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Abstract— We present stochastic vehicle routing policies for
detection of any number of anomalies in a set of regions of
interest. The autonomous vehicle collects information from a
set of regions and sends it to a fusion center. The vehicle follows
a randomized region selection policy at each iteration. Using
the collected information, the fusion center runs an ensemble
of cumulative sum (CUSUM) algorithms in order to detect
the presence of an anomaly in any region. We first determine
optimal stationary policies that result in quickest detection of
all anomalies. We then study an adaptive policy that assigns
higher selection probability to a region with higher likelihood of
an anomaly. We provide a comparative study of these policies.

I. INTRODUCTION

Recent years have witnessed a surge in the application
of autonomous agents like unmanned autonomous vehicles
(UAVs) in various activities such as surveillance and in-
formation collection. In view of the recent Icelandic ash
problem and the oil spill in the gulf of Mexico, quickest
detection of anomalies is of considerable importance. Similar
situation occurs in the case of wild fires. The extreme
uncertainties in such situations call for surveillance strategies
for quickest detection of anomalies. Generally, a limited
number of UAVs are deployed to survey a large number
of regions, and it becomes important that the UAVs collect
the most pertinent information. Such scenarios motivate the
characterization of the information and routing policies that
result in quick information aggregation.

We study a spatial quickest detection problem: the si-
multaneous detection of anomalies at different regions. We
adopt the Cumulative Sum (CUSUM) algorithm. In many
situations the information collected by UAVs is sent to a
human operator, and she decides on the presence of any
anomaly. Recent advances in cognitive psychology [1], [13]
show that human performance in decision making tasks, such
as the two-alternative forced choice task, is well modeled
by sequential statistical methods like CUSUM and the se-
quential probability ration test (SPRT). Roughly speaking,
studying CUSUM algorithm for quickest detection may be
appropriate even in situations where a human operator is
making the decision.

Routing policies for UAVs have witnessed a lot of atten-
tion in the control literature. A survey on dynamic vehicle
routing policies for servicing tasks is presented in [2].
Klein et al [9] present a vehicle routing policy for optimal
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localization of an acoustic source. They study the trade-
off between the Fisher information and the travel time.
Quintero et al [12] minimized the error covariance to
determine the optimal coordination policies for Dubin’s
vehicles. Zhang et al [23] study the estimation of envi-
ronmental plumes with mobile sensors. They minimize the
uncertainty of the estimate of the ensemble Kalman filter
to determine the optimal trajectories for a swarm of mobile
sensors. Gupta et al [7] determine trajectories for mobile
sensors that minimize the error covariance of the Kalman
filter estimate. Castañón [4] poses the search problem as a
dynamic hypothesis test, and determines the optimal routing
policy that maximizes the probability of detection of a target.
Chung et al [5] study the probabilistic search problem in a
decision theoretic framework. They present various search
policies including sequential hypothesis tests. There has been
a significant interest in design of policies for mixed human-
automata systems. Savla et al [16] utilize models of human
cognition to develop vehicle routing strategies for human in
the loop systems. Certain optimal information aggregation
strategies for human-automata system have been developed
in [22], [21].

The problem of surveillance has received considerable
attention recently. Grace et al [6] study stochastic surveil-
lance strategies for multiple agents. They focus on local
rules that minimize the computation time and communica-
tion. Pasqualetti et al [10] study the problem of optimal
cooperative surveillance with multiple agents. They optimize
the time gap between any two visits to the same region,
and the time necessary to inform every agent about an event
occurred in the environment. Smith et al [18] consider the
surveillance of multiple regions with changing features and
determine policies that minimize the maximum change in
features between the observations. A persistent monitoring
task where robots move on a given closed path has been
considered in [19], and a speed controller has been designed
that minimizes the penalty due to no surveillance of a
region. Srivastava et al [20] present a stochastic surveillance
strategy based on the Markov chain Monte Carlo method.
Sak et al [15] present multi-agent routing and partitioning
strategies for surveillance of regions with known intruder
models. Hespanha et at [8] studied multi-agent probabilistic
pursuit evasion game with the policy that, at each instant,
directs pursuers to a location that maximizes the probability
of finding an evader at that instant.

We study the optimal routing policies for a UAV perform-
ing surveillance. We consider a UAV which surveys a set
of regions, collects the information and sends it to a fusion
center. The fusion center, runs parallel CUSUM algorithms
(one for each region) with the information collected and



decides on the presence of any anomaly. This setup also
models the situations where the UAV surveys a region,
collects evidence, and sends that to a fusion center where an
operator processes it to detect any anomaly in any region. For
a given stochastic routing policy, we determine the expected
time the CUSUM algorithms at different regions take to
detect any anomaly. We minimize the expected detection
time over the policy space and thus, obtain the policy for
quickest detection of any anomaly. The main contributions
of this work are as follows:

i) We present a novel ensemble CUSUM algorithm to
detect more than one anomaly simultaneously.

ii) We incorporate the travel time of the UAV to deter-
mine the decision times for the ensemble CUSUM
algorithm.

iii) We show that the minimization of the detection de-
lay in ensemble CUSUM algorithm is a non-convex
problem, and provide probabilistic guarantees that it
achieves a unique minimum.

iv) We present an adaptive vehicle routing policy for
quickest detection of any number of anomalies.

The remainder of the paper is organized in the following
way. We present some preliminaries in Section II. The
problem set up is presented in Section III. We develop the
ensemble CUSUM algorithm in Section IV. The optimal ve-
hicle routing policies are derived in Section V. We elucidate
on the ideas in the paper through some numerical examples
in Section VI. Our conclusions are in Section VII.

II. PRELIMINARIES

A. Kullback-Leibler divergence

Given two probability mass functions f1 : S → R≥0 and
f2 : S → R≥0, where S is some countable set, the Kullback-
Leibler divergence D : L1 ×L1 → R∪{+∞} is defined by

D(f1, f2) = Ef1
[
log

f1(X)

f2(X)

]
=

∑
x∈supp(f1)

f1(x) log
f1(x)

f2(x)
,

where L1 is the set of integrable functions and supp(f1) is
the support of f1. It is known that 0 ≤ D(f1, f2) ≤ +∞,
that the lower bound is achieved if and only if f1 = f2,
almost surely, and that the upper bound is achieved if and
only if the support of f2 is a strict subset of the support of f1.
Note that equivalent statements can be given for probability
density functions.

Definition 1 (Finitely informative distribution): Given
two probability distribution functions f0, f1 : R → R>0.
f1 is said to be finitely informative with respect to f0, if
D(f1, f0) ∈ R>0. This implies that the two distributions
are non-identical with some non-zero probability and there
exists no sample that absolutely demarcates one distribution
from other.

B. Cumulative sum algorithm

Given a set of observations {y1, y2, . . .} such that
{y1, . . . , yν−1} are i.i.d. with probability density function f0

and {yν , yν+1, . . .} are i.i.d. with probability density function
f1 with ν unknown. Let δ ≥ ν be the iteration at which

the change is detected. The non-Bayesian quickest detection
problem [11], [17] is posed as following

minimize sup
ν≥1

Eν [δ − ν + 1|δ ≥ ν]

subject to Ef0 [δ] ≥ γ,
(1)

where Eν [·] represents expected value with respect to dis-
tribution of observation at iteration ν, γ ∈ R>0 is a large
constant and is called false alarm rate.

The solution to the problem (1) is the cumulative sum
(CUSUM) algorithm [11], which is described in Algorithm 1.

Algorithm 1 Cumulative Sum (CUSUM) Algorithm
1: at time τ ∈ N, collect sample yτ
2: compute the log likelihood ratio λτ := log f1(yτ )

f0(yτ )

3: integrate evidence Λτ := (Λτ−1 + λτ )+

% decide only if the threshold is crossed
4: if Λτ > η, then declare change is detected
5: else (Λτ ∈ [0, η[) continue sampling (step 1:)

For a given threshold η, the false alarm rate and the worst
expected detection delay for CUSUM algorithm are

Ef0(δ) ∼=
|eη − η − 1|
D(f0, f1)

, and

Ef1(δ) ∼=
|e−η + η − 1|
D(f1, f0)

.

(2)

The approximations in equation (2) are referred to as the
Wald’s approximations [17], and are known to be accurate
for large values of threshold η. The case when η → +∞ is
called the asymptotic case.

III. PROBLEM SETUP

We consider surveillance of a set of disjoint regions R =
{1, . . . , n} by a UAV. The UAV, at each iteration, goes to a
randomly selected region, collects information and sends it
to a fusion center. We assume that the UAV moves with unit
speed. We identify the fusion center with a human operator.
The fusion center decides on the presence of anomalies
in any region. To do so, the fusion center runs n parallel
CUSUM algorithms (one for each region) with the collected
observations. The objective of the fusion center is to detect
all the anomalies in minimum time.

We adopt a randomized region selection policy. The UAV
at each iteration picks a region ` ∈ R, with a stationary
probability q`, and surveys it. The region selection process
is, in fact, Markovian, but we are interested in the case where
large number of observations are required. Since, the UAV
can move from one region to another, the underlying Markov
chain is irreducible. Thus, in this case the region selection
process can be approximated by a stationary randomized
process with the distribution corresponding to the stationary
distribution of the Markov chain.

Let π1
` be the prior probability of the anomaly being

present at region ` ∈ R. We assume that the distance between
two regions i, j ∈ R is dij ∈ R≥0. Let f1

` , f
0
` : R → R≥0



Fig. 1. A model of the UCSB campus map. A UAV surveys the regions
shown. At each iteration the UAV surveys a region randomly and send
the observation to a fusion center. The objective of the fusion center is to
quickly detect any anomaly is any of the regions.

be the probability distribution functions at region ` in the
presence and absence of an anomaly, respectively. Let T` ∈
R>0, ` ∈ R be the expected time that the UAV take to
collect, process and send the information at each iteration
at region `. We study the quickest detection problem under
following assumptions.
Finitely informative distributions: We assume that the

conditional probability density functions f0
` , f

1
` at each

region ` ∈ R are finitely informative with respect to
each other.

Conditionally independent observations: We assume that
conditioned on the presence or absence of any anomaly
in a region, the observations in that region are mutually
independent. We further assume that the observations in
different regions are also mutually independent.

Finite moments: We assume that at each region ` ∈ R,
the statistic λ = log(f1

` (Y )/f0
` (Y )) has finite first and

second moments with respect to f0
` and f1

` .

Notation: We denote the probability simplex in Rn by ∆n−1.
We denote the region selection probability vector by q =
[ q1 . . . qn ]T .

IV. RANDOMIZED ENSEMBLE CUSUM

We assume that the fusion center runs n parallel CUSUM
algorithms, one for each region. At each iteration, the UAV
moves to a randomly chosen region k, and collects the
observation. This observation is used to update the CUSUM
statistic for the region k only. We refer to such parallel
CUSUM algorithms by randomized ensemble CUSUM. We
assume that the probability to choose region k is stationary
and equal to qk. We further assume that the threshold for each
CUSUM algorithm is the same and is equal to η ∈ R≥0.
The randomized ensemble CUSUM procedure is formally
presented in Algorithm 2.

Theorem 2 (Randomized ensemble CUSUM): For the
randomized ensemble CUSUM where the region ` ∈ R is
selected at each iteration with a stationary probability q`,
the following statements hold:

i) The worst expected sample size for detecting the
change at region ` satisfies

Ef1
`
[δ`] ∼=

|e−η + η − 1|
q`D(f1

` , f
0
` )

.

Algorithm 2 Randomized Ensemble CUSUM Algorithm
1: at time τ ∈ N, sample a region ` from the distribution q
2: collect sample yτ from region `
3: update the CUSUM statistic at each region

Λjτ =

{(
Λ`τ−1 + log

f1
` (yτ )

f0
` (yτ )

)+
, if j = `,

Λjτ−1, if j ∈ R \ {`}.

% decide only if the threshold is crossed
4: if Λ`τ > η, then declare change detected at region `
5: go to step 1:

ii) The worst expected detection delay at region `, T `δ
satisfies

Ef1
`
[T `δ ] =

(∑
i∈R

qiTi +
∑
i∈R

∑
j∈R

qiqjdij

)
Ef1

`
[δ`].

Proof: Let the log likelihood ratio at region ` at iteration
τ be λ`τ . Note that

λ`τ =

{
log

f1
` (yτ )

f0
` (yτ )

, with probability q`,

0, with probability 1− q`.

Therefore, conditioned on the presence on an anomaly,
{λ`τ}τ∈N are i.i.d., and

Ef1
`
[λ`τ ] = q`D(f1

` , f
0
` ).

Now, the remaining proof of the first statement is similar to
the proof for CUSUM in [17].

To prove the second statement, we note that the infor-
mation aggregation time at each iteration T agr comprises of
the processing time and the travel time. At an iteration the
UAV is at region i with probability qi and picks region j
with probability qj , and UAV travels between the two regions
in dij units of time. Thus, the average travel time at each
iteration is

E[Ttravel] =
∑
i∈R

∑
j∈R

qiqjdij .

Hence, the expected information aggregation time at each
iteration is

E[T agr] = E[Ttravel + Tprocess] =
∑
i∈R

∑
j∈R

qiqjdij +
∑
i∈R

qiTi.

Let {T agr
τ }τ∈{1,...,δ`}, be the information aggregation times

at each iteration. Thus, T `δ =
∑δ`

τ=1 T
agr
τ , and it follows from

Wald’s identity [14] that

E[T `δ ] = E[T agr
τ ]E[δ`].

This completes the proof of the statement.

V. OPTIMAL VEHICLE ROUTING

A. Stationary policy

We intend to determine a vehicle routing policy that
minimizes the detection time of any anomaly present at
any region. As exemplified in Theorem 2, this problem
requires multiple detection delays to be minimized together.



We minimize the weighted sum of the expected detection
delay at each region. We pick the weights to be the likelihood
of the presence of an anomaly at each region. Formally, we
pick the weight for region ` ∈ R as w` = π1

`/(
∑
j∈R π

1
j ).

Before we state the optimization problem to determine
the optimal stationary policy, we introduce some notations.
Let v ∈ Rn>0 be the vector with entries v` = w`(|e−η +
η − 1|)/D(f1

` , f
0
` ), for each ` ∈ R. We denote the array of

processing times by T and the matrix of distances between
regions by D.

We define a single aggregate objective function g :
∆n−1 → R>0 ∪{+∞} as the weighted sum of decision
times at each region, i.e.,

g(q) =
(∑
`∈R

v`
q`

)(∑
i∈R

qiTi +
∑
i∈R

∑
j∈R

qiqjdij

)
,

where q is the vector of the region selection probabilities.
We now pose the following detection delay minimization

problem:

minimize
q∈∆n−1

g(q) (3)

Level sets of g on the two dimensional probability simplex
are shown in Figure 2. It can be seen that for the example
considered, the level sets are not convex, but there exists a
unique minimum.

Fig. 2. Level-sets of the objective function in problem (3). It can be seen
that the level sets are not convex.

Conjecture 3 (Uniqueness): The optimization problem (3)
achieves a unique minimum.

We now provide some probabilistic guarantees for Conjec-
ture 3. We assume that the parameter set {v,T , D, n} in a
given instance of optimization problem (3) is a realization of
random variables sampled from some space Ω. For a given
realization ω ∈ Ω, the associated optimization problem is:

minimize
q∈∆n(ω)−1

gω(q), (4)

where gω : ∆n(ω)−1 → R>0 ∪{+∞} is defined by

gω(q) =
( ∑
`∈R(ω)

v`(ω)

q`

)
×
( ∑
i∈R(ω)

qiTi(ω) +
∑

i∈R(ω)

∑
j∈R(ω)

qiqjdij(ω)
)
,

where R(ω) = {1, . . . , n(ω)}.

For such a realization ω, a local minimum of the opti-
mization problem (4) can be found be substituting qn(ω) =

1 −
∑n(ω)−1
j=1 qj , and then running the gradient descent

algorithm from some point q0 ∈ ∆n(ω)−1 on the resulting
objective function. For a given ω, we sample N1 points
qr0, r ∈ {1, . . . , N1} in the simplex ∆n(ω)−1 and, from
each point, run the gradient descent algorithm to solve the
optimization problem (4). Let q∗ω : ∆n(ω)−1 → ∆n(ω)−1

be the function that determines the outcome of the gradi-
ent descent algorithm, i.e., the gradient descent algorithm
starting from point qr0 converges to the point q∗ω(qr0). Let
qmin
ω = q∗ω( 1

n(ω)1n(ω)). Define

γ̂ω = max{‖q∗ω(qr0)− qmin
ω ‖ | r ∈ {1, . . . , N1}}.

It is known [3] that if N1 ≥ 1
ε1

log 1
δ1

, then with at least
probability 1− δ1

P({q0 ∈ ∆n(ω)−1 | ‖q∗ω(q0)− qmin
ω ‖ ≤ γ̂ω}) ≥ 1− ε1.

Now consider realizations : {ωs ∈ Ω | s ∈ {1, . . . , N2}}.
Define

γ̂ = max{γ̂ωs | s ∈ {1, . . . , N2}}.

If N2 ≥ 1
ε2

log 1
δ2

, then at least with probability 1− δ2

P({ω ∈ Ω | γ̂ω ≤ γ̂}) ≥ 1− ε2.

We sampled n uniformly from {3, . . . , 12}, n regions
from the bivariate normal distribution with mean 02 and
covariance 100I2, T`, for each ` ∈ R, from the half normal
distribution with mean 0 and variance 100, and v`, for each
` ∈ R, uniformly from (0, 1). We normalized v to make it
convex. The matrix D was chosen as the Euclidean distance
matrix between the n sampled regions. We considered N2 =
92 realizations of the {v,T , D, n}. For each realization, we
solved the optimization problem (4) from 920 different initial
points. The sample sizes were determined for ε1 = 0.01,
δ1 = 10−4, ε2 = 0.05, and δ2 = 0.01. The value of γ̂
obtained was 10−4.

Therefore, the gradient descent algorithm for the opti-
mization problem (3) starting from any feasible point yields
the same solution with high probability. In other words, the
optimization problem (3) achieves a unique minimum with
high probability.

B. Adaptive policy

The observations collected by the UAV can be utilized to
learn the state of each region. This information is not utilized
in the stationary policy considered in the previous section.
We wish to incorporate our learning about the environment
through each observation into our policies, and we do it
in an adaptive fashion in the following way. After each
observation, the CUSUM statistic for each region gives the
likelihood of an anomaly in that region. We utilize this
likelihood to design the weights of the cost functions in
optimization problem (3). This ensures that the region with
high likelihood of an anomaly is surveyed with a higher
probability. We formally present these ideas in Algorithm 3.



Algorithm 3 Adaptive vehicle routing policy
1: Given: R = {1, . . . , n} and distances dij , i, j ∈ R
2: Given: η, Ti, π1

i , f0
i , f

1
i , for each i ∈ R

3: set Λj0 = 0, for all j ∈ R, and τ = 0

4: set wi = eΛiτ /(
∑
j∈R e

Λjτ ), for each i ∈ R
5: obtain solution q∗ of optimization problem (3)
6: at time τ ∈ N, select a random region ` ∈ R

according to the probability distribution q∗

7: collect sample yτ from region `
8: update the CUSUM statistic at each region

Λjτ =

{(
Λ`τ−1 + log

f1
` (yτ )

f0
` (yτ )

)+
, if j = `,

Λjτ−1, if j ∈ R \ {`}.

% detect change if the threshold is crossed
9: if Λ`τ > η, then declare anomaly detected

at region ` and set Λ`τ = 0
10: continue to step 4:

VI. NUMERICAL RESULTS

We now elucidate on the ideas presented in the previous
sections with some examples. In the first example, we
compare the analytic expressions for the expected detection
delay obtained in Theorem 2 with the empirical expected
detection delay. In the second example, we elucidate on the
adaptive vehicle routing policy. We consider two scenarios,
first when no anomaly is present, and second, when multiple
anomalies appear at different regions. We also present a
comparison of the adaptive policy with the optimal stationary
policy.

Example 4: Consider the surveillance of four regionsR =
{1, . . . , 4} shown in Figure 1 . If no anomaly is present,
then the observation is a normal N (0, 1) random variable.
Otherwise, the observation is a normal N (1, 1) random
variable. The distance between the regions is given by the
matrix

D =


0 25 9 17
25 0 18 28
9 18 0 14
17 28 14 0

 units.

Assume that the UAV moves with a speed 5 units per
second and the processing time at each region is 1 second. A
comparison of the analytic and empirical expected detection
delay is shown in Figure 3. It can be seen that the analytic
expected detection delay provides a lower bound to the
empirical expected detection delay and the gap between them
is small. It can also be seen that the expected detection delay
for the policy where one stays at the anomalous region all
the time is minimum because it requires minimum expected
sample size and zero travel time.

Example 5: For the same set of data as in Example 4,
we now study the adaptive vehicle routing policy. First, we
present the scenario when no anomaly is present. A sample
evolution of the CUSUM statistics and the corresponding
region selection policy is shown in Figure 4. It can be
seen that if the threshold is small, there may be potential

Fig. 3. Expected detection delay for randomized ensemble CUSUM in
seconds. The anomaly appears at region 2. The solid blue line and blue
×, respectively, represent the analytic and empirical expected detection
delay for the uniform region selection policy. The dotted black line and
black triangles, respectively, represent the analytic and empirical expected
detection delay for the region selection probabilities {0, 0.5, 0, 0.5}. The
dashed magenta line and magenta +, respectively, represent the analytic and
empirical expected detection delay for the policy when region 2 is surveyed
all the time.

false alarms. The region selection probabilities grow with
the likelihood of the anomaly. When the CUSUM statistic
is zero for each region, then the region 3 is surveyed with
highest probability as it is closest to all other regions.

Fig. 4. Sample evolution of region selection probabilities and the CUSUM
statistic at each region when no anomaly is present. Regions {1, 2, 3, 4}
are shown in solid blue, dashed green, solid red with dots, and dotted black
lines, respectively. The region selection probability is a function of distance
of the region from other regions and the likelihood of anomaly being present.
As the likelihood of an anomaly being present at a region increases the
probability to survey that region increases. When all CUSUM statistics are
zero, the region 3 is surveyed with highest probability because it is closest
to all other regions.

Second, we present the scenario when anomalies appear
at region 2, 4, and 3 at iteration number 10, 20, 30,
respectively. A sample evolution of the CUSUM statistics
and the corresponding region selection policy is shown in
Figure 5. Again, it can be seen that the region selection
probability increases with the likelihood of the anomaly in
that region, and if the likelihood of an anomaly is very high
at a region, the probability to survey that region is very close
to one.

We present a comparison of the optimal stationary region
selection policy with the adaptive policy in Figure 6. It can
be noticed that the optimal stationary policy performs better
than the adaptive policy at low thresholds, but this regime is
marred with high false-alarm rate. For higher thresholds the
adaptive policy performs better than the optimal stationary
policy. Notice that the improvement in the detection delay of
region 3 is not significant, since region 3 is already surveyed



Fig. 5. Sample evolution of the region selection probabilities and CUSUM
statistic at each region. Regions {1, 2, 3, 4} are shown in solid blue, dashed
green, solid red with dots, and dotted black lines, respectively. Anomalies
appear at region 2, 3 and 4 at iteration 10, 60 and 100, respectively. The
region selection probability is a function of distance of the region from other
regions and the likelihood of anomaly being present. Once an anomaly is
detected, it is removed and the statistic is reset to zero.

with high probability under optimal stationary policy, but
the improvement in the performance at region 2 and 4 is
significant.

Fig. 6. Comparison of the adaptive policy with the optimal stationary
surveillance policy. The anomalies appear at times 10 secs, 20 secs, and
30 secs at region 2, 4, and 3, respectively. The red +, the magenta ×
and the black dots represent the empirical expected detection delay for the
adaptive horizon policy at region 2, 3 and 4, respectively. The solid red
line, the magenta dashed line and the black dotted line represent the analytic
expected detection delay for the optimal stationary policy at region 2, 3 and
4, respectively.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We studied surveillance of multiple regions with a UAV
and presented stochastic surveillance strategies that detect
multiple anomalies in a set of regions in minimum time.
We adopted randomized region selection strategy for the
UAV. A randomized strategy ensures that an intruder does
not preempt its detection during a future visit by the UAV.
We studied the information collection and travel time trade-
off. An adaptive policy was presented and it was numerically
demonstrated that the adaptive policy performs better than
the optimal stationary policy.

An immediate extension of this work is to consider surveil-
lance with multiple UAVs. A region partitioning approach
can be utilized to deal with multiple UAVs. Other potential
extensions include learning the regions and studying the
exploration-exploitation trade-off in stochastic surveillance.
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