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Despite rapid expansion of our knowledge of vascular adaptation, developing patient-specific models of diseased arteries is
still an open problem. In this study, we extend existing finite element models of stress-mediated growth and remodelling of
arteries to incorporate a medical image-based geometry of a healthy aorta and, then, simulate abdominal aortic aneurysm.
Degradation of elastin initiates a local dilatation of the aorta while stress-mediated turnover of collagen and smooth muscle
compensates the loss of elastin. Stress distributions and expansion rates during the aneurysm growth are studied for multiple
spatial distribution functions of elastin degradation and kinetic parameters. Temporal variations of the degradation function
are also investigated with either direct time-dependent degradation or stretch-induced degradation as possible biochemical
and biomechanical mechanisms for elastin degradation. The results show that this computational model has the capability to
capture the complexities of aneurysm progression due to variations of geometry, extent of damage and stress-mediated
turnover as a step towards patient-specific modelling.

Keywords: arterial growth and remodelling; computational vascular mechanics; modelling cardiovascular diseases;
patient-specific modelling

1. Introduction

Vascular tissue exhibits a remarkable ability to adapt in

various physiological and pathological conditions, often

thought to be governed by mechanical factors (Mulvany

1992; Driss et al. 1997; Jackson et al. 2005). During the

past decades, it has been shown that theoretical modelling

of vascular growth and remodelling (G&R) can sharpen

our understanding of roles of mechanical stimuli on such

adaptations by testing multiple hypotheses based on the

accumulated information from experimental studies in

vascular pathophysiology and various clinical obser-

vations (Humphrey et al. 2009). Recently, these theoretical

models have been incorporated within the finite element

method (FEM) framework by many researchers (Watton

et al. 2004; Menzel 2005; Baek et al. 2006; Hariton et al.

2007; Kroon and Holzapfel 2007, 2009; Kuhl et al. 2007;

Figueroa et al. 2009; Watton and Hill 2009), with results

showing great potential for computational G&R simu-

lations to become essential in patient-specific risk

assessment of vascular diseases and their treatment.

FEM-based vascular G&R simulations typically utilise

microstructural information of structural components

(collagen, elastin and smooth muscle (SM)) to define the

mechanical state at a given time (either stress or strain),

which is iteratively fed back for calculating the evolution of

microstructural properties of the components due to

mechano-sensitive cellular activities. Humphrey and cow-

orkers presented FEMmodels of stress-mediatedG&Rusing

a constrained mixture approach and modelled intracranial

aneurysms (Baek et al. 2005; Baek et al. 2006; Figueroa et al.

2009). Hariton et al. (2007) studied the stress-driven

collagen fibres remodelling in a human carotid bifurcation.

On the other hand, strain-mediated models of vascular

adaptation have also been developed and implemented to

model cerebral and aortic aneurysms (Watton et al. 2004;

Kroon and Holzapfel 2007, 2009; Watton and Hill 2009).

Driessen et al. (2004), (2008) investigated stretch-mediated

remodelling of collagen fibres in arterial tissues.

Elastin degradation and collagen turnover are main

biomechanical processes in the enlargement of aneurysms.

Abdominal aortic aneurysms (AAAs) have been associ-

ated with a decrease in elastin content (Rizzo et al. 1989;

He and Roach 1994; Ghorpade and Baxter 1996; Powell

2002) resulting from proteolytic activity. It has also been

suggested that stress (strain)-mediated collagen turnover

plays an important role in aneurysm enlargement and it

may differ among individuals depending on physiological

and pathological conditions (Choke et al. 2005). Hence,

both elastin degeneration and collagen turnover should be

considered in the computational models of AAAs

development. Watton et al. (2004) and Watton and Hill

(2009) were the first to develop a mathematical model of

the evolution of an AAA by accounting for elastin

degradation and collagen turnover. In their study, spatial
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and temporal alterations of elastin concentration were

prescribed and collagen remodelling acted to maintain the

strain in fibres to an equilibrium value.

Previous modelling of evolving vascular diseases have

mainly focused on hypothesis testing with simple

geometries; however, there is a pressing need to account

for patient-specific anatomical and physiological infor-

mation in FEM simulations of vascular diseases (Taylor

and Humphrey 2009). In this work, we extend the previous

FEM model of stress-mediated G&R developed by Baek

et al. (2005), (2006) to incorporate a non-axisymmetric

geometry obtained from medical images. The compu-

tational method is, then, applied to model an enlarging

AAA assuming that an AAA grows by elastin degrada-

tion/damage and stress-mediated collagen turnover gov-

erned by the local state of intramural stress. We contrast

stress distributions and expansion rates of the computa-

tionally grown AAAs for multiple kinetic parameters and

different spatial distribution of elastin damage.

Towards this end, we employ a theoretical model of

arterial G&R based on a constrained mixture approach and

use a nonlinear FEM with linear triangular elements.

2. Theoretical modelling of arterial G&R

2.1 Kinematics and important configurations

There are two very different timescales in arterial

mechanics: a short-term timescale associated with pulsatile

motion during the cardiac cycle (seconds) and a long-term

timescale for G&R (days to weeks or months). Following

Figueroa et al. (2009), t denotes time associated with the

cardiac cycle, during which we assume no G&R, and s

denotes time during G&R. The configuration kt is the

current configuration and xðtÞ denotes the position of a

particle in kt. Here, we make a tacit assumption that there

exists a stress-free configuration ksf of the vessel wall which
is fixed at a given s. The vector Xsf ðsÞ denotes the position
vector of the particle in the stress-free configuration and

Fsf ðtÞ denotes the deformation gradient corresponding to the

mapping fromXsf ðsÞ to xðtÞ. In arterial mechanics, the effect

of the inertial forces in arterial wall motion is negligible

(Humphrey andNa 2002) andwe define the current (in vivo)

configuration ks in the G&R timescale as the configuration

kt under the mean pressure during the cardiac cycle.

For modelling arterial G&R, it appears to be

advantageous to introduce additional configurations shown

in Figure 1 (Baek et al. 2006; Figueroa et al. 2009). The

configurations kt trace the in vivo configurations of body

through time t [ ½0; s�. Particularly, the configuration k0
represents a loaded in vivo configuration of a healthy artery.

We assume that each constituent is pre-stretched when

deposited into the tissue at time t and the tensor GiðtÞ
represents the deposition stretch of constituent i. For

computational purposes, we introduce a configuration kR

called the (computational) reference configuration, that is, a

fixed configuration. Although the configuration kR is fixed

in space, we assume that particles can be created or removed

so that there is one-to-one mapping between kR and ks at
time s. This assumption also implies that the total mass in kR
changes with time and always becomes the same as the total

mass in ks. The position of a given particle in kR is denoted

by X and the deformation gradient FðsÞ is given

corresponding to the mapping from kR to ks. The stress-

free configuration ksf evolves in the G&R time scale and P
is the tensor representing its evolution. Because the total

mass is preserved in the mapping from kR to ks at time s, the

density with respect to the reference configuration, rRðsÞ,
can be calculated by

rRðsÞ ¼ JðsÞrðsÞ; ð1Þ

where JðsÞ ¼ det½FðsÞ� and rðsÞ is the mass density in the

current configuration at time s. Let w iðsÞ denote the mass

fraction of constituent i, i.e.
P

iw
iðsÞ ¼ 1. The mass density

of constituent i with respect to the reference configuration,

riRðsÞ, is defined as

riRðsÞ ¼ w iðsÞrRðsÞ: ð2Þ
The deformation gradient for each constituent i at time

t, relative to its natural configuration, Fi
nðtÞðtÞ, is given as

Baek et al. (2006)

Fi
nðtÞðtÞ ¼ FðtÞF21ðtÞGiðtÞ; ð3Þ

Figure 1. Schematic view of configurations involved in the
G&R simulation. A fixed reference configuration is considered
for the computation of deformation associated with G&R time
t ¼ ½0; s�. It is chosen to coincide with the configuration of a
healthy in vivo artery at time t ¼ 0 (i.e. k0). We imagine the
existence of a stress-free configuration, ksf , associated with the
current configuration ks.

S. Zeinali-Davarani et al.804
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where F21ðtÞGiðtÞ is the tensor representing the pre-

stretch of the constituent i that has been produced at t with
respect to the reference configuration (see Figure 1). The

deformation gradient Fi
nðtÞðtÞ can also be written as

Fi
nðtÞðtÞ ¼ Fsf ðtÞPðsÞF21ðtÞGiðtÞ; ð4Þ

where, now, PðsÞF21ðtÞGiðtÞ represents the pre-stretch

of the constituent i that has been produced at twith respect
to ksf .

2.2 Stress response and constitutive assumptions

Consider an arterial wall tissue consisting of multiple

structural components, e.g. elastin, multiple collagen

families and SM. Following previous convention, we use

the subscript ‘i’ to refer each constituent (e.g. elastin,

collagen families and muscle) and the superscript ‘k’ to the

kth family of collagen fibres. Thus, i ¼ e; 1; . . . ; k; . . . ;m
where e denotes elastin and m denotes SM. Although we

adopt the G&R formulation based on the constrained

mixture approach (Humphrey and Rajagopal 2002),

following its later modification (Baek et al. 2006; Figueroa

et al. 2009), we take the point of view of a biological tissue

comprising multiple constituents as a single continuum,

where the mass fraction of each constituent and its pre-

stretch are considered as attributes for a particle of the

biological tissue. We further assume that for a given time s,

the mechanical behaviour of the artery can be character-

ised by a hyperelastic model and we solve inflation

problems with the principle of virtual work. Hence, let the

Cauchy stress be given by Truesdell and Noll (1965),

tðtÞ ¼ 2rðtÞFsf ðtÞ ›CðCsf ðtÞÞ
›Csf ðtÞ FT

sf ðtÞ; ð5Þ

where Csf ðtÞ ¼ FT
sf ðtÞFsf ðtÞ and CðCsf ðtÞÞ are the stored-

energy function (per unit mass).

Since the stress-free configurations ksf change with

G&R, we utilise a fixed computational reference configur-

ation kR. Thus, (5) can be rewritten with respect to kR, using
FðtÞ ¼ Fsf ðtÞPðsÞ, (1), and the chain rule, as

tðtÞ ¼ 2

JðtÞFðtÞ
›{rRðsÞĈðCðtÞÞ}

›CðtÞ FT ðtÞ; ð6Þ

where

ĈðCðtÞÞ ¼ ĈðPT ðsÞCsf ðtÞPðsÞÞ ¼ CðCsf ðtÞÞ:
For a membrane model, using J ¼ J2Dh=hR for the

thickness h, the membrane stress T can be given as

TðtÞ ¼ 2

J2DðtÞF2DðtÞ ›MRðsÞ ~CðC2DðtÞÞ
›C2DðtÞ FT

2DðtÞ; ð7Þ

where the areal densityMRðsÞ ¼ hRrRðsÞ and ~CðC2DðtÞÞ ¼
ĈðCðtÞÞ (e.g. see Holzapfel et al. (2000) for two-

dimensional formulation). For simplicity, we omit the

subscript ‘2D’ and define wRðsÞ ¼ MRðsÞ ~CðCðtÞÞ: Then,
(6) becomes

TðtÞ ¼ 2

JðtÞFðtÞ
›wRðCðtÞÞ
›CðtÞ FT ðtÞ: ð8Þ

To simulate arterial G&R, we employ the stored

energy equation wRðt; sÞ, the stored energy (per unit area)

due to the deformation of xðtÞ at a given G&R time s, as

given by Figueroa et al. (2009)

wRðt; sÞ ¼
X
i

Mi
Rð0ÞQiðsÞCi Ci

nð0ÞðtÞ
� �n

þ
ðs
0

mi
RðtÞqiðs; tÞCi Ci

nðtÞðtÞ
� �

dt

�
;

ð9Þ

where Ci Ci
nðtÞðtÞ

� �
is the stored energy of constituent i

that has been produced, Ci
nðtÞðtÞ ¼ Fi

nðtÞðtÞ
h iT

Fi
nðtÞðtÞ, QiðsÞ

is the fraction of the constituent i that was present at time 0

and still remains at time s (i.e. has not yet been removed),

mi
RðtÞ is the mass production rate of the constituent i at

time t per unit reference area and qiðs; tÞ is its survival

function, that is, the fraction produced at time t that

remains at time s.

We employ constitutive relations for deposition

tensors and stored energy functions for constituents used

by Baek et al. (2006), (2007) and Figueroa et al. (2009).

The mechanical property and the ‘deposition stretch’,

named Gc
h, of the newly synthesised collagen fibres are

assumed to be always the same. Let mkðtÞ be the unit

vector in the direction of the kth collagen fibre produced at

time t. The angle between mkðtÞ and the first principal

direction at time t is denoted by a kðtÞ. We can find a unit

vector MkðtÞ in the reference configuration that corre-

sponds to mkðtÞ, i.e.

MkðtÞ ¼ F21ðtÞmkðtÞ
jF21ðtÞmkðtÞj : ð10Þ

If the angle between MkðtÞ and the first axis of the

coordinate system is denoted by ak
RðtÞ, the stretch (of

the fibre produced at time t) in the fibre direction from the

reference to the current configuration is given by

l kðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðtÞMkðtÞ ·FðtÞMkðtÞ

p
: ð11Þ

The stretch of the kth fibre family from its natural

to the current configuration can be, then, calculated as

given by Baek et al. (2006)

lknðtÞðtÞ ¼ Gc
h

l kðtÞ
l kðtÞ ; ð12Þ

Computer Methods in Biomechanics and Biomedical Engineering 805

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 C
ol

le
ge

 D
ub

lin
] a

t 0
4:

46
 1

9 
Se

pt
em

be
r 2

01
1 



where l kðtÞ is the stretch of the unit vector in the kth fibre

direction from the reference configuration to the

configuration at time t. A similar approach can be adopted

for SMs that are oriented primarily in the circumferential

direction. Thus, the stretch of SM is given by

lmnðtÞðtÞ ¼ Gm
h l2ðtÞ=l2ðtÞ, where Gm

h is the homeostatic

stretch for the SM. The main structure of cross-linked

elastin is formed at early stages of development, thus it is

difficult to trace its production time and to specify F21ðtÞ
in (3). So we define a new tensor ~Ge ¼ F21ðtÞGe

h, which

represents a mapping from the natural configuration

of elastin to the computational reference configuration.

Then, Fe
n ¼ FðtÞ ~Ge and ~Ge is postulated as ~Ge ¼

diag {Ge
1;G

e
2;

1
Ge

1G
e
2
}:

The stored energy functions for the elastin-dominated

amorphous, collagen fibre families ðCk ¼ CcÞ and passive
SM are given as

Ce Ce
nðtÞ

� � ¼ c1

2
Ce
n½11� þ Ce

n½22�

 

þ 1

Ce
n½11�C

e
n½22� 2 Ce

n½12�
2
2 3

!
;

ð13Þ

Cc lknðtÞðtÞ
� �

¼ c2

4c3
exp c3 lknðtÞ

2ðtÞ2 1
� �2� 	

2 1


 �
;

ð14Þ

Cm lmnðtÞðtÞ
� �

¼ c4

4c5
exp c5 lmnðtÞ

2ðtÞ2 1
� �2� 	

2 1


 �
;

ð15Þ

where Ce
n½11�, Ce

n½22� and Ce
n½12� are components of

Ce
n ¼ Fe

n

� �T
Fe
n. Although the constitutive form is the

same for collagen fibre families and SM, SM is much more

compliant than collagen fibre families and has less

contribution to the passive mechanical behaviour of the

wall (Burton 1954). We use a potential function for

the active tone of vascular SM as given by Zulliger et al.

2004, Baek et al. 2007

Cm
actðtÞ ¼

S

r
l2ðtÞ þ 1

3

ðlM 2 l2ðtÞÞ3
ðlM 2 loÞ2


 �
; ð16Þ

where lM and l0 are stretches at which the active force

generation is maximum and zero, l2 is the stretch in

circumferential direction at time t and S is the stress at the

maximum contraction. Then, the total membrane strain

energy becomes wR ¼ wRðpassiveÞ þMm
R ðtÞCm

act.

2.3 Stress-mediated G&R

In arteries, constituents can be continuously produced and

removed and normal tissue maintains its mass and

configuration by balanced turnover of constituents. The

rates of production and removal change from their

balanced normal (basal) values in response to changes in

mechanical environment. Here, we assume that me
RðsÞ ¼ 0

and the rates of mass production for collagen fibres and

SM are functions of a scalar measure of intramural stress,

given by Baek et al. (2006)

mk
RðsÞ ¼

Mc
RðsÞ

Mc
Rð0Þ

Kk
g s kðsÞ2 s c

h

� �þ mk
basal

� �
; ð17Þ

mm
R ðsÞ ¼

Mm
R ðsÞ

Mm
R ð0Þ

Km
g s mðsÞ2 s m

h

� �þ mm
basal

� �
; ð18Þ

where Mc
Rð0Þ and Mm

R ð0Þ are the mass of collagen and

SM per reference area of a healthy artery at time 0,

respectively. Ki
g ði ¼ 1; 2; . . . ; k; . . . ;mÞ is a scalar

parameter that controls the stress-mediated growth, mi
basal

is a basal rate of mass production for the constituent i and

s kðsÞ ¼ kTcðsÞmkðsÞk
hcðsÞ ; smðsÞ ¼ kTmðsÞmmðsÞk

hmðsÞ ; ð19Þ

where TcðsÞ and TmðsÞ are the Cauchy membrane stress

contributed by collagen and SM at time s (i.e.

TcðsÞ ¼PkT
kðsÞ). hcðsÞ and hmðsÞ are contributions

of collagen and blue SM to the total thickness at time s.

Also, let

qiðs; tÞ ¼
exp 2

Ð s
tk

i
qð ~tÞd ~t

� �
s2 t # aimax

0 s2 t . aimax

8><
>:

9>=
>;; ð20Þ

where kiqð ~tÞ can be a function of circumferential stress, wall

shear stress or other state variables. aimax is themaximum life

span of the constituent i.

The new collagen is deposited with a preferred

alignment. Following Baek et al. (2006), we assume that

the alignment of the newly produced collagen is influenced

by the orientation of the existing collagen and it

consequently aligns along the direction of the existing

collagen family.

3. Computational considerations

3.1 Local Cartesian coordinate system

We assume that the wall is a thin membrane, with X ¼
{X1;X2;X3} and x ¼ {x1; x2; x3} being the reference and

current positions in the global Cartesian coordinate system

with base vectors {E1;E2;E3} (Figure 2). We use linear

triangular elements for developing a nonlinear FEMmodel

of a non-axisymmetric cylindrical membrane and define a

local Cartesian coordinate system for each element in

order to facilitate calculation of the local deformation

S. Zeinali-Davarani et al.806
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gradient and prescribe material anisotropy. The centroid of

an element Xc ¼ {Xc
1;X

c
2;X

c
3} becomes the origin of the

local Cartesian coordinate system, and ‘element-wise’

orthogonal surface coordinates j1 and j2 are allocated

to any point on the element with respect to the origin

(Figure 2).

A linear triangular element has three nodal points

{Xð1Þ;Xð2Þ;Xð3Þ} in the reference and {xð1Þ; xð2Þ; xð3Þ} in

the current configurations and Xc
i ¼ ð1=3ÞPkX

ðkÞ
i

ði; k ¼ 1; 2; 3Þ. Now, we introduce local bases Ee
1 and Ee

2

in the plane of a linear triangular element (i.e. tangent

plane) and Ee
3 ; Ne the outward normal to that plane

(Figure 2). The base vector Ee
1 is set to a unit vector

aligned towards the axial direction of a model of the artery

(a unit tangent vector to j1 at the element centre point).

The outward normal vector Ne is readily obtained by cross

product of vectors connecting nodal points. The base

vector Ee
2 is then calculated as Ee

2 ¼ Ne £ Ee
1. If Xe ¼

{Xe
1;X

e
2;X

e
3} and xe ¼ {xe1; x

e
2; x

e
3} are the reference and

current position vectors in the local Cartesian coordinate

system, the two-dimensional right Cauchy-Green defor-

mation tensor is calculated as given by Kyriacou et al.

(1996), Park and Youn (1998)

C ¼ ›xe

›ja
·
›xe

›jb


 �
Ee
a ^Ee

b; ð21Þ

where a;b ¼ 1; 2.

3.2 Finite element formulation

The weak form for the membrane can be obtained from the

principle of virtual work (Kyriacou et al. 1996),

dI ¼
ð
S

dw dA2

ð
s

Pn·dx da ¼ 0: ð22Þ

In an FEM model, we seek an approximate solution to

(22). Let a finite approximation of the current position be

x ¼ Fxp; xi ¼ FiAx
p
A; ð23Þ

where xp andF are the nodal vector for the current position

and shape functionmatrix, respectively. Then, the governing

equation for an element can be obtained from (22) as

{F}eP ¼
ð
S e

›w

›Cab

›Cab

›xpP
2 ~PiFiP


 �
dA ¼ 0; ð24Þ

where for a linear triangular element,

~Pi ¼ P
e ijk xð2Þj 2 xð1Þj

� �
xð3Þk 2 xð1Þk

� �
e lmn Xð2Þ

m 2 Xð1Þ
m

� �
Xð3Þ
n 2 Xð1Þ

n

� ��� �� : ð25Þ

We use the Newton–Raphson method to solve (24),

and the tangent matrix can be given by

½K�PQ ¼ ›F
›xp

� 	e
PQ

¼
ð
S e

›2w

›Cab›Cgv

›Cab

›xpP

›Cgv

›xpQ

 

þ ›w

›Cab

›2Cab

›xpP›x
p
Q

2FiP
~Pi;Q

!
dA:

ð26Þ

Note that ði; j; k; l;m; n ¼ 1; 2; 3Þ, ða;b; g;v ¼ 1; 2Þ,
and ðA;B;M;P;Q ¼ 1; 2; 3; . . . ; npÞ, where np is the

number of nodes in an element multiplied by 3, i.e. np ¼ 9.

Any point X ¼ {X1;X2;X3} in the global Cartesian

coordinate system can be transformed to Xe ¼
{Xe

1;X
e
2;X

e
3} in the local coordinate system using

Xe
i ¼ Ee

i · ðX2 XcÞ ¼ Qij Xj 2 Xc
j

� �
; ð27Þ

where Qij ¼ Ee
i ·Ej. It is convenient to define 9 £ 1

vectors for the nodal points as

Xep ¼ Xeð1Þ
1 ; Xeð1Þ

2 ; Xeð1Þ
3 ; Xeð2Þ

1 ; Xeð2Þ
2 ; Xeð2Þ

3 ;
�
Xeð3Þ
1 ; Xeð3Þ

2 ; Xeð3Þ
3

�T
;

ð28Þ

xep ¼ xeð1Þ1 ; xeð1Þ2 ; xeð1Þ3 ; xeð2Þ1 ; xeð2Þ2 ; xeð2Þ3 ;
�
xeð3Þ1 ; xeð3Þ2 ; xeð3Þ3

�T
;

ð29Þ

Xp ¼ Xð1Þ
1 ; Xð1Þ

2 ; Xð1Þ
3 ; Xð2Þ

1 ; Xð2Þ
2 ; Xð2Þ

3 ; Xð3Þ
1 ;

�
Xð3Þ
2 ; Xð3Þ

3

�T
;

ð30Þ

xp ¼ xð1Þ1 ; xð1Þ2 ; xð1Þ3 ; xð2Þ1 ; xð2Þ2 ; xð2Þ3 ; xð3Þ1 ;
�
xð3Þ2 ; xð3Þ3

�T
:

ð31Þ

Figure 2. Orthonormal base vectors for a global Cartesian
coordinate system are {E1;E2;E3}. Those for a local Cartesian
coordinate system are Ee

1, Ee
2 (associated with j1, j2), and

Ee
3 ¼ Ne at a point set to be the centre point of a linear

triangular element tangent to the membrane at Xc. Ee
1 and Ee

2

are orthonormal bases on the tangent plane and Ne is the
outward unit normal vector.
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Xc ¼ Xc
1; Xc

2; Xc
3; Xc

1; Xc
2; Xc

3; Xc
1; Xc

2; Xc
3

� �T
:

ð32Þ
The coordinate transformation between global and

local coordinates can be expressed by

Xep ¼ ~QðXp 2 XcÞ; xep ¼ ~Qðxp 2 XcÞ; ð33Þ
where a 9 £ 9 matrix ~Q is given by

~Q ¼
Q 0 0

0 Q 0

0 0 Q

2
664

3
775: ð34Þ

Note that the local position vectors of element nodes in

the current configuration, xep, are expressed with respect

to the local coordinate system associated with that element

in the reference configuration. The position vector in the

local coordinate system is

xeðj1; j2Þ ¼ Fxep; ð35Þ
where

F ¼
f1 0 0 f2 0 0 f3 0 0

0 f1 0 0 f2 0 0 f3 0

0 0 f1 0 0 f2 0 0 f3

2
664

3
775:

and f 1, f 2 and f 3 are linear shape functions of j1 and j2
for the element. Using (33), (35) can be rewritten as

xe ¼ F ~Qðxp 2 XcÞ; xei ¼ FiA
~QAB x

p
B 2 Xc

B

� �� �
: ð36Þ

For convenience, let us define Fe as

Fe
iB ¼ FiA

~QAB: ð37Þ
The components of the derivative of the local position

vector with respect to the local coordinate are

xei;a ¼ FiA;a
~QABx

p
B or xei;a ¼ Fe

iA;ax
p
A : ð38Þ

Thus, components of the right Cauchy-Green tensor

(21) can be obtained as

Cab ¼ xei;ax
e
i;b ¼ Fe

iA;ax
p
AF

e
iM;bx

p
M; ð39Þ

where the basis is Ee
a ^Ee

b.

3.3 Numerical solutions

The spatial integration in (24) is approximated by using

Gauss integration. At every Gauss point, the temporal

integrations in (22) are calculated by using the trapezoidal

rule (Press et al. 1992) over past times. Although the

survival function (20) is given by an exponential function,

we define a maximum lifetime aimax and truncate the value

if s2 t # aimax. Thus, the numerical integration can be

done over the time interval s2 aimax; s
� �

using fixed

number of discretisation points. Equations (17), (18) and

(24) are solved iteratively for the nodal positions and rates

of mass production at a given time s. Briefly, an initial

guess of mi
RðsÞ is made at each Gauss point based on the

previous time step, and (24) is solved for the current

positions using the nonlinear FEM technique prescribed in

the previous section. Then, mi
RðsÞ is updated using the

FEM solution along with (17) and (18). In this way, rates

of mass production and displacements at the current time s

are updated iteratively until solutions converge to the

prescribed tolerance.

For testing the utility of the present work, we apply the

computational model for simulation of an AAA. One

Gauss point is used for the integration. It has been found

that the nonlinear FEM analysis does not always converge

well with (26). To remedy this, we modify the tangent

matrix by

½K�PQ ¼ z

ð
S e

›2w

›Cab›Cgv

›Cab

›xpP

›Cgv

›xpQ
þ ›w

›Cab

›2Cab

›xpP›x
p
Q

 !
dA

2

ð
S e

FiP
~Pi;QdA;

ð40Þ
where z ¼ 2.0 shows a good convergence for all

simulations in this work.

4. Simulation of an AAA growth

4.1 A geometric model and mesh generation

A 3D computational geometry of a healthy aorta is

reconstructed from magnetic resonance images of a

healthy subject using Simvascular (Cardiovascular lab,

Stanford University). The computational domain is

extended to the upper part of abdominal aorta (proximal

side) and iliac branches (distal side) for future use in

haemodynamic simulations (Sheidaei et al. 2010). For

simulation of the aneurysm, we use only the central region

of the geometric model which is separately meshed with

triangular elements (1584 elements) using Gambit

(Lebanon, NH, USA).

4.2 Initialisation for G&R simulation

In normal physiological conditions, production and

removal of each constituent are balanced such that the

vessel maintains its shape under a preferred homeostatic

state. For an idealised model of the blood vessel, the in vivo

material properties are typically assumed to be constant

S. Zeinali-Davarani et al.808
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over the domain with parameter values estimated from

experimental data, while the homeostatic assumption is

imposed as a constraint (Baek et al. 2007; Figueroa et al.

2009; Valentı́n et al. 2009). When medical image-based

geometric models are used, however, it is not a trivial task

to prescribe the distribution of material and geometric

parameters while maintaining the homeostatic mechanical

state under physiological pressure. For an approximation,

we first prescribe material constitutive parameters shown

in Table 1. Other parameters, c1, c2 and c4, are calculated

inversely assuming that all constituents have the same

homeostatic stress value (i.e. s i ¼ sh) in a healthy state.

For that, four discrete fibre families are assumed to be

initially aligned in 0, 90, 45 and 245 (axial, circumfer-

ential and helical directions, respectively), and constant

volume fractions for all constituents are prescribed. Then,

using strain energy functions (13)–(16), c1, c2, and c4 and

are obtained by

c1 ¼ sh r Ge2
1 2 Ge

1G
e
2

� �22
� �n o21

; ð41Þ

c2 ¼sh rGc2
h Gc2

h 2 1
� �

exp c3 Gc2
h 2 1

� �2n o(

X4
k¼1

Mk
R

Mc
R

sin2a k

)21

;

ð42Þ

c4 ¼
sh 2 S 12 lM21

lM2l0

� �2
 �

rGm2
h Gm2

h 2 1
� �

exp c5 Gm2
h 2 1

� �2n o : ð43Þ

Regional wall thickness is initially approximated by

estimating the cross-sectional mean radius and using the

Laplace equation, s ¼ Pr =h. Then, using the G&R

simulation, we let the vessel wall adapt to an equilibrium

state with a high value of stress-mediated parameters

Kk
g ¼ Km

g ¼ 1
� �

. Deviation of stress in three families of

collagen fibres (i.e. axial and helical directions) from the

desired homeostatic stress s k 2 sc
h

� �
=sc

h is plotted before

and after 300 ‘days’ of this initial simulation in Figure 3.

Stress deviation of the fibre family along the circumfer-

ential direction was less than the other fibres (not shown).

Figure 4(a) and (b), respectively, depicts the displacement

and the change in the geometry from the reference

configuration after 300 days of this initial simulation. The

stress deviation of each fibre family is reduced

substantially after the initialisation process while causing

little change in the geometry from its original/reference

configuration (maximum displacement is about 1.5mm).

Table 1. Constitutive and kinetic parameters for each
constituents used in initialisation and G&R simulations.

Elastin: c1 ¼ 112 Pa=kg, Ge
1 ¼ 1:25, Ge

2 ¼ 1:25
Collagen: c2 ¼ 917 Pa=kg, c3 ¼ 25, Gc

h ¼ 1:07, kcq ¼ 0:02
SM: c4 ¼ 27 Pa=kg, c5 ¼ 8:5, Gm

h ¼ 1:2, kmq ¼ 0:02,
S ¼ 50 kPa, lM ¼ 1:2, l0 ¼ 0:7

Others: r ¼ 1050 kg=m3, s c
h ¼ sm

h ¼ 135 kPa

(a) (d)

(b) (e)

(c) (f)

0.3
0.25
0.2

0.1
0.05
0
–0.05

0.05

–0.1
–0.15
–0.2
–0.25

Figure 3. Deviation of the intramural stress from the
homeostatic value s k 2 sc

h

� �
=sc

h in axial and two helical fibre
directions before (a, b and c) and after (d, e and f) 300 days of the
initial simulation.

(a) (b)

Before
After

1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.1

Figure 4. (a) Magnitude of the displacement (mm) calculated
from the reference configuration after 300 days of the initial
simulation (b) and the corresponding geometry before and after
300 days.
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4.3 Simulation cases

After initialisation, an AAA is initiated by introducing

damage to the aorta, where elastin is degraded/removed

from the blood vessel. The spatial and temporal function

for elastin damage is given as

DðX; sÞ ¼ ð12 0:01s=T Þf ðXÞ; ð44Þ
where T is a time constant and f ðXÞ defines the spatial

distribution of damage. DðX; sÞ [ ½0; 1� is the ratio of

the degenerated elastin to the initial amount, where

DðX; sÞ ¼ 1 for complete degradation. First, we assume a

limiting case when T ! 0þ such that DðX; sÞ becomes

only a spatial function, f ðXÞ. That is, the damage (elastin

removal) is applied immediately after the initial simulation

for a homeostatic condition, and the amount of damage is

kept constant during G&R. Four spatial functions are used

for representing different cases of elastin damage. The

areal density of elastin after applying different damages is

plotted in Figure 5. Cases (1) and (2) correspond to damage

shapes distributed to a relatively large area on the concave

and convex sides, respectively. Cases (3) and (4)

correspond to more localised damage shapes applied at

multiple locations. Second, the ‘time dependent’ elastin

degradation is investigated using (44) with a spatial

function of Case (3) considering T ¼ 10 £ 365 (days). For

final simulation, we assume ‘stretch-induced’ degradation,

where additional removal of elastin occurs during

aneurysm growth due to stretch-induced damage. Specifi-

cally, the function for elastin damage can be written as

DðX; sÞ ¼ f ðXÞ þ g Ie1ðX; sÞ
� �½12 f ðXÞ�; ð45Þ

where Ie1ðX; sÞ is the first invariant of the Ce
n and

g Ie1
� � ¼

1 Ie1 2 3
� �

$ 4:48

12 sin
p 7:482Ie1ð Þ

2£1:48
� �

3 # Ie1 2 3
� �

, 4:48

0 Ie1 2 3
� �

, 3

8>>>><
>>>>:

9>>>>=
>>>>;
:

ð46Þ
It is believed that elastin plays an important role in

controlling SM cells migration/proliferation (Li et al. 1998;

Karnik et al. 2003) as well as their phenotype modulation

(Ailawadi et al. 2009) by stabilising extracellular matrix.

The amount of SM in our model is changed proportionally

with the initial elastin degradation which reduces both

passive and active contributions of SM to the wall

mechanical properties.

4.4 Results

Distribution of the maximum principal stress and the areal

mass density of collagen at 50, 1200 and 2700 days of G&R

for Case (3) are shown in Figure 6. The damage to elastin

introduced at s ¼ 0 causes a sharp increase in stress at the

location of the damage. Stress-mediated collagen pro-

duction increases the areal density of collagen as the lesion

enlarged, compensating the loss of elastin, and the value of

the peak stress initially starts to decrease. As the aneurysm

enlarges further, however, the stress level is shown to

increase again (see Figure 6(c)). The shape of aneurysm

and stress distributions resulted from Cases (1), (2) and (4)

are plotted at 50 and 2700 days of the G&R simulation in

Figure 7. The simulation suggests that the aneurysmal wall

tends to enlarge more in the convex side of the vessel than

in the concave side. For example, Figure 7(d) shows a large

amount of dilatation in the convex side even with the initial

damage introduced in the concave side. Different spacial

functions for elastin damage result in a variety of shapes

with different expansion rates, although in all cases the

same kinetic parameter Kg ¼ 0:05 was used. Figure 8 plots
expansion rates (maximum diameter increase per unit time)

for simulations with four different cases. Cases (1) and (2)

result in higher expansion rates compared to Cases (3)

Figure 5. Areal mass density of elastin kg/m2 for different
simulation Cases (1)–(4). Cases (1) and (2) correspond to
different damages shapes distributed to relatively large area
which are applied at different locations (concave and convex
sides) and Cases (3) and (4) correspond to more localised damage
shapes, but at multiple locations.
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and (4), which might be due to thewider area of the damage

prescribed for Cases (1) and (2). The effect of kinetic

parameter (Kg ¼ 0.02, 0.05 and 0.1) on the expansion rate

of the aneurysm is shown for Case (2) in Figure 9.

Apparently, simulation with Kg ¼ 0.02 results in an

increase in the aneurysm expansion rate, simulation with

Kg ¼ 0.05 causes a linear enlargement over time (constant

expansion rate) and a higher value of the kinetic parameter

(Kg ¼ 0.1) even stabilises the aneurysm growth. Figure 10

shows the areal density of elastin and the maximum

principal stress for the ‘time dependent’ case at 50 and

2700 days of the G&R simulation. At 50 days, changes in

stress are small because of the small amount of elastin

degradation (Figure 10(a)). The stress increases gradually

as the amount of elastin degradation increases, and at

2700 days the maximum principal stress reaches a similar

value as in Case (3) at 2700 days (see Figures 6(c)

and 10(d)). For the last simulation, the damage shape is

Figure 6. Maximum principal stress distribution (kPa) for the
simulation Case (3) at 50, 1200 and 2700 days after the initial
damage (a, b and c) and the corresponding areal mass density of
collagen (d, e and f) (kg/m2).

(a)

500
400
350
300
250
200
150
100

(d)

(b) (e)

(c) (f)

Figure 7. Maximum principal stress (kPa) for simulation Cases
(1), (2) and (4) after 50 (a, b and c) and 2700 (d, e and f) days.

2 4 6 810
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35

Time (years)
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 (m

m
)

Case 4: y = 0.9x + 14
Case 3: y = 1.3x + 13
Case 2: y = 2x + 12
Case 1: y = 2.5x + 11

Figure 8. Expansion rates of the lesion in simulation
Cases (1)–(4) as the maximum diameter of the lesion versus
time and their best linear fit (Kg ¼ 0.05).
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initially the same as in Case (3) (Figure 11(a)), but elastin is

degraded further with the ‘stretch-induced’ elastin damage.

The simulation shows that the affected area gradually

increases with stretch-induced damage (Figure 11(b)) and,

hence, the principal stress increases to a level higher than

Case (3) at 2700 days without the stretch-induced damage

(see Figures 6(c) and 11(d)).

5. Discussion

In this work, an FEM model of vascular adaptation is

presented and applied to model the enlargement of an

AAA without considering thrombus formation. We used

a membrane model of arterial wall. Although a

membrane model has some limitations, it is still

preferable in many G&R simulations (Gleason et al.

2004; Baek et al. 2006; Watton and Hill 2009). Watton

and Hill (2009) suggested that the ratio of thickness of

the wall to the diameter of the aneurysm decreases as an

AAA enlarges and also the remodelling process tends to

naturally maintain a uniform strain (or stress) field

through the thickness. Hence, a membrane model suits to

model the deformation of the abdominal aorta and the

development of an aneurysm at physiological pressure.

Moreover, a full 3D model of vascular adaptation needs

more information about the variation of constituent

properties through the thickness and their evolution

during the vascular adaptation.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
14

16

18

20

22

24

26

28

Time (years)

M
ax

. d
ia

m
et

er
 (m

m
)

Kg = 0.02
Kg = 0.05
Kg = 0.1

Figure 9. Expansion rates of the lesion in simulation Case (2)
with different values of the kinetic parameter (Kg ¼ 0.02, 0.05
and 0.1).

(a)

0.3 500
450
400
350
300
250
200
150
100

0.26
0.22
0.18
0.14
0.1
0.06
0.02

(b)

(c)

(d)

Figure 10. Areal mass density of elastin (kg/m2) for the case
of ‘time-dependent’ degradation after 50 and 2700 days (a, b)
and the corresponding maximum principal stress distribution
(c, d) (kPa).

(c)(a)

0.3 500
450
400
350
300
250
200
150
100

0.26
0.22
0.18
0.14
0.1
0.06
0.02

(d)(b)

Figure 11. Areal mass density of elastin (kg/m2) for the case
of ‘stretch-induced’ degradation after 50 and 2700 days (a, b)
and the corresponding maximum principal stress distribution
(c, d) (kPa).
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Following Watton et al. (2004) and Watton and Hill

(2009), elastin degradation was assumed to initiate our

G&R simulations and a similar form was used for spatial

and temporal distribution of degradation. We considered,

however, multiple spatial functions for elastin degradation

which resulted in a variety of aneurysm shapes with

different stress distributions and growth rates indicating the

potential clinical application of computational simulation

of G&R with realistic geometries. Consistent with Watton

and Hill (2009), it appears that collagen production tends to

compensate for the loss of elastin. The computations

suggest, however, that as a lesion evolves into a more

complex shape, stress may be elevated at a location which

was not necessarily a damage site (see Figure 6). In Cases 1

and 2, stress initially increased at locations where damage

was introduced. Later, in the course of enlargement, the

convex side of both aneurysms became the region of

maximum stress leading to more dilation on this side. The

results suggest that the location and the geometry of the

lesion can influence AAA enlargement and rupture. For an

AAA in vivo, however, the effect of geometry may be

through its influence on both haemodynamics (e.g. wall

shear stress; Hoi et al. 2004) and wall stress distribution

(Vorp et al. 1998; Doyle et al. 2009). Asymmetric flow

patterns have been associated with the formation of

aneurysm in lower limb amputees via asymmetric

distribution of wall shear stress (Vollmar et al. 1989; Paes

et al. 1990; Naschitz and Lenger 2008). As expected, in our

simulations, damage shapes which were more dispersed

resulted in more dilation than localised damage shapes (see

Figure 7). The ‘time dependent’ simulation for Case (3) did

not result in a substantial difference in the aneurysm shape,

but different time constants showed significant effects on

the expansion rate (Figure 12). Although we used simple

spatial and temporal functions for elastin degradation,

elastin degradation during AAA growth involves multiple

biological and mechanical parameters. It has been

suggested that in AAAs, elastin degradation is due to the

proteolytic activity which may have several causes

including abnormal distribution of wall shear stress (Miller

2002; Hoshina et al. 2003; Sho et al. 2004), circumferential

stress (Humphrey 2002), influx of inflammatory cells

(Choke et al. 2005; Pearce and Shively 2006; Shimizu et al.

2006; Middleton et al. 2007) and the formation of the

intraluminal thrombus layer (Vorp et al. 2001; Fontaine

et al. 2002; Vorp and Vande Geest 2005). In our following

study (Sheidaei et al. 2010), the current model is coupled

with haemodynamic simulation in an iterative manner, and

the effects of wall shear stress on the elastin degradation

and, hence, on the aneurysm growth are investigated.

In our final simulation, we assumed that further

degradation of elastin is induced by the stretch of elastin.

Although it is not clear how much mechanical factors

influence elastin degradation during the aneurysmal

growth, previous ex vivo studies show that arterial elastin

fails under uniaxial stretch (Gosline et al. 2002; Lillie and

Gosline 2007). Then, it might not be unreasonable to

hypothesise that the over-stretch of elastin accelerates

elastin degradation. Previously, Wulandana and Robertson

(2005) presented a model of a cerebral arterial tissue that

accounts for a stretch-dependent failure mechanism of

elastin. Recently, Li and Robertson (2009) have utilised a

strain-induced damage model in a more structurally

complicated model for balloon angioplasty.

We assumed that the amount of SM reduced

proportionally with the initial elastin damage in our

model. The results do not indicate a significant role of SM

on AAA progression possibly because we did not

incorporate direct effects of SM loss on the extracellular

matrix turnover. However, there are increasing evidence

on the critical role of vascular SM cells in the aneurysm

pathobiology through their activity and quantity (Curci

2009). Vascular SM cells are capable of producing high

levels of matrix degrading enzymes in AAAs (Patel et al.

1996; Crowther et al. 2000) as well as their inhibitors

preventing the degeneration (Allaire et al. 1998).

Stretch/stress-induced synthesis of extracellular matrix

by SM cells has also been documented (Sumpio et al.

1988; O’Callaghan and William 2000). Apparently, the

imbalance between proteolytic and synthetic activities of

SM cells contributes to the structural deterioration of

arterial wall. In addition, advanced stages of AAA have

been associated with marked apoptosis of SM cells

(López-Candales et al. 1997; Thompson et al. 1997; Zhang

et al. 2003) which can exacerbate the weakening process.

We need, however, more data to build a better model and

predict the progressive weakening of the wall structure and

its failure.

The half-life of collagen in the arterial wall is reported

to be 60–70 days in normal conditions (Humphrey 2002),
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Figure 12. Expansion rates of the lesion in the ‘time-dependent’
simulation case associated with different time constants
(T ¼ 3, 6, 10 and 15 years).
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which can be reduced to 17 days in pathological conditions

(Nissen et al. 1978). Watton and Hill (2009) showed that

reducing the half-life time nonlinearly increased the

expansion rate. Our preliminary results also showed that

expansion rate is inversely related to half-life time. We

chose the half-life time to be about 35 days in our

simulations. Our results demonstrated that the kinetic

parameter, Kg, has a key effect on the expansion rate,

(Figure 9) consistent with other studies (Baek et al. 2005;

Baek et al. 2006). Nonetheless, the collagen half-life aswell

as the kinetic parameterswas assumed to be fixed during the

evolution of aneurysm in our model, whereas in an actual

AAA, these parameters may change during aneurysm

growth due to pathological changes. Dynamic changes of

turnover parameters are multifaceted and complex and,

hence, more studies are required to quantify these

pathological changes in aneurysm growth. Also, individ-

uals may have different degrees of mechano-sensitivity and

stress-mediated turnover of collagen depending of their

physiological and pathological conditions. In fact, findings

on the collagen content variation during AAA growth are

highly variable, e.g. decreased (Sumner et al. 1970),

increased (Ghorpade and Baxter 1996) and no change

(Rizzo et al. 1989). The simulation showed that Kg ¼ 0.05

provides almost linear growth for all damage shapes

(Figure 8) and, especially, for Cases (1) and (3), growth

rates were within the range observed for small aneurysms

(Nevitt et al. 1989; Baxter et al. 2008). WithKg # 0.05, the

lesion enlarged continuously implying that the stress-

mediated collagen turnover was not enough to return the

stress back to the homeostatic level, although it reduced the

local damage-induced stress (Figure 9).

Results from the current model represent the early

stage of aneurysms. As AAAs grow, other factors such

as intraluminal thrombus and perivascular boundary

conditions should also be taken into account for the

model. Intraluminal thrombus not only has a direct

mechanical effect (Wang et al. 2006) but also changes

the chemomechanical environment and influences the

strength of the lesion and its progression (Vorp et al. 2001;

Taylor and Humphrey 2009).

Remodelling of the constituents and the mechanism

involved in their deposition can have a great impact on the

mechanical properties of the evolved tissue. Compu-

tational models of collagen remodelling assumed that

either the principal strains (Boerboom et al. 2003;

Driessen et al. 2004, 2008) or stresses (Baek et al. 2006;

Hariton et al. 2007) govern the orientation of collagen

fibres. With regard to AAA, marked increase of anisotropy

was found in the diseased tissue (Vande Geest et al. 2006),

suggesting structural changes in aneurysm formation.

Watton et al. (2004) assumed fixed fibre directions for

collagen fibres in their AAA G&R simulations. In our

model, collagen aligned towards existing fibre directions.

With newly deposited collagen during enlargement,

anisotropy increased in the circumferential direction,

which is consistent with that in Vande Geest et al. (2006).

In addition, we considered the mechanical property of

newly synthesised collagen fibres to be the same

(Humphrey 1999; Gleason et al. 2004; Baek et al. 2006;

Baek et al. 2007). Elastin degradation alone does not

conduce to rupture in normal vessels (Dobrin et al. 1984).

Impaired collagen networking and its microstructural

defects have been associated with advanced AAAs despite

an increase in the collagen concentration (Lindeman et al.

2010). Therefore, in addition to alteration of fibre

distribution, it might also be desirable to account for

changes of collagen type, cross-linking and fibre thickness

in the model (Driessen et al. 2008). A future extension of

the current model can be towards accounting for alteration

of collagen structure during the AAA progression and

different mechanical properties of the newly synthesised

collagen fibres.

Prescribing the in vivo material and geometric

parameters that satisfy the balance of momentum and

homeostatic conditions is a major challenge for patient-

specific G&R simulations. In the current work, we

approximated the thickness by the Laplace relation,

sh ¼ Pr =h, where r is the first principal radius of

curvature. For a more complex geometry, however, there is

a need for developing numerical techniques to identify the

spatial distribution of parameters and integrating them

with the developed vascular adaptation model.

Previous computational studies of vascular adaptation

have considered mostly axisymmetric and simple geome-

tries, while clinical application of the G&R simulation

demands patient-specific anatomical information. Watton

et al. (2004) simulated an asymmetric aneurysm by

assuming an axisymmetric degradation and considering an

effective pressure (instead of constant pressure) which

resembles the contact with spine. Although varying the

effective pressure resulted in an asymmetric aneurysm

growth, their initial configuration was still axisymmetric.

Recently Kuhl et al. (2007) simulated stress-induced

growth of a medical image-based model of human aorta

based on the concept of incompatible growth combined

with open system thermodynamics. They simulated the

effect of balloon or stent exposure in atherosclerotic

patients by a high internal pressure locally applied to the

wall. Their work, however, was based on a single-

constituent approach and did not consider G&R of multiple

constituents. On the other hand, many studies have used

patient-specific geometries for estimating accurate stress

levels and the rupture risk of aneurysms without a G&R

mechanism (Raghavan and Vorp 2000; Fillinger et al.

2002, 2003; Speelman et al. 2007). However, Vorp and

Vande Geest (2005) suggested that ‘despite recent reports,

it should be noted that evaluation of rupture potential based

on only one of these parameters –stress or strength – is not

sufficient because a region of the AAA wall that is under
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elevated wall stress may also have a higher wall strength’.

We submit that by coupling a G&R model with a patient-

specific geometric model, a computational simulation can

provide information about both stress and structural

strength during aneurysm growth and, hence, better

prediction of the rupture can be acquired. Therefore, the

computational model presented here will provide a useful

foundation towards a patient-specific modelling of AAAs.
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