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Abstract— We propose an optimization framework to study two
fundamental attention control aspects in human-robot systems:
Where and how much attention should the operator allocate?
In other words, which information source should be observed
by the operator, and how much time duration should be
allocated to the information feed in order to optimize the
overall performance of the human-robot system? The proposed
framework incorporates (i) operator performance constraints,
such as error rates and service times based utilization history,
(ii) sensor constraints, such as processing/travel time, and (iii)
task constraints, such as prioritization. We use a receding
horizon approach to solve the resulting dynamic program,
leading to efficient policies for operator time duration allocation
and sensor selection. We demonstrate our methodology in a
distributed surveillance problem.

I. I NTRODUCTION

While emergence of mobile and fixed sensor networks op-
erating at different modalities, mobility, and coverage, has
enabled access to an unprecedented amount of data, human
operators are unable to extract actionable information in a
timely manner. As a consequence, there has been an increas-
ing need of sensor management automation, and has spawned
extensive research, see for example special issues [9] and
[4] dedicated to topics of design of cooperative control and
coordination strategies for teams of mobile sensors. While
the use of automation will continue to increase, human
operators will remain indispensable, since they can often
bring knowledge and experience to bear in the complex
problems such as surveillance and intelligence gathering,
where a wrong decision can have lethal consequences. Given
the complex interaction that can arise between the operator
and the automated sensors, it is necessary to develop decision
support systems that exploit not only operator strengths, but
also account for their decision making inefficiencies, suchas
error rates and loss of situational awareness.

Several studies have focused on using operator performance
models to optimize interaction with automation. Queuing
model with operator as server has emerged as a popular
paradigm [11]. A task release controller was designed in [10].
The authors consider operator’s service time modeled by
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the Yerkes-Dodson curve and determine the maximum sta-
bilizing arrival rate and a task release policy such that the
situational awareness of the operator is at a desired level.
Cooperative strategies between UAVs and humans have been
studied in [12], [11]. The authors develop policies for joint
target assignment for the operator and the UAVs such that
the average time between appearance and classification of a
target is minimized. Optimal time duration allocation policies
for the human operator have been developed in [16], [14].
The authors consider queues with decision making tasks.
Each task has a deadline which is incorporated as a soft con-
straint. The human decision making is modeled by a sigmoid
function and the optimal allocation schemes are determined
through the solution of an MDP. Further, the optimal task
release rate is also determined. Bertuccelli et al [2] studythe
queues with re-look tasks. They consider a queue in which
the arriving difficult tasks are placed in an orbit queue for
later viewing while simple tasks are immediately processed.
The authors show that in visual search tasks with re-queuing
the accuracy of the detection improves but the number of
targets searched decreases with re-queuing probability. The
problem of determining the optimal sequence in which tasks
should be processed by the operator has been studied in [1].
Here, the authors also point to the issue of high sensitivityof
the optimal solution to operator model uncertainty. Certain
decision making models for the human operator have been
utilized in [18], [17], [15] to determine optimal sensor
selection policies for human-robot systems.

In this paper we propose a novel framework to study two
fundamental questions: “Which information source should
be observed by the operator, and how much time duration
should be allocated to the information feed in order to opti-
mize the overall performance of the human-robot system?”
Addressing these problems together in context of human-
supervised distributed surveillance is one of the novel con-
tribution of this paper. Additionally, we incorporate operator
performance models related to both error rates and situational
awareness in the optimization framework for determining
optimal time-duration allocation. These two aspects of op-
erator performance in decision making queues have only
been studied separately in previous works listed above. We
consider several variations of decision making queues includ-
ing (i) time constrained static queues, (ii) dynamic queues
with latency penalty and (iii) queues with prioritization and
mandatory tasks. Using this optimal solution of time-duration
allocation problem, we next close the loop on sensor selec-
tion by treating the operator input as a “sensor observation.”
Specifically, we run spatial quickest detection algorithm on



operator inputs and derive an expression for the detection
delay taking into account time varying operator performance
in addition to sensor constraints such as travel time. We use
this expression for optimizing sensor selection policy in such
a way that the operator is presented with information which
is most relevant for detecting anomalies. This setup leads to
quickest detection in distributed surveillance applications.

The rest of the paper is organized as follows. In Section II we
describe the problem setup and the assumptions. In Section
III we survey relevant operator models and incorporate
them in an optimization framework for determining optimal
time-duration allocation in decision making queues. We
illustrate certainty equivalent and receding horizon solution
approaches through several examples. Section IV covers
the coupling of attention allocation and sensor selection
problems for quickest detection. Here we also demonstrate
our overall methodology in a distributed visual surveillance
problem. Finally, we conclude with future directions in
Section V.

II. PROBLEM SETUP

We consider a distributed surveillance problem of surveying
n disjoint regionsR = {1, . . . , n}. An autonomous agent, at
each iteration, uses a sensor selection policy to determinea
regionk ∈ R it should next travel to, travels to that region
and collects information, e.g., takes a picture, and sends it
to a support system. The support system sends the collected
information to a human operator. The support system de-
cides on how much time human operator should spend on
each information feed. The information waits in the queue
till the human operator processes it. The human operator
incorporates the first come first serve policy to process the
incoming information and decides on the presence/absence
of any anomaly. The decisions made by human operator
may be erroneous. In order to make accurate decisions,
the support system runs quickest detection algorithm on the
decisions made by the human operator and decides on the
presence or absence of any anomaly in any region. Based
on the decisions made by the human operator, the support
system adapts the region selection policy such that the region
with high probability of being anomalous is sampled with
high probability. The problem setup is shown in Fig. 1. We

Fig. 1. Problem Setup

address this problem in two stages. First, in Section III we
determine optimal time duration allocation policies for the
human operator, that is, how much time the support system
should ask the human operator to spend on each information

feed? Second, in Section IV we determine simultaneous
time duration allocation and sensor selection policies, where
the human operator optimally processes the information
feeds and her decisions are utilized to determine the region
selection policy that ensures quickest detection of anomalies.

III. O PTIMAL TIME DURATION ALLOCATION

A. Operator Models

Speed-accuracy trade-off in human decision making:

Consider the scenario where, based on the collected evi-
dence, the human has to decide on one of the two alternatives
H0 andH1. The evolution of the probability of correct deci-
sion has been studied in cognitive psychology literature [8],
[3].

Pew’s model: The probability of deciding on hypothesis
H1, given that hypothesisH1 is true, at a given time
t ∈ R≥0 is given by

P(sayH1|H1, t) =
p0

1 + e−(at−b)
,

wherep0 ∈ [0, 1], a, b ∈ R are some parameters which
depend on the human operator [8].

Drift diffusion model: Conditioned on the hypothesisH1,
the evolution of the evidence for decision is modeled as
a drift-diffusion process [3]. Given a drift rateβ > 0,
and diffusion rateσ, with a decision thresholdη, the
conditional probability of the correct decision is

P(sayH1|H1, t) =
1√

2πσ2t

∫ ∞

η

e
−(Λ−βt)2

2σ2t dΛ,

whereΛ ≡ N (βt, σ2t) is the evidence at timet.

(a) Pew’s model (b) Drift diffusion model

Fig. 2. The sigmoid evolution of the probabilities of correct decision

Yerkes-Dodson Law and Situational Awareness:

The Yerkes-Dodson law [19] is an empirical relation between
the operator utilization and performance of a human oper-
ator. It states that the performance of a human operator is
unimodal, that is, an inverted-U function of the utilization. In
other words, the performance of a human operator increases
with increasing operator utilization only upto a point. Any
increase in operator utilization beyond this point resultsin
decreased performance of the operator.

The Yerkes-Dodson law has inspired situational awareness
models [6]. These models suggest that the human operator
is less situational aware at low utilization as well as at high
utilization, and accordingly, takes more time to service a task.
Therefore, the expected service time can be modeled by a



convex function of the utilization ratio, that is, the ratioof
operator utilization to its maximum utilization.

The utilization ratiox of a human operator is captured by
the following differential equation [10]

ẋ(t) =
b(t)− x(t)

δ
,

where b(t) =

{

1, operator is busy at timet

0, otherwise,

and δ is a constant that depends on operator’s sensitivity.
Therefore, if the initial utilization ratio of an operator is x0

and she serves a task for timet and rests for timer after
processing the task, her utilization ratio evolves to

x(t+ r) = (1 − e−
t
δ + x0e

− t
δ )e−

r
δ . (1)

B. Time Constrained Static Queue

Consider the scenario where the human operator has to
processN decision making tasks (e.g., identification of
anomalous regions) within a given timeT . The objective of
the operator is to maximize the expected number of correct
decisions. The expected number of correct decisions is the
sum of probabilities of correct decision for each task. Let the
performance function of the operator on taskℓ ∈ {1, . . . , N}
be the sigmoid functionfℓ : R≥0 → [0, 1[. Some of the
tasks may be more important than others, and accordingly,
a weight is assigned to each task. Letwℓ be the weight on
task ℓ. Let xℓ be the utilization ratio of the operator before
starting taskℓ, and Sℓ : [0, 1] → R>0, ℓ ∈ {1, . . . , N}
be the function ofxℓ that captures expected service time
of the operator on taskℓ. Note thatSℓ is the expected
service time under the natural response of the operator.
The support system wishes to control the time the operator
allocates to a task. The time allocation on taskℓ suggested
by the support system to the operator should be compatible
with Sℓ. In order to capture this feature, we constrain the
allocations suggested by the support system to be more than
Sℓ. The support system should also take into account the
situational awareness effects and hence, optimally control
the utilization ratio of the operator. To do so, support system
recommends a rest timerℓ to the operator after processing
taskℓ ∈ {1, . . . , N}. Let the initial utilization of the human
operator bex1. The following optimization problem captures
the objective of support system:

maximize
t,r,z

N
∑

ℓ=1

zℓwℓfℓ(tℓ)

subject to
N
∑

ℓ=1

zℓ(tℓ + rℓ) = T

xℓ+1 = (1 − e−
zℓtℓ
δ + xℓe

−
zℓtℓ
δ )e−

zℓrℓ
δ

zℓtℓ ≥ zℓSℓ(xℓ)

xℓ ∈ [xmin, xmax]

zℓ ∈ {0, 1}, tℓ ∈ [0, T ], rℓ ∈ [0, T ],

(2)

for all ℓ ∈ {1, . . . , N}, where zℓ is the variable that
determines whether or not the taskℓ would be processed,
xmin, xmax ∈ [0, 1] are the desired bounds on the utilization
ratio of the operator, andt, r, z are N-vectors oftℓ, rℓ, and
zℓ, respectively.

We intend to solve optimization problem (2) via dynamic
programming. To do so, we introduce a new variableaℓ that
measures aggregate allocation till taskℓ. Let a0 = 0. The
optimization problem (2) is equivalent to

maximize
t,r,z

N
∑

ℓ=1

zℓwℓfℓ(tℓ)

subject to aℓ = aℓ−1 + zℓ(tℓ + rℓ)

xℓ+1 = (1 − e−
zℓtℓ
δ + xℓe

−
zℓtℓ
δ )e−

zℓrℓ
δ

zℓtℓ ≥ zℓSℓ(xℓ)

xℓ ∈ [xmin, xmax], aℓ ∈ [0, T ]

zℓ ∈ {0, 1}, tℓ ∈ [0, T ], rℓ ∈ [0, T ],

(3)

for all ℓ ∈ {1, . . . , N}.

The optimization problem (3) has the structure of a dynamic
program. The processing of a task and the rest following it
define the stage of the dynamic program.aℓ andxℓ are the
states at stageℓ and tℓ, rℓ and zℓ are the controls at stage
ℓ. The stage reward iszℓfℓ(tℓ). We now elucidate on the
solution of the optimization problem (3) with an example.

Example 1 (Time Constrained Static Queue):Suppose the
human operator has to serveN = 10 tasks within time
T = 25. Let the performance of the operator on taskℓ be
given by sigmoid functionfℓ(tℓ) = 1/(1+exp(−aℓtℓ+bℓ)),
whereaℓ andbℓ are theℓth entries in theN -vectors

a = [1 2 1 3 2 4 1 5 3 6], and

b = [5 10 3 9 8 16 6 30 6 12].

Let the weights on tasks bew = [2 5 7 4 9 3 5 10 13 6],
and the initial utilization ratio of operator bex1 = 0.7. Let
Sℓ(xℓ) = bℓ(37x

2
ℓ − 37xℓ + 15)/6aℓ. We pick xmin = 0.5

andxmax = 0.9. The optimal solution to the time constrained
static queue forδ = 1 is shown in Fig. 3.
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Fig. 3. Time constrained static queue. The top figures show the optimal
allocations and the rest time. The bottom figure shows the optimal evolution
of the operator utilization.

C. Dynamic Queue with Latency Penalty

Consider the scenario where the human operator has to
serve a queue of decision making tasks. We assume that



the tasks arrive according to a Poisson process with rate
λ. Let Γ be a countable set, and assume that each task
is sampled from a probability mass functionp : Γ →
[0, 1] (accordingly, a probability density function ifΓ is an
arbitrary set). For a taskγ ∈ Γ, let fγ : R≥0 → [0, 1] be the
performance function of the human operator and letwγ be
the reward allocated to the task, according to its priority.We
assume that each task comes with a processing deadline and
incorporate this deadline as a soft constraint. In particular,
we let the taskγ lose value at a ratecγ while waiting in
the queue. For example, if the taskγ needs to be processed
within time T dead

γ > tinf
γ after its arrival, wheretinf

γ is the
inflection point of the sigmoid functionfγ , then one may
pick cγ = f ′

γ(T
dead
γ ). The objective of the support system is

to maximize its expected benefit, that is, the total expected
reward obtained by processing the tasks minus the penalty
incurred due to delay in processing the tasks.

In order to determine the optimal allocations that the sup-
port system should suggest to the human operator, we first
determine the certainty equivalent solution, i.e., the solution
considering the expected evolution of the system. Then,
we modify this certainty-equivalent solution and determine
optimal duration allocation policies for the dynamic queue.
For the certainty-equivalent solution, definec̄ = Ep[cγ ], w̄ =
Ep[wγ ], andf̄ : R≥0 → [0, 1] by f̄(t) = Ep[wγfγ(t)]/w̄. Let
the initial queue length ben1. In the spirit of the formulation
in Subsection III-B, the certainty equivalent objective ofthe
support system is:

maximize
t,r,z

lim
L→∞

1

L

L
∑

ℓ=1

zℓ
(

w̄f̄(tℓ)− c̄(tℓ + rℓ)n̄ℓ

− c̄λ(tℓ + rℓ)
2

2

)

subject to n̄ℓ+1 = max{1, n̄ℓ − 1 + λ(tℓ + rℓ)}
xℓ+1 = (1 − e−

zℓtℓ
δ + xℓe

−
zℓtℓ
δ )e−

zℓrℓ
δ

zℓtℓ ≥ zℓSℓ(xℓ)

xℓ ∈ [xmin, xmax]

zℓ ∈ {0, 1}, tℓ, rℓ ∈ R≥0, ∀ℓ ∈ N,

(4)

wheren̄ℓ is the expected queue length just before processing
task ℓ.

It can be seen that the optimization problem (4) has a
stage structure and hence, can be solved using dynamic
programming. We solve this dynamic program using a re-
ceding horizon strategy, i.e., at each iteration, we solve the
optimization problem (4) for a finite horizon length; apply
the control to the present stage; move to next stage, and
recompute the finite horizon solution with new state as initial
condition. In the following example, we show some features
of the certainty equivalent solution.

Example 2:We consider the same set of sigmoid functions
and weights as in Example 1. We normalize the weights by
their mean. We pick̄c = 0.01, λ = 0.7 and sample tasks
from a uniform distribution. The optimal allocations for the

receding horizon policy where the optimization problem (4)
with horizon length10 is solved at each stage is shown in
Fig. 4. The optimal benefit per unit task, i.e., the total reward
minus the cost incurred due to penalty, and the optimal
benefit rate is also shown. Note that the optimal benefit per
unit task is almost constant till a critical value of arrival
rate, and then starts decreasing. Similarly, the optimal benefit
rate increases till a critical value of the arrival rate and then
saturates. At this critical value of the arrival rate, one expects
an arrival as soon as the current task is finished. This is the
arrival rate at which the system should be designed.
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Fig. 4. Certainty Equivalent Solution. The top figures show the optimal
allocation to each task and rest time after processing it, respectively. The
middle figures show the optimal evolution of the expected queue length and
the utilization ratio, respectively. The bottom figures show the benefit per
unit task and benefit per unit time as a function of arrival rate, respectively.

Modified Receding Horizon Policy:

In the certainty-equivalent formulation, each task is equiv-
alent and equal to the average task. However the informa-
tion about the nature of the current task is available and
should be incorporated to determine the optimal policies.
We incorporate this information in the following way: Let
V ∗ : N×[0, 1] → R be the value function associated with the
optimization problem (4), and let̂nℓ+1, x̂ℓ+1 be the expected
values of the queue length and utilization ratio for a duration
allocationzℓtℓ followed by rest timezℓrℓ at stageℓ. Define
Jℓ : R≥0 × R≥0 × {0, 1} → R by

Jℓ(tℓ, rℓ, zℓ) = zℓ(wγℓ
fγℓ

(tℓ)−cγℓ
tℓ−c̄(nℓ−1)(tℓ+rℓ)

− c̄λ(tℓ + rℓ)
2

2
) + V ∗(n̂ℓ+1, x̂ℓ+1),

wherefγℓ
is the sigmoid function andcγℓ

is the penalty rate
associated with taskℓ. Note that the function also incorpo-
rates the exact statenℓ at stageℓ. The modified receding
horizon policy at stageℓ determines optimal allocations

{t∗ℓ , r∗ℓ , z∗ℓ } ∈ argmaxJℓ(tℓ, rℓ, zℓ). (5)

Example 3:For the same set of data as in Example 2, we
determine the optimal policies for a sample evolution of the
queue. The simulation results are shown in Fig. 5.

Handling Mandatory Tasks:Consider the case when some
tasks arrive with a token of mandatory processing. Once
a mandatory task arrives, we set the action space for the
mandatory task toz = 1, where z is the action variable
that determines whether the task is processed. Due to the



A
llo

ca
tio

n

Task

0
0

3

5

6

10 15 20 25
Task

R
es

t
T

im
e

0
0 5 10 15 20 25

.1

Task

Q
u

eu
e

Le
n

g
th

0

5

5

10

10 15 20 25
Task

U
til

.
R

at
io

1

5 10 15 20 25

.6

.8

Task

W
ei

g
h

t

0
0

1

2

5 10 15 20 25 Task
In

fle
ct

.
P

t.

0
0

3

5

6

10 15 20 25

Fig. 5. The optimal policies for the sample evolution of a decision
making queue with heterogeneous tasks. The top figures show the optimal
duration allocation to each task and the rest time after processing each
task, respectively. The middle figures show the expected evolution of the
queue, and the evolution of utilization ratio dynamics, respectively. The
bottom figures, respectively, show the weight assigned to each task, and
the difficulty level of each task, captured through the inflection point of
associated sigmoid function.

change in the action space, the state at next stage may
differ significantly from the state originally predicted bythe
optimal policy. The receding horizon solution offers a natural
way of handling this issue by computing the optimal policy
from the new state.

Example 4:For the same set of data as in Example 2, we
consider the case when each sampled task is mandatory with
probability 0.2. A comparison of the case with mandatory
tasks with the standard case is shown in Fig. 6.

IV. A DAPTIVE ATTENTION ALLOCATION

A. Spatial Quickest Detection

Consider an autonomous agent that surveys a set of regions
R = {1, . . . , n}. Let D be the Euclidean distance matrix
between the regions. At each iteration, the autonomous agent
visits the regionk ∈ R with probabilityqk, collects evidence,
and sends it to a fusion center. Let the probability distribu-
tion function of the evidence bep1k and p0k, respectively,
conditioned on the presence of an anomaly at regionk, and
otherwise. Also, let the expected time the autonomous agent
takes to collect, process, and transmit information at region
k be Tk. The fusion center runs parallel CUSUM tests to
detect any anomaly in any of the regions. For stationary
region selection probabilities, that the worst case expected
detection delay [15] at regionk is

Ep1
k
[T k

δ ] =
|e−η + η − 1|
qkD(p1k, p

0
k)

(q · T + q ·Dq),

whereη is the CUSUM threshold,q andT are then-vectors
of region selection probabilities and expected processing
times, respectively. The adaptive spatial quickest detection
Algorithm 1 utilizes the current observations to adapt the
region selection policy (see [15] for details.)
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(a) No Mandatory Task
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(b) Few Mandatory Tasks

Fig. 6. The optimal policies for an expected evolution of thedecision
making queue with heterogeneous tasks. (a) No task is mandatory. The
optimal policies for decision making queue with heterogeneous tasks. The
top figures show the optimal duration allocation to each taskand the rest
time after processing each task, respectively. The middle figures show
the expected evolution of the queue, and the evolution of utilization ratio
dynamics, respectively. The bottom figures, respectively,show the weight
assigned to each task, and the difficulty level of each task, captured through
the inflection point of associated sigmoid function. (b) Thetasks with
black triangular head are mandatory. The top figures show theoptimal
duration allocation to each task and the rest time after processing each
task, respectively. The bottom figures show the expected evolution of the
queue, and the evolution of utilization ratio dynamics, respectively.

B. Spatial Quickest Detection with Human Input

We wish to run the spatial quickest detection algorithm
on the decision made by the human operator. We assume
that, conditioned on presence of an anomaly, the probability
of correct decision at regionk is determined by sigmoid
function f1

k : R≥0 → [0, 1] of the time allocated to the
feed from regionk. Similarly, let f0

k : R≥0 → [0, 1]
determines the probability of correct decision, conditioned
on no anomaly being present at regionk. Thus, conditioned
on the presence of an anomaly, the decision of the human
operator after allocating timet to a task from regionk is
sampled from a Bernoulli’s distribution with probability of
correct decisionf1

k (t), and similar statement holds for the
case when no anomaly is present. We now state an important
property of the Kullback-Leibler divergence between two
Bernoulli distributions.

Lemma 5 (Monotonicity of Kullback-Leibler Divergence):
Consider two Bernoulli distributions with probability of
successp1 and p2, respectively. The Kullback-Leibler
divergence between the two distributions, conditioned on
the first distribution, increases with increasingp1 and
decreases with increasingp2, providedp1 > p2.



Algorithm 1 Adaptive Spatial Quickest Detection

1: Given: R, D, T , p0k, p
1
k, for eachk ∈ R

2: Given: prior probability of anomalyπ1
k, for eachk ∈ R

3: setΛj
0 = 0, for all j ∈ R, andτ = 0

4: setwi = eΛ
i
τ /(

∑

j∈R eΛ
j
τ ), for eachi ∈ R

5: obtain solutionq∗ = argmin{∑k∈R wkEp1
k
[T k

δ ]}
6: at timeτ ∈ N, select a random regionk ∈ R

according to the probability distributionq∗

7: collect sampleyτ from regionk
8: update the statistic at each region

Λj
τ =

{

(

Λk
τ−1 + log

p1
k(yτ )

p0
k
(yτ )

)+
, if j = k,

Λj
τ−1, if j ∈ R \ {k}.

% detect change if the threshold is crossed
9: if Λk

τ > η, then declare anomaly detected
at regionk and setΛk

τ = 0
10: continue to step4:

Proof: The Kullback-Leibler divergence between the
two distributions is

D(p1, p2) = p1 log
p1
p2

+ (1− p1) log
1− p1
1− p2

.

It can be verified that

∂D
∂p1

= log
p1(1− p2)

p2(1− p1)
, and

∂D
∂p2

=
p2 − p1

p2(1− p2)
,

and ifp1 > p2 the first derivative is positive, while the second
derivative is negative.

We assume that if a task is processed, then the optimal
policy allocates a time that is more than the expected time
suggested by the Yerkes-Dodson law. We further assume that
the minimum expected service time for a task from region
k suggested by the Yerkes-Dodson law isSmin

k . We also
assume that if the a task is not processed, then the operator’s
decision is sampled from a Bernoulli’s distribution with
probability of success0.5. Notice that under this assumption,
the probability of success increases above and below0.5
for any positive allocation to the task in presence and
absence of an anomaly, respectively. Therefore, it follows
from Lemma 5 that the Kullback-Leibler divergence between
the two Bernoulli distributions will increase with the time
allocated to the task. Also, letDmin

k be the Kullback-
Leibler divergence between two Bernoulli distributions with
probability of successf1

k (S
min
k ) andf0

k (S
min
k ), respectively.

For the CUSUM with input from human operator, the ex-
pected processing time on an evidence also includes the time
duration human allocates to it. It can be shown that the time
duration allocated to an evidence from regionk is upper
bounded bytmax

k = max{t ∈ R≥0 | f1
k

′
(t) = ck}. Thus, the

expected processing time at regionk is upper bounded by
T

upper
k = Tk + tmax

k .

Theorem 6 (Expected Sample Size):For the stationary re-
gion selection policyq, and the CUSUM algorithm with
input from human operator, conditioned on the presence of
an anomaly at regionk, the following statements hold:

i) the worst case expected sample sizeNd
k for anomaly

detection at regionk satisfies

E[Nd
k ] ≤

|e−η + η − 1|
qkDmin

k

;

ii) the worst case expected detection delayT d
k at region

k satisfies

E[T d
k ] ≤ (q · T upper+ q ·Dq)E[Nd

k ],

whereT upper= [T upper
1 , . . . , T upper

n ].

Proof: In the spirit of the standard proof for the
CUSUM algorithm [13], we consider the associated SPRT
and determine the upper bounds on the expected sample size
for it. Consider the CUSUM algorithm for regionk, and let
µk be the stopping time for the associated SPRT. Let the op-
timal duration allocation for these samples be{ti}i∈{1,...,µk}.
Let {υk

i }i∈{1,...,µk} be the log-likelihood ratios for de-
cisions made by the operator and let{ξki }i∈{1,...,µk} be
the associated Kullback-Leibler divergences, conditioned on
the presence of an anomaly at regionk. Note that if the
task at iterationi is not from regionk, then υk

i = 0.
Consider the sequences{Sk

i }i∈{0,...,µk}, defined bySk
i =

Sk
i−1 + υk

i − qkξ
k
i , andSk

0 = 0. Also, let {Fk
i }i∈{1,...,µk}

be the filtration defined by the sigma algebra of decisions
and regions visited till iterationi. It is easy to verify that
the sequence{Sk

i }i∈{0,...,µk} is a martingale with respect
to filtration {Fk

i }i∈{1,...,µk}. It follows from the optional
stopping theorem [5] that

E[Sk
µk
|Fµk

] = E[Sℓ
0] = 0 =⇒

µk
∑

i=1

υk
i = qkE[

µk
∑

i=1

ξki ].

It follows from Lemma 5 that ifξki > 0, then it is lower
bounded byDmin

k . Therefore, it follows that
µk
∑

i=1

υk
i ≥ qkDmin

k E[µk] =⇒ E[µk] ≤
1

qkDmin
k

E[

µk
∑

i=1

υk
i ].

The remainder of the proof is similar to the standard proof
for the CUSUM algorithm [13] that involves Wald’s approx-
imation, followed by relating CUSUM with the associated
SPRT.

The second statement follows from Wald’s identity (see [15]
for details.)

Remark 7:The upper bounds obtained in Theorem 6 assume
that each task is processed by the human operator. As
exemplified in Section III, the optimal policy may not process
each task, this may not be a valid assumption. In such
cases, a task dropping factor may be introduced into the
optimization problem, e.g., ifβk is the fraction of tasks from
the regionk that are processed, then the effective region
selection probability becomesβkqk. Since, we are interested



in determining the maximum arrival rate at which no task is
dropped, we will assume thatβk = 1, for eachk ∈ R in the
following discussion. �

To determine the optimal stationary policy, we state the
following optimization problem:

minimize
q∈∆n−1

∑

k∈R

wk|e−η + η − 1|
qkDmin

k

(q ·T upper+ q ·Dq), (6)

wherewk is the weight associated with regionk and∆n−1

is then− 1 dimensional probability simplex.

C. Simultaneous quickest detection and duration allocation

We propose a simultaneous quickest detection and duration
allocation procedure in Algorithm 2. The algorithm, at each
iteration, determines the optimal allocation to the current task
in the queue using the receding horizon strategy discussed
in Section III. If the current task is from regionk, the
performance function of that task is determined by weighed
sum of the performance functions in presence/ absence of an
anomaly. The support system runs parallel CUSUM tests on
the decisions made by the human operator. The CUSUM
statistics are used to adapt the weights for each region
and the optimal region selection policy is determined by
solving optimization problem (6). Note that the processing
and collection of the evidence are asynchronous, and the
region selection policy remains the same while an evidence
is processed. Once, the region selection policy is adapted,
the autonomous agent first finishes its current assignment
and then implements the adapted policy at the next iteration.

Algorithm 2 Adaptive Attention Allocation
1: Given: R, D, T , η
2: Given: performance functionsf0

k , f
1
k , for eachk ∈ R

3: Given: prior probability of anomalyπ1
k, for eachk ∈ R

4: setΛk
0 = 0, for all k ∈ R, andτ = 0

5: setwk = eΛ
k
τ /(

∑

j∈R eΛ
j
τ ), for eachk ∈ R; τ = τ + 1

6: setfk = wkf
1
k + (1− wk)f

0
k

7: obtain solutionq∗ of the optimization problem (6)
8: solve optimization problem (5) withp = q∗ and

performance functionsfk to obtain allocationt∗τ
9: collect evidence from regions sampled

according to the probability distributionq∗

10: collect operator decisiondτ on the current task from
regionkτ

11: update the CUSUM statistic at each regionkτ

Λj
τ =

{

(

Λj
τ−1 + log

P(dτ |anomaly,t∗τ ,kτ )
P(dτ |no anomaly,t∗τ ,kτ )

)+
, if j = kτ ,

Λj
τ−1, if j ∈ R \ {kτ}.

% detect change if the threshold is crossed
12: if Λk

τ > η, then declare anomaly detected
at regionk and setΛk

τ = 0
13: continue to step5:

Example 8:We consider4 regions surveyed by an au-
tonomous agent. The probability of the correct decision at

regionk evolves as sigmoid functionsf0
k = 1/(1+e−a0

kt+b0k)

and f1
k = 1/(1 + e−a1

kt+b1k), respectively, in absence and
presence of any anomaly. We picked the array of sigmoid
parameters asa0 = [1 2 1 1] , b0 = [2 5 1.5 3],
a1 = [1 2 1 1], andb1 = [5 8 3 5]. The Euclidean distance
matrix between the regions is

D =









0 25 9 17
25 0 18 28
9 18 0 14
17 28 14 0









.

Let processing time at each region be unity and the arrival
rate of the tasks be0.3. Let the Yerkes-Dodson curve and the
latency penalty be the same as in Example 3. The anomalies
appear at regions3, 1, 2, and4, when collecting task number
2, 10, 15, and 20, respectively. The simulation results are
shown in Fig. 7.

Region 3 is closest to all other regions while region2 is
farthest from each of the other regions. For detection of an
anomaly, the evidence obtained from region3 are easiest
to process, followed by region2, region 1, and region4.
The difficulty of the task is captured by the inflection point
of the associated sigmoid function. The geometry of the
region, difficulty of the task, and probability of anomaly in
that region jointly determine the region selection probability,
e.g., when the CUSUM statistics at each region is zero,
there are two opposing effects on selection probability of
region 3. The convenient location of region3 makes its
selection probability high, while the easy nature of the task
decreases its selection probability. The ease of task decreases
the selection probability, since less samples are required
to make decision on easy tasks. One may notice that as
the CUSUM statistic increases at a region, its selection
probability increases accordingly.
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Fig. 7. An autonomous agent surveys4 regions depicted by dashed blue,
solid green, solid red with dots and dotted black lines, respectively. The top
figures show the duration allocation to each task and rest time following it,
respectively. The color scheme represents the region from which the task has
come. The middle figures show the evolution of the expected queue length
and the utilization ratio, respectively. The bottom figuresshow evolution of
the CUSUM statistics and region selection probabilities, respectively. Note
that the regions with higher value of CUSUM statistics are chosen with
higher probability. The region selection probability is also a function of
location of the region, and the difficulty of task coming fromthat region.
Once an anomaly is detected the associated CUSUM statistic is set to zero.

Remark 9 (Poisson Approximation):In the simultaneous
quickest detection and duration allocation formulation,



we assumed that the arrival process of the decision
making queue is Poisson. In general, this is not true
and the arrival process is a general renewal process.
For n regions, the arrival process can be thought of
summation of n2 renewal processes with mean arrival
time qiqjdij + Ti, i, j ∈ {1, . . . , n}. For large n, under
certain conditions, this could be approximated by a Poisson
process [7]. For the cases, where this approximation does
not hold, the certainty-equivalent solution can be modified
with an appropriate expected evolution of the queue.�

V. CONCLUSIONS ANDFUTURE DIRECTIONS

In this paper we have studied the problem of simultaneous
information aggregation and processing in human machine
systems. We incorporated human operator performance mod-
els related to error rates and situational awareness for de-
termining the optimal duration allocation policies for the
operators. We also demonstrated how the human input can be
thought of as a “sensor measurement” and the decisions made
by the operator can be used to adapt sensor selection policy.
We proposed to run spatial quickest detection algorithm
on operator inputs and derived an expression for detection
delay taking into account time varying operator performance
in addition to sensor constraints such as travel time. This
expression was used for optimizing sensor selection policy
such that the information from the region with maximum
probability of being anomalous is chosen with high prob-
ability. We demonstrated our methodology in a distributed
surveillance task where the selected information is send to
the operator, the operator processes the information based
on optimal attention allocation scheme, and the decisions of
the operator are used to adapt sensor selection policy for
quickest detection.

In future we plan to experimentally validate the frame-
work proposed in this paper with human operator in loop
supervising a camera network for identifying anomalous
behavior. Such a study would be necessary for testing the
applicability of operator performance models used in this
paper. Additionally, there can be wide variability in operator
performance model parameters. Developing robust optimiza-
tion schemes which takes operator model uncertainty into
account is another important direction of future work. In
this paper, it was assumed that all the tasks which the
support system selected, will be serviced by the operator.
Another possibility is to give operators ability to requeue
tasks which has been shown to improve overall performance
[2]. Developing stable attention allocation schemes with
requeuing poses additional challenges and needs to be further
investigated.
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