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Abstract— We propose an optimization framework to study two the Yerkes-Dodson curve and determine the maximum sta-
fundamental attention control aspects in human-robot sy&!ms:’) bilizing arrival rate and a task release policy such that the
Where and how much attention should the operator allocate? gy \ational awareness of the operator is at a desired level.

In other words, which information source should be observed C fi trateqies bet UAV dh h b
by the operator, and how much time duration should be ooperative strategies between S and humans have been

allocated to the information feed in order to optimize the Studied in [12], [11]. The authors develop policies for join
overall performance of the human-robot system? The proposeé  target assignment for the operator and the UAVs such that
framework incorporates (i) operator performance constraints,  the average time between appearance and classification of a
such as error rates and service times based utilization hiety,  target is minimized. Optimal time duration allocation s
(i) sensor constraints, such as p(ocg55|ng/travel time,na (|||) for the human operator have been developed in [16], [14]
task constraints, such as prioritization. We use a receding p_ - . .p hCH :
horizon approach to solve the resumng dynamic program, The authors ConSIder queueS W|th deC|S|0n mak|ng taSkS.
leading to efficient policies for operator time duration allocation Each task has a deadline which is incorporated as a soft con-
and sensor selection. We demonstrate our methodology in a straint. The human decision making is modeled by a sigmoid
distributed surveillance problem. function and the optimal allocation schemes are determined
through the solution of an MDP. Further, the optimal task
I. INTRODUCTION release raFe is also determined. Bertuqcelli et al [2] §théy .
gueues with re-look tasks. They consider a queue in which
While emergence of mobile and fixed sensor networks o he arrving d|ff|<_:ult 'Fasks are placeq In an orbit queue for
ater viewing while simple tasks are immediately processed

erating at different modalities, mobility, and coveragash S . :
9 y ges Thﬁ authors show that in visual search tasks with re-queuing
enabled access to an unprecedented amount of data, hur[ha

. . ' . the accuracy of the detection improves but the number of
operators are unable to extract actionable information in ta ets searched decreases with re-queuing probabiliy, T
timely manner. As a consequence, there has been an incre sy e . q gp X )
Hr%}alem of determining the optimal sequence in which tasks

ng neqd of sensor management automatlon_, ar!d has SpaWsﬁoould be processed by the operator has been studied in [1].
extensive research, see for example special issues [9] aﬂ

. . . . ere, the authors also point to the issue of high sensitofity
[4] dedicated to topics of design of cooperative control an : : . .
S . : fhe optimal solution to operator model uncertainty. Certai
coordination strategies for teams of mobile sensors. Whlﬁecision makina models for the human operator have been
the use of automation will continue to increase, huma 9 P

operators will remain indispensable, since they can ofteslﬁg:gcetqor:n cEIl'S]és[l}ch]’h [ﬁ;nt_?ogsttirrgt'gfnsom'mal sensor
bring knowledge and experience to bear in the complex lon polict u y '

problems such as surveillance and intelligence gatherinﬁi this paper we propose a novel framework to study two

where a wrong decision can have lethal consequences. Givfen damental questions: “Which information source should
the complex interaction that can arise between the operatgjrn '

and he atomated sensrs, 1 necessryocelopieci e %9591% ™ 0 STt o muen e urten
support systems that exploit not only operator strengths, b P
also account for their decision making inefficiencies, sagh

error rates and loss of situational awareness.

mize the overall performance of the human-robot system?”
Addressing these problems together in context of human-
supervised distributed surveillance is one of the novel con
Several studies have focused on using operator performarigbution of this paper. Additionally, we incorporate optar
models to optimize interaction with automation. Queuingperformance models related to both error rates and situtio
model with operator as server has emerged as a popuwareness in the optimization framework for determining
paradigm [11]. A task release controller was designed ih [10optimal time-duration allocation. These two aspects of op-
The authors consider operator’s service time modeled [grator performance in decision making queues have only
been studied separately in previous works listed above. We
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operator inputs and derive an expression for the detectideed? Second, in Section IV we determine simultaneous
delay taking into account time varying operator perfornganctime duration allocation and sensor selection policiessiah

in addition to sensor constraints such as travel time. We uglee human operator optimally processes the information
this expression for optimizing sensor selection policyunls feeds and her decisions are utilized to determine the region
a way that the operator is presented with information whickelection policy that ensures quickest detection of anasal

is most relevant for detecting anomalies. This setup leads t

quickest detection in distributed surveillance applizas. I11. OPTIMAL TIME DURATION ALLOCATION

The rest of the paper is organized as follows. In Section Il wWR Operator Models
describe the problem setup and the assumptions. In Section

Il we survey relevant operator models and incorporatgpeed-accuracy trade-off in human decision making:
them in an optimization framework for determining optimal

time-duration allocation in decision making queues. w&onsider the scenario where, based on the collected evi-
illustrate certainty equivalent and receding horizon tofu dence, the human has_to decide on one_(_)f the two alternafuves
approaches through several examples. Section IV covef& @ndf:. The evolution of the probability of correct deci-
the coupling of attention allocation and sensor selectiopion has been studied in cognitive psychology literatuie [8

problems for quickest detection. Here we also demonstrakd]-

our overall methodology in a distributed visual surveilan pew's model: The probability of deciding on hypothesis
problem. Finally, we conclude with future directions in H,, given that hypothesi#/, is true, at a given time
Section V. t € R is given by

Po
Il. PROBLEM SETUP P(say Hy|Hy,t) = Fpnpecra

wherep, € [0,1], a,b € R are some parameters which

We consider a distributed surveillance problem of survgyin
P gl depend on the human operator [8].

n disjoint regionsk = {1,...,n}. An autonomous agent, at

each iteration, uses a sensor selection policy to determineDrift diffusion model: Conditioned on the hypothesis;,
regionk € R it should next travel to, travels to that region  the evolution of the evidence for decision is modeled as
and collects information, e.g., takes a picture, and sehds i g drift-diffusion process [3]. Given a drift raté > 0,
to a support system. The support system sends the collected and diffusion rates, with a decision threshold, the

information to a human operator. The support system de- conditional probability of the correct decision is
cides on how much time human operator should spend on

o0
each information feed. The information waits in the queue P(say Hi|Hy,t) = ;/ e
till the human operator processes it. The human operator Vamo?t Jy
incorporates the first come first serve policy to process the  \hereA = A(Bt, 0%t) is the evidence at time
incoming information and decides on the presence/absence
of any anomaly. The decisions made by human operator
may be erroneous. In order to make accurate decisions, =

the support system runs quickest detection algorithm on the &

decisions made by the human operator and decides on the ° Time L mime 1
presence or absence of any anomaly in any region. Based (2) Pew's model (b) Drift diffusion model
on the decisions mad_e by the _human operator, the supp_or,;ig 2. The sigmoid evolution of the probabilities of cotreecision
system adapts the region selection policy such that themegi

with high probability of being anomalous is sampled withyerkes-Dodson Law and Situational Awareness:

high probability. The problem setup is shown in Fig. 1. We _ . )
The Yerkes-Dodson law [19] is an empirical relation between

—(a—pt)2

202t dA,

1

1

&

P(say H_ |H.)

region selection policy optimal allocatons the operator utilization and performance of a human oper-
X! /UL A\ ator. It states that the performance of a human operator is
ul = Hi.ﬂj ) asttouion_(buppon) ke Newergss — ynimodal, that is, an inverted-U function of the utilization
f'D;léj;; reemnezs L) ot \[/ hk-p/t other words, the performance of a human operator increases
i. & ! UEDF Lo . with increasing operator utilization only upto a point. Any
] decisions on tasks

increase in operator utilization beyond this point resuits

. decreased performance of the operator.
Fig. 1. Problem Setup

The Yerkes-Dodson law has inspired situational awareness
address this problem in two stages. First, in Section 11l wenodels [6]. These models suggest that the human operator
determine optimal time duration allocation policies foeth is less situational aware at low utilization as well as athig
human operator, that is, how much time the support systeutilization, and accordingly, takes more time to servicaskt
should ask the human operator to spend on each informati®herefore, the expected service time can be modeled by a



convex function of the utilization ratio, that is, the rabd for all ¢ € {1,...,N}, where z, is the variable that
operator utilization to its maximum utilization. determines whether or not the tagkwould be processed,
Zmin, Tmax € [0, 1] are the desired bounds on the utilization
ratio of the operator, antl », z are N-vectors of,, r,, and
z¢, respectively.

The utilization ratioz of a human operator is captured by
the following differential equation [10]

z(t) = M, We intend to solve optimization problem (2) via dynamic
Y _ _ programming. To do so, we introduce a new variableéhat
where  b(t) = {1, operatgr is busy at time measures aggregate allocation till taskLet ay = 0. The
0, otherwise, optimization problem (2) is equivalent to
and ¢ is a constant that depends on operator’s sensitivity. . N
Therefore, if the initial utilization ratio of an operatas i maximize > zewefe(te)
and she serves a task for timeand rests for time- after ) =1
processing the task, her utilization ratio evolves to subject to ap = ag—1 + z¢(t; + re)

zpt zpt zZprT
ng+1 — (1—67% +IE€7 [52)67% (3)
zete > zeSe(xp)

B. Time Constrained Static Queue T¢ € [Tmin, Tmax); @ € [0, 7]
TS {07 1}atl € [O,T],T@ € [OaT]v

z(t+r)=(1—e 5 +age 5)e 5. Q)

Consider the scenario where the human operator has to
process N decision making tasks (e.g., identification offor all €€ {1,..., N}.

anomalous regions) within a given tinfé The objective of The optimization problem (3) has the structure of a dynamic
the operator is to maximize the expected number of corregtogram. The processing of a task and the rest following it
decisions. The expected number of correct decisions is thgfine the stage of the dynamic program.andz, are the
sum of probabilities of correct decision for each task. bet t states at stagé andt,, r, and z, are the controls at stage
performance function of the operator on tdsk {1,...,N} ¢ The stage reward is,f,(t;). We now elucidate on the
be the sigmoid functionf, : R>o — [0,1[. Some of the sojution of the optimization problem (3) with an example.
tasks may be more important than others, and accordingl):(, ) _ )

a weight is assigned to each task. ket be the weight on Example 1 (Time Constrained Static Queushippose the
task /. Let 2, be the utilization ratio of the operator beforenuman operator has to ser& = 10 tasks within time
starting taskl, and Sy : [0,1] — Reo,f € {1,...,N} T = 25. Lgt thg performance of the operator on taske
be the function ofz, that captures expected service timediven by sigmoid functiorys(t,) = 1/(1+exp(—aste+be)),
of the operator on task. Note thatS, is the expected Wherea, andb, are thelth entries in theN-vectors
service time under the natural response of the operator. a=[1213241536], and

The support system wishes to control the time the operator

allocates to a task. The time allocation on tds&uggested 6=[510398166306 12]
by the support system to the operator should be compatitlet the weights on tasks be& = (2574 9 3 5 10 13 6],
with S,. In order to capture this feature, we constrain thand the initial utilization ratio of operator be; = 0.7. Let
allocations suggested by the support system to be more thgy(z,) = by(3727 — 37z, + 15)/6as. We Pick zmin = 0.5
S¢. The support system should also take into account trhdz,,., = 0.9. The optimal solution to the time constrained
situational awareness effects and hence, optimally cbntrstatic queue fos = 1 is shown in Fig. 3.

the utilization ratio of the operator. To do so, support egst
recommends a rest timg to the operator after processing
task/ € {1,..., N}. Let the initial utilization of the human
operator ber;. The following optimization problem captures b
the objective of support system:
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Fig. 3. Time constrained static queue. The top figures shenofitimal
Zg(tg + Tg) =T allocations and the rest time. The bottom figure shows thienapevolution
(2) of the operator utilization.
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oty > 20Si(x0) C. Dynamic Queue with Latency Penalty

¢ € [Tmin, Tmax] Consider the scenario where the human operator has to
ze €{0,1},t, € [0,T],7¢ € [0,T7, serve a queue of decision making tasks. We assume that



the tasks arrive according to a Poisson process with rateceding horizon policy where the optimization problem (4)
A. Let " be a countable set, and assume that each taskth horizon lengthl0 is solved at each stage is shown in
is sampled from a probability mass functign : T' —  Fig. 4. The optimal benefit per unit task, i.e., the total nelva
[0,1] (accordingly, a probability density function If is an  minus the cost incurred due to penalty, and the optimal
arbitrary set). For atask € T, let £, : R>o — [0, 1] be the benefit rate is also shown. Note that the optimal benefit per
performance function of the human operator anduletbe unit task is almost constant till a critical value of arrival
the reward allocated to the task, according to its prio¥ifg. rate, and then starts decreasing. Similarly, the optimaébe
assume that each task comes with a processing deadline aatd increases till a critical value of the arrival rate ahert
incorporate this deadline as a soft constraint. In pamdicul saturates. At this critical value of the arrival rate, onpents

we let the tasky lose value at a rate, while waiting in an arrival as soon as the current task is finished. This is the
the queue. For example, if the taskneeds to be processedarrival rate at which the system should be designed.

within time 7939 > ¢ after its arrival, where! is the

inflection point of the sigmoid functiorf,, then one may

pick ¢, = f} (799, The objective of the support system is { N { {

to maximize its expected benefit, that is, the total expectec 5 T0ng!® 57 oI5 T20 T

reward obtained by processing the tasks minus the penalt
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In order to determine the optimal allocations that the sup- e T Wl 20
port system should suggest to the human operator, we firs §' gl/"\x\/—\
determine the certainty equivalent solution, i.e., theitoh 500 = - - 5 ! - - o
considering the expected evolution of the system. Then, Arrival Rate Arival Rate

we modify this certainty-equivalent solution and detereninFig. 4. Certainty Equivalent Solution. The top figures shtw bptimal
optimal duration allocation policies for the dynamic queueallocation to each task and rest time after processing speetively. The
For the certainty-equivalent solution, define- E[c. ], = ic'idion i respectivey. The botiom fgures e benait per
Ep[w,], andf : R>o — [0, 1] by f(t) = E,[w, fy(t)]/w. Let  unit task and benefit per unit time as a function of arrivaé raéspectively.
the initial queue length be;. In the spirit of the formulation

in Subsection 111-B, the certainty equivalent objectivetioé  Modified Receding Horizon Policy:

support system is: . . . . .
PP Y In the certainty-equivalent formulation, each task is equi

L - alent and equal to the average task. However the informa-
maximize 11_{205224(@”(%) —e(te+ 7o) tion about the nature of the current task is available and
Y (=1 should be incorporated to determine the optimal policies.
eA(te +Tz)2) We incorporate this information in the following way: Let
a 2 V* :Nx[0,1] — R be the value function associated with the

subject to 7y = max{1l,7p — 1+ Aty +7¢)} (4) optimization problem (4), and lét,1,4¢+1 be the expected

pesr = (1— P g e_y)e_zge values of the queue length and utilization ratio for a dorati
1 = ¢ allocationz,t, followed by rest timez,r, at stage/. Define
zete 2 zeSe(xe) Jo i Reg x Rg x {0,1} — R by
Ty € [xminaxmax] B
z € {0,1},t, 70 € R, VL €N, Jo(te, e, 20) = ZZ(UJWf;z(itz)—cggte—C(ne—l)(tHW)
CA(le + 10 R .
wheren, is the expected queue length just before processing - #) + V*(et1, Tev1),

taske. wheref,, is the sigmoid function and,, is the penalty rate

It can be seen that the optimization problem (4) has associated with task Note that the function also incorpo-
stage structure and hence, can be solved using dynamides the exact state, at stage/. The modified receding
programming. We solve this dynamic program using a reiorizon policy at stagé determines optimal allocations
ceding horizon strategy, i.e., at each iteration, we sdhee t
optimization problem (4) for a finite horizon length; apply
the control to the present stage; move to next stage, amEkample 3:For the same set of data as in Example 2, we
recompute the finite horizon solution with new state asahiti determine the optimal policies for a sample evolution of the
condition. In the following example, we show some featurequeue. The simulation results are shown in Fig. 5.

of the certainty equivalent solution.

{t;,r7,z; } € argmaxJy(te, e, z¢). (5)

Handling Mandatory TasksConsider the case when some
Example 2:We consider the same set of sigmoid functionsasks arrive with a token of mandatory processing. Once
and weights as in Example 1. We normalize the weights by mandatory task arrives, we set the action space for the
their mean. We piclke = 0.01, A = 0.7 and sample tasks mandatory task to: = 1, wherez is the action variable
from a uniform distribution. The optimal allocations foreth that determines whether the task is processed. Due to the
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(a) No Mandatory Task
Fig. 5.  The optimal policies for the sample evolution of a isien
making queue with heterogeneous tasks. The top figures dtmwptimal
duration allocation to each task and the rest time after ggsiog each
task, respectively. The middle figures show the expecteduon of the T—
queue, and the evolution of utilization ratio dynamics,pesdively. The Task
bottom figures, respectively, show the weight assigned th ¢ask, and
the difficulty level of each task, captured through the inftet point of
associated sigmoid function.
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change in the action space, the state at next stage me
differ significantly from the state originally predicted lye Fig. 6. The optimal policies for an expected evolution of thecision

optimal policy. The receding horizon solution offers a matu Making queue with heterogeneous tasks. (a) No task is maydathe
optimal policies for decision making queue with heterogersetasks. The

way of handling this issue by computing the optimal policyop figures show the optimal duration allocation to each st the rest
from the new state. time after processing each task, respectively. The middjarés show
the expected evolution of the queue, and the evolution dizatiion ratio

Example 4:For the same set of data as in Example 2, Wgyn_amlcs, respectively. The bott_om figures, respectiveiygw the weight

. . assigned to each task, and the difficulty level of each tembtuced through
conS|de_r the case when e_aCh sampled task 'S. mandatoryw inflection point of associated sigmoid function. (b) Tiasks with
probability 0.2. A comparison of the case with mandatoryblack triangular head are mandatory. The top figures showotitemal

tasks with the standard case is shown in Fig. 6. duration allocation to each task and the rest time after gusing each
task, respectively. The bottom figures show the expectetltamo of the

queue, and the evolution of utilization ratio dynamics pesgively.

IV. ADAPTIVE ATTENTION ALLOCATION

i ' i B. Spatial Quickest Detection with Human Input
A. Spatial Quickest Detection patial Qui ion wi u pu

Consider an autonomous agent that surveys a set of regioff§ Wish to run the spatial quickest detection algorithm
R = {1,...,n}. Let D be the Euclidean distance matrixO" the decision made by the human operator. We assume
between the regions. At each iteration, the autonomoustagéh@t, conditioned on presence of an anomaly, the probgbilit
visits the regiork € R with probabilityqy, collects evidence, Of correct decision at regiok is determined by sigmoid
and sends it to a fusion center. Let the probability distribufunction fi : R>o — [0,1] of the time allocated to the
tion function of the evidence bp! and p, respectively, feed from regionk. Similarly, let fi' : Rxo — [0,1]
conditioned on the presence of an anomaly at regioand determines the pr_obablhty of correct decision, co_n_dmdn
otherwise. Also, let the expected time the autonomous age?ft N0 anomaly being present at regionThus, conditioned
takes to collect, process, and transmit information ataregi O the presence of an anomaly, the decision of the human
k be Ty. The fusion center runs parallel CUSUM tests tgPPerator after allocating time to a task from regiork is
detect any anomaly in any of the regions. For stationaj@mpled from a Bernoulli's distribution with probabilityf o
region selection probabilities, that the worst case exqectCorrect decisionf;; (t), and similar statement holds for the

detection delay [15] at regioh is case when no anomaly is present. We now state an important
property of the Kullback-Leibler divergence between two
e T+n—-1 Bernoulli distributions.
En (T3] = Q(q T +q- Dq),

arD(py, Py, . . .
+D(pipi) Lemma 5 (Monotonicity of Kullback-Leibler Divergence):

wherer is the CUSUM thresholdy andT are then-vectors Consider two Bernoulli distributions with probability of
of region selection probabilities and expected processirgyccessp; and po, respectively. The Kullback-Leibler
times, respectively. The adaptive spatial quickest dietect divergence between the two distributions, conditioned on
Algorithm 1 utilizes the current observations to adapt théhe first distribution, increases with increasing and
region selection policy (see [15] for details.) decreases with increasing, providedp; > po.



Algorithm 1 Adaptive Spatial Quickest Detection

1
: Given: prior probability of anomalyr;, for eachk € R
: setA] =0, forall j € R, and7 =0

s setw; = et /(3 p €"7), for eachi € R

: obtain solutiong* = argmin{}=, . wiE,: [T5]}

; at timer € N, select a random regiohe R

o 0 b~ WN

Given: R, D, T, p),p;, for eachk € R

according to the probability distributiog*

7: collect sampley, from regionk

Theorem 6 (Expected Sample SizEyrr the stationary re-
gion selection policyg, and the CUSUM algorithm with
input from human operator, conditioned on the presence of
an anomaly at regiok, the following statements hold:

i) the worst case expected sample si¥g for anomaly
detection at regiort satisfies

le”"+n—1]

E[Ng] S qumin ’
k

8 update the statistic at each region i) the worst case expected detection delgy at region

Lyt o s o
N o= (45—1 + log %) , ifj=k, k satisfies
ALy, if jeR\ {k}. E[Td] < (q-T* + q - Dq)E[NY],
% detect change if the threshold is crossed whereT"PPEr — [Tluppe: L TEPPe,
. H k
# Az =, then declare anomaly detected Proof: In the spirit of the standard proof for the

H k _
at regionk and setAr =0 CUSUM algorithm [13], we consider the associated SPRT

and determine the upper bounds on the expected sample size
for it. Consider the CUSUM algorithm for regiaky and let
1. be the stopping time for the associated SPRT. Let the op-

Proof: The Kullback-Leibler diVergence between theuma' duration allocation for these Samp'es{bg}ie{l
two distributions is

10: continue to stept:

RN
Let {vf}icq1,.. .y be the log-likelihood ratios for de-

cisions made by the operator and 1&4};cq1,. ., be
the associated Kullback-Leibler divergences, conditiboe
the presence of an anomaly at regibnNote that if the
task at iterationi is not from regionk, then v¥ = 0.
Consider the sequences¥};c(o, . ..}, defined bySF =
SF L+ oF —qugf, andS§ = 0. Also, let {F/} i1, )
be the filtration defined by the sigma algebra of decisions
and regions visited till iteration. It is easy to verify that
the sequenceS¥}ic(o. ..} IS @ martingale with respect
to filtration {}‘f}ie{lvak}. It follows from the optional
stopping theorem [5] that

We assume that if a task is processed, then the optimal e Lr

policy allocates a time that is more than the expected time E[Sﬁkp:#k] = E[Sg] =0 — va = qu[Z gf],
suggested by the Yerkes-Dodson law. We further assume that P o

the minimum expected service time for a task from region ¢ liows from Lemma 5 that ifck > 0, then it is lower

k suggested.by the Yerkes—Dodson law 98", We also bounded byD™". Therefore, it follows that
assume that if the a task is not processed, then the oparator

decision is sampled from a Bernoulli's distribution with
probability of succesB.5. Notice that under this assumption,
the probability of success increases above and béldw
for any positive allocation to the task in presence andhe remainder of the proof is similar to the standard proof
absence of an anomaly, respectively. Therefore, it follow®r the CUSUM algorithm [13] that involves Wald's approx-
from Lemma 5 that the Kullback-Leibler divergence betweefmation, followed by relating CUSUM with the associated
the two Bernoulli distributions will increase with the time SPRT.

allocated to the task. Also, leDp™ be the Kullback- - The second statement follows from Wald's identity (see [15]
Leibler divergence between two Bernoulli distributiongiwi ¢, details.) -
probability of succesg] (Smin) and f2(Smin), respectively.

1_
D(p1,p2) = p1 logZi + (1 —p1)log Ly
D2 1—po

It can be verified that

oD

ob p1(1—p2)
Op1

p2(l—p1)’
oD _ _Dp2—Dp
dp2  p2(1—p2)’
and ifp; > po the first derivative is positive, while the second
derivative is negative.

= log and

M HE

) 1
> uf > DR Ef] = Elu] < ——m B> f).
i=1 4Dy i=1

o Remark 7: The upper bounds obtained in Theorem 6 assume
For the CUSUM with input from human operator, the eXthat each task is processed by the human operator. As
pected processing time on an evidence also includes the t"@)?emplified in Section I1l, the optimal policy may not proses
duration human allocates to it. It can be shown that the timgach task, this may not be a valid assumption. In such
duration allocated to an evidence from regibnis upper cases, a task dropping factor may be introduced into the
bounded byr** = max{t € R>q | fi (t) = c&}. Thus, the  gptimization problem, e.g., ifi, is the fraction of tasks from
eﬁg&?ted processing time at regiénis upper bounded by the regionk that are processed, then the effective region
T, = Ty A1 selection probability becomes,¢x. Since, we are interested



in determining the maximum arrival rate at which no task isegionk evolves as sigmoid functiong = 1/(1+e‘“2t+b2)
dropped, we will assume th@ = 1, for eachk € R inthe and f} = 1/(1 + e—“}c”bi), respectively, in absence and
following discussion. O presence of any anomaly. We picked the array of sigmoid

. . . . 0 = W o= 125 1.5 3
pRarameters as 1211, : > 3],
To determine the optimal stationary policy, we state t Gl —[1211], andb' = [5 8 3 5]. The Euclidean distance

following optimization problem: . . .
gop P matrix between the regions is

T -1 —1
minimize ) W—W(q TP 1 g . Dq), (6) 0 25 9 17
- SYA— q. D"
kER D— 25 0 18 28
wherewy, is the weight associated with regidgnand A,, 9 18 0 14

17 28 14 0

] . ] ] _ Let processing time at each region be unity and the arrival
C. Simultaneous quickest detection and duration allocatio 4te of the tasks be.3. Let the Yerkes-Dodson curve and the
We propose a simultaneous quickest detection and duratig"r%ency penal;y be the same as in Exampl_e 3. The anomalies
ppear at regions, 1, 2, and4, when collecting task number

. . . . a
allocation procedure in Algorithm 2. The algorithm, at eacg 10, 15, and 20, respectively. The simulation results are
iteration, determines the optimal allocation to the curtagk ~~/ ~" ~™ ' '
slaown in Fig. 7.

in the queue using the receding horizon strategy discusse
in Section . If the current task is from regioh, the Region3 is closest to all other regions while regi@nis
performance function of that task is determined by weighefarthest from each of the other regions. For detection of an
sum of the performance functions in presence/ absence of anomaly, the evidence obtained from regidrare easiest
anomaly. The support system runs parallel CUSUM tests do process, followed by regioR, region1, and region4.

the decisions made by the human operator. The CUSUWhe difficulty of the task is captured by the inflection point
statistics are used to adapt the weights for each regi@i the associated sigmoid function. The geometry of the
and the optimal region selection policy is determined byegion, difficulty of the task, and probability of anomaly in
solving optimization problem (6). Note that the processinghat region jointly determine the region selection probghbi

and collection of the evidence are asynchronous, and tleeg., when the CUSUM statistics at each region is zero,
region selection policy remains the same while an evidentkere are two opposing effects on selection probability of
is processed. Once, the region selection policy is adaptedégion 3. The convenient location of regioB makes its

the autonomous agent first finishes its current assignmesglection probability high, while the easy nature of thektas
and then implements the adapted policy at the next iteratiodecreases its selection probability. The ease of task deese
the selection probability, since less samples are required

is then — 1 dimensional probability simplex.

Algorithm 2 Adaptive Attention Allocation to make decision on easy tasks. One may notice that as
1. Given: R, D, T, n the CUSUM statistic increases at a region, its selection
2: Given: performance functiong?, 1, for eachk € R probability increases accordingly.

3: Given: prior probability of anomalyr;, for eachk € R ,
4: setAk =0, for all k € R, andr = 0 £’ E
5. setwy, = eAﬁ/(ZjGR eAr), for eachk € R; 7 =7+ 1 g g
6: set fx = wy fi + (1 — w) f) . ”
7: obtain solutiong* of the optimization problem (6) 24 o
8: solve optimization problem (5) with = ¢* and ;§2 §

performance functiongy, to obtain allocatiornt: S o 0,30 40 50 >
9: collect evidence from regions sampled I 3.

according to the probability distributiog* gl [/\ e

10: collect operator decision, on the current task from 2 /| ¢ . -

. 0 2030 40 50 0 10 20_ 30 40 50
regionk.; Task Task

11: update the CUSUM statistic at each region Fig. 7. An autonomous agent surveysegions depicted by dashed blue,

j P(d.|anomaly,t* k) \+ ¢ . solid green, solid red with dots and dotted black lines, eetipely. The top
A — {(Arl + log P(d,no anomaiy;f;;,kT)) , i j =k, figures show the duration allocation to each task and rest fottowing it,

respectively. The color scheme represents the region froichathe task has

T 7 - .
AT—l’ if JE R\ {kT} come. The middle figures show the evolution of the expecteliguength

0 : : and the utilization ratio, respectively. The bottom figuséew evolution of
A)_detfm change if the threshold is crossed the CUSUM statistics and region selection probabilitiespectively. Note

12: if A7 > n, then declare anomaly detected that the regions with higher value of CUSUM statistics aresem with

at regionk and setA’; =0 |higher pr?bﬁbility. ‘The rec?iohn sdgllfgctilon pfrobakbility i;stalfa thL;nctior] of
. ; . ocation of the region, and the difficulty of task coming frahat region.
13: continue to stefs: Once an anomaly is detected the associated CUSUM stasistietito zero.

Example 8:We consider4 regions surveyed by an au- Remark 9 (Poisson Approximationly the simultaneous
tonomous agent. The probability of the correct decision ajuickest detection and duration allocation formulation,



we assumed that the arrival process of the decision
making queue is Poisson. In general, this is not true
and the arrival process is a general renewal process!
For n regions, the arrival process can be thought of
summation of n? renewal processes with mean arrival 2l
time ¢;q;d;; + T;,i,7 € {1,...,n}. For largen, under

certain conditions, this could be approximated by a Poisson
process [7]. For the cases, where this approximation does
not hold, the certainty-equivalent solution can be modified3]
with an appropriate expected evolution of the queue.[]

V. CONCLUSIONS ANDFUTURE DIRECTIONS [4]
In this paper we have studied the problem of simultaneous
information aggregation and processing in human machin
systems. We incorporated human operator performance mod-
els related to error rates and situational awareness for dé
termining the optimal duration allocation policies for the
operators. We also demonstrated how the human input can be
thought of as a “sensor measurement” and the decisions magg
by the operator can be used to adapt sensor selection policy.
We proposed to run spatial quickest detection algorithnis]
on operator inputs and derived an expression for detection
delay taking into account time varying operator perfornganc [9]
in addition to sensor constraints such as travel time. This
expression was used for optimizing sensor selection policy
such that the information from the region with maximum
probability of being anomalous is chosen with high probLlo]
ability. We demonstrated our methodology in a distributed
surveillance task where the selected information is send H)l
the operator, the operator processes the information based]
on optimal attention allocation scheme, and the decisiéns o
the operator are used to adapt sensor selection policy for
quickest detection. [12]

In future we plan to experimentally validate the frame-
work proposed in this paper with human operator in looft3]
supervising a camera network for identifying anomalous
behavior. Such a study would be necessary for testing tifie!]
applicability of operator performance models used in this
paper. Additionally, there can be wide variability in opera
performance model parameters. Developing robust optimiz 5]
tion schemes which takes operator model uncertainty into
account is another important direction of future work. In
this paper, it was assumed that all the tasks which the
support system selected, will be serviced by the operatdts]
Another possibility is to give operators ability to requeue
tasks which has been shown to improve overall performance
[2]. Developing stable attention allocation schemes with-"]
requeuing poses additional challenges and needs to befurth
investigated.

[18]
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