after adding a new realization to the training data.

Problem (7.10) is readily amenable to a distributed solution via the active con-
straints consensus algorithm, by assuming that the N constraints in (7.11) are sub-
divided into n disjoint subsets of cardinality Ni each, i ∈ {1, . . . , n}, ∑n

i=1 Ni = N ,
and that each subset is assigned to a node as the local constraint set. The constraints
in (7.11) are linear, and hence the problem can also be solved via the VCC or qVCC
algorithm; see Remark 6.

7.2.1. Numerical results on distributed linear classification. We next
present numerical examples of distributed and parallel computations of linear classi-
fiers.

Example 4 (distributed linear classification). In this section we consider the case
in which the training set δ(j) = (bj , lj), j ∈ {1, . . . , N}, is not known at a central com-
putational unit, but its knowledge is distributed among several nodes. An example
of this setup can be the computation of a classifier for spam filtering [30], where the
datum/label pairs are collected by the personal computers of n users, and the n com-
puters may interact for computing the classifiers. For our numerical experiments we
considered a problem in which the features with label “+1” are sampled from the nor-
mal distribution with mean 10× 1p, while features with label “−1” are sampled from
the normal distribution with mean −10×1p. We used identity matrices as covariances
for both distributions. After “sampling” the random constraints we distribute them
among n nodes. Then we study the distributed computation of the solution to prob-
lem (7.10) on two network topologies: geometric random graphs and chain graphs.
The performance of the ACC and VCC algorithms for p = 4 and N = 20000 total
constraints is shown in Table 7.3. The values shown in the table are the worst-case
values over 20 runs of the algorithms. It can be seen that the number of iterations
required for the convergence of the active constraints consensus algorithm is linear
in graph diameter, while it is equal to the graph diameter for the VCC algorithm.
The number of constraints exchanged at each iteration among the nodes is small for
the active constraints consensus algorithm, while this number is large for the VCC
algorithm. Note that the local sets of constraints are initially disjoint (each node is
entrusted with a different subset of constraints), but as the algorithms iterate, the
same constraints may appear in different local sets, and upon convergence, the local
constraints set at each node will contain the same subset of constraints, which defines
the optimal solution of the RCP.

Table 7.3

Distributed linear classification: maximum number of iterations, maximum number of ex-
changed constraints, and diameter for different graph topologies for the ACC and VCC algorithms.

Diameter
ACC VCCNo.

nodes Iter. Constr. Iter. Constr.

Geometric
random
graph

10 1 5

5

1

342
50 2 11 2
100 3 11 3
500 5 24 5
10 10 37

5

10

365
Chain 50 50 177 50
graph 100 100 319 100

500 500 1498 500
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Fig. 7.6. Performance of the active constraints consensus algorithm for parallel computation of
the solution of the linear classification problem. (a)–(c) The solid black and dashed lines represent
parallel and centralized average computation time, respectively. (d) The cross represents the average
number of active constraints, and the error bars represent the minimum and maximum numbers of
active constraints for different problem dimensions.

Example 5 (parallel linear classification). For the same set of data as in Ex-
ample 4, we study the parallel computation of the optimal separating hyperplane.
The parallel computation setup is modeled via a complete graph. The computa-
tion time of the active constraints consensus algorithm for parallel computation of
the optimal separating hyperplane is shown in Figure 7.6. The computation time
is averaged over 20 runs of the algorithm. The computation time is shown, re-
spectively, as a function of number of processors for p = 4 and N = 200000 to-
tal constraints, as a function of total number of constraints for p = 4 and n = 50
processors, and as a function of dimension p for N = 200000 total constraints and
n = 50 processors. In the first case, the minimum, average, and maximum num-
bers of active constraints are 2, 3.3, and 5, respectively, while the minimum, average,
and maximum numbers of iterations are 4, 4.04, and 5, respectively. In the second
case, the minimum, average, and maximum numbers of active constraints are 2, 3.09,
and 5, respectively, while the minimum, average, and maximum numbers of itera-
tions are 4, 4.03, and 6, respectively. In the third case, the minimum, average, and
maximum numbers of iterations are 4, 4.04, and 5, respectively, and the statistics of
the constraints are shown in Figure 7.6. It can be seen that the parallel computa-
tion of the optimal solution via the active constraints consensus algorithm remark-
ably improves the computation time over the centralized computation. For a large
number of constraints, this improvement is significant even for a small number of
processors.

7.3. Parallel random model predictive control. Consider the LTI system

xt+1 = F (ξ)xt +G(ξ)ut +Gγ(ξ)γt,(7.12)

where t ∈ Z≥0 is a discrete time variable, xt ∈ R
p is the system state, ut ∈ R

q

is the control input, γt ∈ Γ ⊂ R
qγ is an unmeasured disturbance vector, ξ ∈ Ξ ⊆

R
w is a vector of uncertain parameters, and F (ξ) ∈ R

p×p, G(ξ) ∈ R
p×q, Gγ(ξ) ∈

R
p×qγ are uncertain matrices. The design problem is to determine a control law
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that regulates the system state to some desired set, subject to some constraints on
states and controls. In random model predictive control [31, 32], one picks a control
law of the form ut = Kfxt + vt, where Kf ∈ R

q×p is the static linear terminal
controller gain and vt ∈ R

q is the design variable. The design variable vt is picked
to provide robustness with high probability. To determine the design variable that
achieves such robustness, at each time t and for a given finite horizon length M , N
realizations of the uncertain parameter ξ and disturbance vectors (γt, . . . , γt+M−1)
are sampled and an optimization problem is solved. Let us denote these realizations

by (ξ(k), γ
(k)
t , . . . , γ

(k)
t+M−1), k ∈ {1, . . . , N}, and define g

(k)
t = [γ

(k)
t

�
. . . γ(k)�

t+M−1]
� for

each k ∈ {1, . . . , N}. The design variable vt is determined by the solution of the
following optimization problem:

min
Vt

max
k∈{1,...,N}

J(xt,Vt, ξ
(k), g

(k)
t ) subject to

fX(x
(k)
t+j|t) ≤ 0,

fU (Kfx
(k)
t+j|t + vt+j−1) ≤ 0,

fXf
(x

(k)
t+M|t) ≤ 0

for each j ∈ {1, . . . ,M} and for each k ∈ {1, . . . , N},

(7.13)

where J : Rp × R
qM × R

w × R
qγM → R is a cost function that is convex in xt and

Vt, fX : Rp → R, fU : Rq → R, and fXf
: Rp → R are convex functions that capture

constraints on the state at each time, the control at each time, and the final state,
respectively, and

x
(k)
t+j|t =(Fcl(ξ

(k)))j−1xt +Ψ
(k)
j Vt +Υ

(k)
j g

(k)
t ,

Fcl(ξ
(k)) =F (ξ(k)) +G(ξ(k))Kf ,

Ψ
(k)
j =

[
(Fcl(ξ

(k)))j−1G(ξ(k)) . . . Fcl(ξ
(k))G(ξ(k)) G(ξ(k)) 0 . . . 0

] ∈ R
p×qM ,

Υ
(k)
j =

[
(Fcl(ξ

(k)))j−1Gγ(ξ
(k)) . . . Fcl(ξ

(k))Gγ(ξ
(k)) Gγ(ξ

(k)) 0 . . . 0
] ∈ R

p×qγM ,

Vt =
[
v�t . . . v�t+M−1

]�
.

Problem (7.13) is an RCP of dimension d = qM + 1. Moreover, assuming that the
problem admits a unique optimal solution with probability one and for N > qM + 1,
for any realization of the parameter and the disturbance vector, the constraints on
the state and the control are satisfied with expected probability at least (N − qM)/
(N +1) [31]. Problem (7.13) is directly amenable to a distributed solution via the ac-
tive constraints consensus algorithm. In the next section we consider the case in which
the random constraints of the RCP are purposely distributed among n processors that
have to solve the problem in parallel fashion.

7.3.1. Numerical results on parallel random model predictive control.
In order to achieve robustness with high probability, a large number of realizations of
the parameter and disturbances are needed in the RCP (7.13). This results in a large
number of constraints and makes real-time centralized computation of the solution to
the optimization problem (7.13) intractable. Therefore, we resort to the parallel com-
putation of the solution to the optimization problem (7.13) via the active constraints
consensus algorithm. We now apply the active constraints consensus algorithm to an
example taken from [31] and show its effectiveness.
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Example 6 (parallel random MPC). Consider the LTI system (7.12) with

F (ξ) =

[
1 + ξ1

1
1+ξ1

0.1 sin(ξ4) 1 + ξ2

]
, G(ξ) =

[
0.3 arctan(ξ5)

1
1+ξ3

]
, Gγ =

[
1 0
0 1

]
,

where each of the random parameters ξ1, ξ2, ξ3 is uniformly distributed in the inter-
val [−0.1, 0.1], while ξ4, ξ5 are distributed according to Gaussian distributions with
zero mean and unit variance. Let the horizon be M = 10 and the uncertainty γ
be uniformly distributed over set Γ = {γ ∈ R

2 : ‖γ‖∞} ≤ 0.05. Assume that
fX(x) = ‖x‖∞ − 10, fU (u) = |u| − 5, and fXf

(z) = ‖z‖∞ − 1. Consider the termi-

nal controller gain Kf = [−0.72 − 1.70] and the cost function J(xt,Vt, ξ
(k), g

(k)
t ) =

maxj∈{1,...,M} max{0, ‖x(k)
t+j−1|t‖∞ − 1} + ‖Vt‖22. For this set of data, the computa-

tion time of the active constraints consensus algorithm averaged over 20 runs of the
algorithm for parallel computation of the solution to optimization problem (7.13) is
shown in Figure 7.7. The computation time is shown, respectively, as a function of
the number of processors for 1000 realizations of the random parameters and as a
function of the number of realizations of the random parameters for 50 processors.
In the first case, the minimum, average, and maximum numbers of active constraints
are 2, 2.55, and 6, respectively, while the minimum, average, and maximum numbers
of iterations are 3, 3.73, and 5, respectively. In the second case, the minimum, av-
erage, and maximum numbers of active constraints are 2, 2.18, and 4, respectively,
while the minimum, average, and maximum numbers of iterations are 3, 4.03, and 5,
respectively.
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Fig. 7.7. Performance of the active constraints consensus algorithm for parallel random model
predictive control. The solid black and dashed lines represent parallel and centralized average com-
putation time, respectively.

7.4. Example of distributed outliers rejection. We conclude the numerical
part of this paper with a brief example of distributed constraints removal applied to
the distributed estimation problem presented in section 7.1.1. We consider n = 50 sen-
sors measuring a random variable θ, using the same measurement model of Example 1
(homogeneous sensor network). The overall number of measurements (acquired by all
nodes) is N = 3000. The original scenario solution that satisfies all N = 3000 con-
straints can ensure a violation probability smaller than ε = 10−2 with confidence level
greater than 1− β = 1− 2× 10−8. According to RCP theory we can remove r = 165
constraints, still guaranteeing that the violation probability is smaller than 10−1 with
confidence level 1− β close to 1. Therefore the nodes apply Algorithm 4 (the active
constraints consensus algorithm is used within the removal strategy), computing a
scenario solution which satisfies all but r = 165 constraints. Thus, with a little com-
promise over the bound on the violation probability, the constraints removal allows re-
ducing the size of the ellipsoid, hence improving the informativeness of the confidence



656 CARLONE, SRIVASTAVA, BULLO, AND CALAFIORE

−40 −30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

θ1
θ 2

Fig. 7.8. Measurements taken by all the sensors in the network (black dots) and confidence
ellipsoids at one node after rejecting a number of outliers η = {0, 20, 40, . . . , 140, 160} in Algo-
rithm 4. The red ellipsoid is the one produced after discarding r = 165 measurements according to
the distributed constraints removal procedure (See online version for color.)

ellipsoid. In Figure 7.8, we report the confidence ellipsoids computed at one node
using Algorithm 4, after rejecting a number of outliers η = {0, 20, 40, . . . , 140, 160},
together with the final ellipsoid satisfying all but r = 165 constraints.

8. Conclusion. In this paper, we studied distributed computation of the solu-
tion to random convex program (RCP) instances. We considered the case in which
each node of a network of processors has local knowledge of only a subset of constraints
of the RCP, and the nodes cooperate in order to reach the solution of the global prob-
lem (i.e., the problem including all constraints). We proposed two distributed algo-
rithms, namely, the active constraints consensus algorithm and the vertex constraints
consensus (VCC) algorithm. The active constraints consensus algorithm computes
the solution in finite time and requires the nodes to exchange a small number of
constraints at each iteration. Moreover, a parallel implementation of the active con-
straints consensus algorithm remarkably improves the computational effort compared
to a centralized solution of the RCP. The VCC algorithm converges to the solution
in a number of iterations equal to the graph diameter. We also developed a variant
of the VCC algorithm, namely, quantized vertex constraints consensus (qVCC), that
restricts the number of constraints to be exchanged at each iteration. We further
proposed a distributed constraints removal strategy for outlier rejection within the
framework of the RCP with violated constraints. Finally, we presented several ap-
plications of the proposed distributed algorithms, including estimation, classification,
and random model predictive control.

Appendix.

A.1. Proof of Proposition 2.8. We start by establishing the first statement.
Let c be a support constraint for a feasible problem in the form (2.1). Call x̂∗ = x∗(C)
and x̌∗ = x∗(C\{c}). From the definition of support constraints, it follows that
a�x̌∗ < a�x̂∗. This inequality implies that x̌∗ does not satisfy c; otherwise we would
have x̂∗ = x̌∗ and a�x̂∗ = a�x̌∗. Therefore, fc(x̌

∗) > 0. Assume by contradiction
that c is not active at x̂∗, i.e., that fc(x̂

∗) < 0. Consider a point x on the segment
connecting x̂∗ and x̌∗: x(λ) = (1− λ)x̌∗ + λx̂∗, λ ∈ [0, 1]. It follows immediately
that a�x(λ) < a�x̂∗ for every λ ∈ [0, 1). By convexity of the constraints it also
holds that fc(x(λ)) = fc ((1− λ)x̌∗ + λx̂∗) ≤ (1− λ)fc(x̌

∗) + λfc(x̂
∗). For every λ̄ ≥

fc(x̌
∗)

fc(x̌∗)−fc(x̂∗) ∈ (0, 1) the previous quantity is nonpositive, i.e., fc(x(λ̄)) ≤ 0; therefore

the constraint c is satisfied at x(λ̄). But then x(λ̄) would satisfy all constraints and
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yield an objective value that improves upon that of x̂∗. This contradicts optimality
of x̂∗, and hence proves that c must be active at x̂∗.

We now establish the second statement. We first demonstrate that each essential
set Ei

.
= Esi(C) needs to be irreducible, i.e., Ei = Sc(Ei). By definition, each Ei

is a minimum cardinality set satisfying J∗(Ei) = J∗(C). Now assume by contra-
diction that there exists a constraint c ∈ Ei, such that J∗(Ei) = J∗(Ei\{c}). This
implies that there exists a set Ei\{c}, which is also invariant for C, i.e., J∗(Ei\{c}) =
J∗(Ei) = J∗(C), and has smaller cardinality than Ei, leading to a contradiction.
Now we can prove the following statement: if each constraint in Esi(C) is a support
constraint for problem P [Esi(C)], it needs to be active for the problem P [Esi(C)]; see
claim (i). Consequently, if x∗

i is the optimal solution for P [Esi(C)], then fj(x
∗
i ) = 0

for all cj ∈ Esi(C). From the unique minimum condition and locality, it follows that

J∗(Esi(C)) = J∗(C) =⇒ x∗(Esi(C)) = x∗(C)

for each i ∈ {1, . . . , ne}. Therefore, fj(x
∗(C)) = 0 for each cj ∈ Esi(C), i ∈

{1, . . . , ne}, and Ac(C) ⊇ ∪ne

i=1 Esi(C).

A.2. Proof of Proposition 4.1. We start by establishing the first statement.
According to the update rule of the active constraints consensus algorithm, the se-
quence of local optimal objective J∗

i (t) satisfies

J∗
i (t+ 1)

.
= J∗(Li(t+ 1)

)
= J∗(Ai(t)∪(∪j∈Nin(i) Aj(t))∪Ci

)
[by monotonicity] ≥ J∗(Ai(t)

)
[by Corollary 2.9] = J∗(Li(t)

)
= J∗

i (t);

then J∗
i (t) is nondecreasing in t.

The proof of the second statement is more involved and works as follows. We first
observe that, for any directed edge (i, j), it holds that

J∗
j (t+ 1)

.
= J∗(Lj(t+ 1)

)
= J∗(Aj(t)∪(∪k∈Nin(j) Ak(t))∪Cj

)
[by monotonicity and i ∈ Nin(j)] ≥ J∗(Ai(t)

)
[by Corollary 2.9] = J∗(Li(t)

)
= J∗

i (t),

which can be easily generalized to a generic pair of nodes i, j connected by a directed
path of length lij (such a path always exists for the hypothesis of strong connectivity):

(A.1) J∗
j (t+ lij) ≥ J∗

i (t).

Moreover, we demonstrate that for any directed edge (i, j), it holds that

(A.2) J∗
j (t+ 1) = J∗

i (t) ⇐⇒ x∗
j (t+ 1) = x∗

i (t).

The reverse implication in (A.2) is straightforward, since the objective function is the
same for both nodes. The direct implication is again trivial in the infeasible case,
while for J∗

j (t + 1) = J∗
i (t) < ∞ it can be proven as follows. For the uniqueness

condition, adding a constraint c that is not satisfied at (or violates) x∗
j (t+1) leads to

an increase in the objective value, i.e., J∗(Lj(t+1)∪{c}) > J∗(Lj(t+1)). Now, since
Lj(t + 1) ⊇ Ai(t), and J∗(Lj(t + 1)) = J∗

j (t + 1) = J∗
i (t) = J∗(Ai(t)), by locality, if

J∗(Lj(t+ 1) ∪ {c}) > J∗(Lj(t+ 1)), then J∗(Ai(t) ∪ {c}) > J∗(Ai(t)), which implies
that also x∗

i (t) is violated by c. Therefore, we concluded that every constraint that
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violates x∗
j (t + 1) also violates x∗

i (t), and this may happen only if x∗
j (t + 1) = x∗

i (t).
Again the correspondence between objective values and optimal solutions can be easily
generalized to a generic pair of nodes i, j connected by a directed path of length lij :

(A.3) J∗
j (t+ lij) = J∗

i (t) ⇐⇒ x∗
j (t+ lij) = x∗

i (t).

We now claim that the objective at one node cannot remain the same for 2diam(G)+1
iterations, unless the algorithm has converged. In the infeasible case the proof is
trivial: according to the update rule of the active constraints consensus algorithm, if
node i has detected an infeasible local problem, i.e., J∗

i (t) = ∞, it directly stops the
execution of the algorithm since it is already sure of detaining the global solution.
Let us instead consider the feasible case. We assume by contradiction that J∗

i (t) =
J∗
i (t+2diam(G)) < ∞ and there exists a node j with at least a constraint that is not

satisfied by x∗
i (t) = x∗

i (t + 2diam(G)). Let us consider a directed path of length lij
from i to j: we already observed in (A.1) that J∗

j (t + lij) ≥ J∗
i (t). However, since

there are constraints at node j that violate x∗
i (t), equality cannot hold; see (A.3), and

J∗
j (t + lij) > J∗

i (t). By definition, the length lij of the path from i to j is bounded
by the graph diameter and the local objective is nondecreasing; therefore J∗

j (t +
diam(G)) > J∗

i (t). Now consider the path from j to i of length lji: according to (A.1)
it must hold that J∗

j (t+diam(G)) ≤ J∗
i (t+diam(G)+lji) ≤ J∗

i (t+2diam(G)). Using the
two inequalities found so far we obtain J∗

i (t) < J∗
j (t+ diam(G)) ≤ J∗

i (t+ 2diam(G)),
which contradicts the assumption that the objective at node i remains constant for
2diam(G) + 1 iterations. Therefore, before convergence the local objective J∗

i (t) has
to be strictly increasing every 2diam(G) + 1 iterations. Moreover, the sequence J∗

i (t)
is upper bounded since, by monotonicity, for any L ⊆ C, J∗(L) ≤ J∗(C), and J∗

i (t)
can assume a finite number of values, i.e., J∗ ∈ J .

= {J∗(L) : L ⊆ C}; therefore the
sequence converges to a constant value, say J∗

i (T ), in finite time. We now demonstrate

that after convergence, all nodes need to have the same local objective, i.e., J∗
i (T ) = Ĵ ,

for each i ∈ {1, . . . , n}. For simplicity of notation, we drop the time index in the
following discussion. Assume by contradiction that two nodes, say i and j, have
different objective values, J∗

i > J∗
j . From the assumption of strong connectivity of

the graph G, there exists a directed path between i and j. Using relation (A.1) we
obtain J∗

i ≤ J∗
j , leading to a contradiction. Therefore, for any pair of nodes i and j, it

must hold that J∗
i = J∗

j = Ĵ , implying J∗
i = Ĵ , for each i ∈ {1, . . . , n}. With a similar

reasoning, and using (A.3), we can also conclude that J∗
i = Ĵ for each i ∈ {1, . . . , n}

implies x∗
i = x̂ for each i ∈ {1, . . . , n}. Now it remains to show that the local objectives

Ĵ and the local solutions x̂ actually coincide with J∗(C) and x∗(C). In the infeasible
case this is again trivial: if the local objectives coincide with Ĵ = ∞, by monotonicity
the global problem cannot be other than infeasible, and then J∗(C) = Ĵ = ∞ and
x∗(C) = x̂ = NaN. The feasible case can be proven as follows. If all nodes have
the same local solution x̂, it means that (i) x̂ satisfies the local constraint set Ci,
i ∈ {1, . . . , n}, which implies that x̂ is feasible for the global problem. Moreover,
by monotonicity, Ĵ ≤ J∗(C) (since Ĵ is the optimal value of a subproblem having
constraint set L ⊆ C). Assume by contradiction that Ĵ < J∗(C), which implies that
(ii) Ĵ = a�x̂ < a�x∗(C) = J∗(C); therefore x̂ attains a smaller objective than x∗(C)
(see (ii)), and satisfies all constraints in C (see (i)), contradicting the optimality of
x∗(C). Therefore it must hold that Ĵ = J∗(C). With the same reasoning we used for
proving (A.2), we also conclude that x̂ = x∗(C).

To prove the third statement, we show that the set Ai contains all the constraints
that are globally active for P [C]. If J∗

i = J∗(C) = ∞, the implication is trivial, since
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Ai = Ac(C) = ∅. In the feasible case the proof proceeds as follows. According to the
second statement, we have x∗

i = x∗(Ai) = x∗(C), i ∈ {1, . . . , n}. By contradiction,
let us suppose that there exists a globally active constraint c that is contained in the
local constraint set Ci of a node i, but is not in the candidate set Aj of node j. Let
us consider a directed path from i to j and relabel the nodes in this path from 1
to l. Starting from node 1 we observe that, since x∗

1 = x∗(C) and c is active for
P [C], c ∈ A1. At each iteration of the active constraint consensus, node 2 in the path
computes A2 = Ac(A2 ∪ (∪j∈Nin(2,t)Aj)∪C2). Therefore, since c ∈ A1 and x∗

1 = x∗
2,

it holds that c ∈ A2. Iterating this reasoning along the path from i to j, we conclude
that c ∈ Aj , leading to a contradiction.

To prove the fourth statement, we observe that if the local problem at node i is
infeasible, then the node has only to transmit its local objective, Ji(t)

∗ = ∞, since the
candidate set Ai(t) is empty. If the local problem P [Li] is feasible, then the unique
minimum condition ensures that the minimum is attained at a single point, say x∗(Li).
If constraints are in general position, then no more than d constraints may be tight
at x∗(Li), and hence at most d constraints are active. Therefore, in the feasible case,
the number of constraints to be transmitted is upper bounded by d.

A.3. Proof of Proposition 5.2. We start by recalling a basic property which
is a direct consequence of the definition of the feasible set: for any set of constraints
C1 and C2, it holds that

Sat(C1) ∩ Sat(C2) = Sat(C1 ∪ C2).(A.4)

To prove the first statement, we consider a generic node i. At time t node i receives the
candidate sets from the incoming neighbors and computes Vi(t+1) = vert

(
Li(t+1)

)
=

vert
(
Vi(t)∪

(∪j∈Nin(i) Vj(t)
))
. It follows that

Sat(Vi(t+ 1)) = Sat
(
vert

(
Vi(t)∪

(∪j∈Nin(i) Vj(t)
)))

[by Lemma 5.1] = Sat
(
Vi(t)∪

(∪j∈Nin(i,t) Vj(t)
))

[by equation (A.4)] = Sat(Vi(t)) ∩
( ∩j∈Nin(i) Sat(Vj(t))

) ⊆ Sat(Vi(t)).

(A.5)

If Sat(Vi(t)) = ∅ (infeasible local problem), then also Sat(Vi(t + 1)) = ∅, accord-
ing to (A.5), then J∗

i (t + 1) = J∗
i (t) = ∞, and the objective is nondecreasing.

If Sat(Vi(t)) �= ∅ (feasible local problem), we can prove the statement as follows.
Assume by contradiction that there exists x̄ ∈ Sat(Vi(t + 1)) such that a�x̄ .

=
J∗(Vi(t + 1)) < J∗(Vi(t)). Equation (A.5) ensures that Sat(Vi(t + 1)) ⊆ Sat(Vi(t));
therefore x̄ ∈ Sat(Vi(t)) and there exists a point in the feasible set of problem P [Vi(t)],
whose value is smaller than J∗(Vi(t)). This contradicts the optimality of J∗(Vi(t)).
Therefore, it must hold that J∗(Vi(t+ 1)) ≥ J∗(Vi(t)).

To prove the second statement, we show that after T
.
= diam(G) iterations a

generic node i satisfies Sat(Vi(T )) = Sat(C). Consider a generic node j and a di-
rected path from a node j to node i (this path does exist for the hypothesis of strong
connectivity). We relabel the nodes on this path from 1 to l such that the last
node is i. Node 1 initializes V1(0) = vert(C1), and then Sat(V1(0)) = Sat(C1). At
the first iteration, node 2 computes V2(1) = vert

(
V2(0)∪

(∪j∈Nin(2) Vj(0)
))
. Since

node 1 is in Nin(2), it follows from (A.5) that Sat(V2(1)) ⊆ Sat(V1(0)). Repeating the
same reasoning along the path and for the original labeling, we can easily prove that
Sat(Vi(lij)) ⊆ Sat(Vj(0)) = Sat(Cj), where lij is the distance between i and j. There-
fore, after a number of iterations equal to the distance between j and i, every feasible
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solution at node i satisfies the constraints of node j. Since the maximum distance
between i and any other node is the diameter of the graph, in T

.
= diam(G) iterations,

node i satisfies Sat(Vi(T )) ⊆ Sat(Cj) for all j. Since this last property holds for all j,
it also holds that Sat(Vi(T )) ⊆ ∩j∈{1,...,n}Sat(Cj) = Sat(C). However, Vi(T ) is a
subset of C, and it follows that Sat(Vi(T )) ⊇ Sat(C). Thus, Sat(Vi(T )) = Sat(C).
Since the local problem P [Vi(T )] and the global problem P [C] have the same objec-
tive direction and the same feasible set, they attain the same (unique) solution, i.e.,
x∗(Vi(T )) = x∗(C).

We now establish the third statement. We note that Vi(T ) = vert(C) is a direct
consequence of the update rule of the VCC algorithm. To prove the latter part of the
statement, we assume by contradiction that c ∈ C is a support constraint for P [C]
but c /∈ vert(C). The relation c /∈ vert(C) implies that vert(C) ⊆ C\{c}. It follows
from monotonicity that (i) J∗(vert(C)) ≤ J∗(C\{c}). According to Lemma 5.1 it
also holds that (ii) J∗(vert(C)) = J∗(C). Combining (i) and (ii), we obtain J∗(C) ≤
J∗(C\{c}). By monotonicity, it cannot be J∗(C) < J∗(C\{c}), and so J∗(C) =
J∗(C\{c}), but this contradicts the assumption that c is a support constraint.

A.4. Proof of Proposition 5.3. The proof of the first and third statements
follows similarly to the proof of the first and third statements in Proposition 4.1.

We now establish the second statement. Similarly to the VCC algorithm, we

show that after T ≤ ∑diam(G)−1
k=0 �Nmax(dmax+1)k

m � iterations a generic node i satisfies
Sat(Vi(T )) = Sat(C). Consider a generic pair of nodes i, j and a directed path of
length lji from j to i (this path does exist for the hypothesis of strong connectivity).
Relabel the nodes on this path from 1 to l such that the last node is i. We observe
that, after the initialization, the local candidate set V1(0) = T1(0) = vert(C1) has
cardinality |T1(0)| ≤ Nmax. Since the transmission set is managed using an FIFO
policy, after at most �Nmax

m � communication rounds the node has transmitted all

the constraints in V1(0) to node 2. Therefore, Sat
(
V2(�Nmax

m �)) ⊆ Sat(V1(0)) =

Sat(C1). Moreover,
∣∣V2(�Nmax

m �)∣∣ ≤ ∑
j∈Nin(2)∪{2} Nj ≤ Nmax(dmax + 1) (worst

case, in which the incoming neighbors have to transmit all their local constraints,

and all constraints are vertices of the convex hull). After at most �Nmax(dmax+1)
m �

further iterations, node 2 has transmitted all constraints in V2

(�Nmax

m �) to node 3.

Therefore, Sat
(
V3(�Nmax

m � + �Nmax(dmax+1)
m �)) ⊆ Sat(V2(�Nmax

m �)) ⊆ Sat(C1). Also,∣∣∣V3

(�Nmax

m � + �Nmax(dmax+1)
m �)∣∣∣ ≤ ∑

j∈Nin(3)∪{3}
∣∣Vj(�Nmax

m �)∣∣ ≤ Nmax(dmax + 1)2.

Repeating the same reasoning along the directed path, for the original labeling, we

obtain Sat
(
Vi

(∑lji−1
k=0 �Nmax(dmax+1)k

m �)) ⊆ Sat(Cj). Therefore, every feasible solu-
tion at node i satisfies the constraints of node j at distance lji in a number of

iterations no larger than
∑lji−1

k=0 �Nmax(dmax+1)k

m �. Since the maximum distance be-
tween i and any other node is the diameter of the graph, it follows that in T ≤∑diam(G)−1

k=0 �Nmax(dmax+1)k

m � iterations node i satisfies Sat(Vi(T )) ⊆ Sat(Cj) for all j.
Since this property holds for all j, it also holds that Sat(Vi(T )) ⊆ ∩j∈{1,...,n}Sat(Cj) =
Sat(C). Since Vi(T ) is a subset of C, Sat(Vi(T )) ⊇ Sat(C). Therefore, Sat(Vi(T )) =
Sat(C). Finally, T can be rewritten as

diam(G)−1∑
k=0

⌈Nmax(dmax + 1)k

m

⌉
≤

⌈Nmax

m

⌉ diam(G)−1∑
i=0

(dmax + 1)k

=
⌈Nmax

m

⌉1− (dmax + 1)diam(G)

1− (dmax + 1)
=

⌈Nmax

m

⌉ (dmax + 1)diam(G) − 1

dmax
,
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which coincides with the bound in the second statement. Since the local prob-
lem P [Vi(T )] and the global problem P [C] have the same objective direction and
the same feasible set, they attain the same (unique) solution, i.e., x∗(Vi(T )) =
x∗(C).
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