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a b s t r a c t

A variational method is employed to obtain governing equations and boundary conditions

describing finite strain equilibrium configurations of elastomeric gels. Three situations

are considered: a liquid saturated gel, an unsaturated gel, and a gel in equilibrium with a

vapor of its own liquid. Surface tractions can lead to equilibrium transitions between

these cases. The liquid saturated gel is regarded as immersed in a liquid bath. If this bath

becomes depleted, then the gel is unsaturated. The degree of unsaturation – a measure of

the amount of liquid that would restore a state of saturation – affects the subsequent

mechanical behavior. If the unsaturated system is further allowed to condense or

evaporate its liquid component at the gel surface, then a new state of equilibrium is

achieved. The transition between the unsaturated case and the case of being in

equilibrium with the vapor phase corresponds to the chemical potential variable of

the gel changing its value from one that is determined by a volume constraint to the value

of the chemical potential in the vapor phase. A finite element method is created on the

basis of the variational method and demonstrated in the context of eversion, a

deformation that imposes very large finite strains. Liquid migration within the gel is

not modeled as our focus is on equilibrium states that occur after all such non-equilibrium

processes come to rest.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A gel is a mixture of crosslinked polymer chains and an interpenetrating fluid. Because of their solid-like properties and the
ability to contain a large amount of a liquid, gels have numerous applications including areas such as tissue engineering (Lee
and Mooney, 2001; Nguyen and West, 2002) and drug delivery (Qiu and Park, 2001; Gupta et al., 2002). When an external
force is applied to such a gel, the fluid diffuses in or out from the swollen solid and the volume of the body changes. Eventually,
when the diffusion process is completed, the body maintains equilibrium with the external force by virtue of the elastic
stresses arising from the deformation. Many of these stresses are entropic in nature as they arise both from the mixing of the
solid and liquid constituents, and from the configurational entropy changes of the crosslinked polymer chains. From these
observations, Treloar (1975) pointed out that the equilibrium mechanical properties of the gel correspond to those of a
compressible material made up of a single constituent, even when the individual constituents – the polymer and the fluid –
are each incompressible.

To describe the mechanical behavior of an elastomeric gel in a quantitative fashion, theoretical models have been
developed using variational methods based on the thermodynamics of mixtures (see for example: Huggins, 1942; Flory and
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Rehner, 1943; Treloar, 1950; Bowen, 1980, 1982; Gandhi et al., 1987, 1989; Rajagopal and Tao, 1996; Baek and Srinivasa,
2004a; Hong et al., 2008; Duda et al., 2010). In particular, such a gel is in equilibrium only if its free energy is a minimum with
respect to both changes in the mass fraction of the individual constituents and to the deformation of the solid constituent. For
large deformation the latter type of variation naturally lends itself to a hyperelastic treatment, whereas the former type of
variation involves liquid flux across the gel boundary and liquid redistribution within the gel.

If the amount of liquid is limited it can then be the case that certain loadings cause all of the liquid component to enter into
the gel. If this is the case then the gel is no longer saturated and such a gel is referred to here as unsaturated. Specifically, if an
additional small amount of liquid is brought into contact with such an unsaturated gel then that liquid, upon being absorbed
by the gel, allows the system to establish a lower free energy for the same state of mechanical loading. Under such a process
the gel remains unsaturated under repeated introduction of a small amount of liquid so long as the liquid continues to be
absorbed. Once equilibrium is attainable with no additional liquid absorption then the gel is once again saturated. Such
considerations apply to both homogeneous and inhomogeneous deformation. For homogeneous deformation the liquid is
uniformly distributed within the gel, so that any liquid introduced to the unsaturated gel also becomes uniformly distributed
after liquid diffusion is complete and equilibrium subsequently attained. In contrast, for inhomogeneous deformation the
liquid is generally not uniformly distributed.

This concept of saturation is discussed in the book by Rajagopal and Tao (1996), and the notion of saturation boundary
conditions is developed by Rajagopal, Wineman and collaborators in a variety of papers in the 1980s and 90s.1 They do not,
however, systematically consider the notion of a transition between equilibrium states, one of which is saturated and the
other of which is not saturated. Nor do they examine the effect of what one may regard as the amount of undersaturation due
to differing overall quantities of liquid in an unsaturated gel. Such issues have recently been studied by Deng and Pence
(2010a,b), where it is shown how, generally, a loss-of-saturation transition renders the system mechanically stiffer than that
of a corresponding saturated system. Such stiffness increases with the amount of undersaturation.

One of the difficulties in developing a theoretical framework for modeling gels under such circumstances is related to the
standard and reasonable approximation that all of the volume change in the gel is due exclusively to fluid mass transfer. In the
usual variational treatment this constraint results in a Lagrange multiplier which then appears in the expressions for the
stress and the chemical potential. As discussed by Baek and Srinivasa (2004a), the use of the Lagrange multiplier technique
can obscure the physical interpretation of the resulting balance expressions and hinders the identification of appropriate
boundary conditions. To clarify these issues, the treatment in Baek and Srinivasa (2004a) reformulates the variational
problem so that it is initially without such a constraint. Then a limiting process is employed such that departure from the
constraint is increasingly penalized. The resulting variational formulation – which applies to the notion of a saturated gel as
discussed above – takes the system to be the gel with its surrounding fluid bath. By including the fluid bath, the limiting
procedure provides a means for obtaining the equilibrium boundary conditions at the interface between the gel and the bath.

In this work, we employ this variational approach to treat both saturated and unsaturated gels in equilibrium and subject
to loading at the gel surface. Body forces are neglected and so in particular the effect of gravity is not addressed. We also
restrict attention to isothermal processes so that temperature either need not enter the treatment or, more generally, is
regarded as a parameter. The constitutive theory requires knowledge of the free energy of the gel cg and of the surrounding
fluid cf . Since we confine attention to equilibrium states, there is no need to specify constitutive entities associated with the
dynamical processes that take place prior to attaining equilibrium (e.g., diffusion) and for this reason it is not necessary to
specify a constitutive form for the rate of dissipation as is done in Baek and Srinivasa (2004a). Here a variational formulation is
obtained for three separate and related situations. The first is that of a saturated gel, meaning a gel that is in equilibrium with
applied surface tractions while also within a liquid bath (the saturated gel referred to above). The second is that of an
unsaturated gel in the sense already described, meaning that there is no longer a source for additional liquid to enter into the
gel even though maintaining saturation under surface tractions would require such a liquid source. The third is that of gel
subject to surface tractions that is in equilibrium with a vapor of the same substance as that which constitutes the liquid
component of the gel. Both the liquid bath in the first situation, and the surrounding vapor in the third situation, will generally
have an associated pressure. Different boundary conditions at the gel surface are obtained from the variational procedure for
these different situations. In particular, the procedure clarifies the role of the gel chemical potential in each of these differing
situations. In addition, we show how the theoretical framework employed in Deng and Pence (2010a,b) emerges naturally
from the variational procedure for the first two situations enumerated above. This is especially useful since the framework as
employed in Deng and Pence (2010a,b) proceeded on the basis of hyperelasticity and specifically involved no explicit mention
of the chemical potential concept. Thus, even though the framework of Deng and Pence (2010a,b) does not specifically
identify a chemical potential, it remains consistent with mixture theory treatments that specifically identify such an entity.
All of these considerations are developed in Sections 3 and 4.

The variational formulation is then used to construct a finite element formulation for two situations of a saturated gel and
an unsaturated gel. The accuracy of the finite element procedure is demonstrated for the special case of an everted gel
cylinder (turning a short tube inside-out). The special case of eversion with specialized end tractions that make the everted
1 We also remark that the way in which the term saturation is used in the present paper may be different from other ways in which the term is used in the

context of continuum mixture theories. For example, in Ambrosi et al. (2010) saturation is used to mean that the volume fraction of all constituents must sum

to unity, which is different from our use of the term.
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shape a perfect cylinder was reduced to the consideration of ODEs in Deng and Pence (2010a) and solved numerically. The
finite element procedure presented here faithfully replicates these cylindrically symmetric solutions for both the saturated
and the unsaturated case. Then the finite element procedure is demonstrated on eversion problems that do not maintain
perfect cylinders upon eversion (and which are thus not treatable by the ODE method in Deng and Pence, 2010a). In particular,
everted cylinders that are completely free of surface tractions will generally flare out a bit at the top and bottom. This is
confirmed by the finite element procedure, and the effect of differing amounts of gel undersaturation is quantified in this
regard. Finally, the finite element method (FEM) is used to simulate the full eversion sequence itself by prescribing a set of cap
displacements that have the effect of turning the cylinder inside-out.

2. The liquid saturated gel: A gel in contact with a fluid bath

As stated in the Introduction, a gel is mixture of solid (polymer) and liquid constituents. Fig. 1 shows a liquid saturated gel
occupying domain Og . It is surrounded by a bath of the same fluid which occupies domain Of . The surface of the gel is Gg

which is therefore also the interface between the gel and the fluid bath. This surface is defined by locations of the solid
polymer component, thus fluid may transfer between the gel and the bath atGg . The boundary of the fluid bath consists ofGg

and the bath’s external boundary Gext . The boundary Gext is defined by fluid particle locations, hence fluid may not cross Gext .
The boundary Gext is in turn subdivided into two parts: Gcon giving the boundary of the container holding the bath, and Gf

where the fluid is in contact with external pressure papp. All of these domains and boundaries are in the current and hence
deformed configuration. On the gel surfaceGg there may be external mechanical tractions t that are applied directly to the gel.
External body forces are not considered.

The variable x denotes spatial position in the current configuration; as such x is independent of the movement of the fluid
and the gel constituents. Locations within the gel are determined by tracking the position of its solid (polymer) component.
These locations are denoted by xg. The relative movement of fluid particles within the gel is considered as a mass flux. The
deformation of the solid component of the gel stores and releases elastic energy and so a reference configuration is introduced
for the solid component of the gel. We take this reference configuration to be a nominally dry polymer state prior to uptake of
the liquid, and we let Xg be the position of the solid component in this reference configuration. Then the displacement and
deformation gradient of the gel are, respectively, given by

ug ¼ xg�Xg , F¼
@xg

@Xg
: ð1Þ

The density of the gel in Og and the density of the fluid in Of are rg and rf , respectively. As regards the fluid, we shall
eventually assume the fluid to be incompressible with constant density rf 0. However, following Baek and Srinivasa (2004a),
this requirement is not imposed at the outset. As regards the gel, we shall eventually assume that the current volume of the
swollen gel is the sum of the volume of its solid component and the volume of absorbed fluid. This assumption is called the
‘‘volume additivity constraint’’ in Rajagopal and Tao (1996), and it has recently also been called ‘‘molecular incompressibility’’
in Hong et al. (2008). When both liquid incompressibility and volume additivity hold it then follows that

rg ¼
1

J
rs0þ 1�

1

J

� �
rf 0, ð2Þ

where rs0 is the constant density of the dry polymer and J=detF. While Eq. (2) is typically used as a local constraint, Baek and
Srinivasa (2004a) discuss how this constraint can obscure many of the thermodynamical features that are central to
understanding the gel’s mechanical behavior. Accordingly, they first develop the theory in the absence of any such constraint,
and then obtain the theory in which these constraints hold by means of a limiting process. We follow that development here
as well. Thus neither fluid incompressibility nor volume additivity is imposed at this point in the development.
papp

t

Γf

Ωg

Γg

Ωf

Γcon

ng

nf

Fig. 1. The system consists of the domainOg for a gel andOf for a surrounding fluid in the bath. These two domains are separated by the interfaceGg and fluid

may transfer at the interface. The external boundary of the bath is denoted by Gext ¼Gcon
S
Gf . An external pressure papp is applied to the fluid on Gf and an

external traction t is applied to the gel on Gg .
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The swollen gel and the surrounding fluid are each characterized by a Helmholtz free energy per unit volume in the current
configuration. In the fluid bath this energy is dependent upon density and temperature. Since we are considering isothermal
conditions, this fluid free energy is written simply ascf ðrf Þ. The Helmholtz free energy of the gelcg depends not only upon its
density, but also upon the deformation of the polymeric component and so is of the formcgðF,rgÞ. In addition, the principle of
frame-indifference requires that the dependence of cg upon F is reducible to a dependence upon C=FTF, however, it is
convenient to defer the use of this fact until after the equations of equilibrium are formally obtained.

2.1. The variational approach

The equations of equilibrium are now obtained by a variational argument in which the gel is subject to displacement
variations dug and the fluid is subject to displacement variations duf . Recall that ug gives the displacement of the solid
component of the gel. The fluid within the gel will exhibit variations as well, and these are described by the fluid mass
displacement dq within the gel relative to the displacement of the solid component dug . Admissible variations fdug ,dq,duf g

have duf ¼ 0 on Gcon and must also account for mass flux continuity across the gel boundary Gg which gives

rf ðduf�dugÞ ¼ dq on Gg : ð3Þ

By virtue of mass conservation, the variations fdug ,dqg gives rise to a density variation drg in the gel obeying

drgþdivðrgdugÞþdivðdqÞ ¼ 0 in Og : ð4Þ

In a similar fashion, the variation duf gives rise to a density variation drf in the fluid bath obeying

drf þdivðrfduf Þ ¼ 0 in Of : ð5Þ

For all admissible variations fdug ,dq,duf g it is now required that dP¼ 0 where

dP¼ d
Z
Og

cg dVþ

Z
Of

cf dV

 !
�

Z
Gg

t � dug dAþ

Z
Gf

pappnf � duf dA: ð6Þ

Here nf is the outward normal vector on Gf . By Leibniz’s rule, the first term in the right hand side of (6) becomes

d
Z
Og

cg dVþ

Z
Of

cf dV

 !
¼

Z
Og

dcg dVþ

Z
Gg

ðcg�cf Þdug � ng dAþ

Z
Of

dcf dVþ

Z
Gf

cfduf � nf dA, ð7Þ

where ng is the normal vector on Gg pointing from the gel into the bath. The variations dcg and dcf are formally given by

dcg ¼
@cg

@F
: dFþ

@cg

@rg

drg , dcf ¼
@cf

@rf

drf , ð8Þ

where drf and drg follow immediately from (4) and (5). As regards the tensor dF note that the variation of F at a fixed gel
particle location xg follows from the chain rule as dFjðfixed xg Þ

¼ ðgrad dugÞF. However it is important to realize that the
variation dcg in (8) is at fixed spatial location x which in turn requires that dF in (8) is also a variation at fixed x. For scalar
functions f the variations at fixed x and fixed xg are connected by the ‘‘convected derivative’’ like identity

df jðfixed xg Þ
¼ df jðfixed xÞ þðgradf Þ � dug , ð9Þ

with similar relations for vector and tensor functions. This gives dFjðfixed xÞ ¼ dFjðfixed xg Þ
�ðgradFÞdug so thatdF in (8) is given by

dF¼ ðgrad dugÞF�ðgradFÞdug : ð10Þ

It therefore follows from (4), (5), (8), and (10) that

dcg ¼
@cg

@F
: fðgrad dugÞF�ðgrad FÞdugg�

@cg

@rg

fdivðrgdugÞþdivðdqÞg in Og , ð11Þ

dcf ¼�
@cf

@rf

fdivðrfduf Þg in Of : ð12Þ

Substituting from (7), (11), (12) into (6) one finds, after application of the divergence theorem and use of (3), that dP can be
manipulated into the form

dP¼
Z
Og

�div
@cg

@F
FT
þ cg�rg

@cg

@rg

 !
I

( )
� dugþgrad

@cg

@rg

( )
� dq dVþ

Z
Gg

F
@cg

@F

� �T
(

þ cg�rg

@cg

@rg

�cf þrf

@cf

@rf

 !
I

)
dug � ng�t � dugþ

@cf

@rf

�
@cg

@rg

( )
dq � ng dA

þ

Z
Of

�grad cf�rf

@cf

@rf

( )
� duf dVþ

Z
Gf

cf�rf

@cf

@rf

þpapp

( )
duf � nf dA: ð13Þ
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In the absence of constraints, the variations fdug ,dq,duf g are independent and arbitrary, whereupon it follows from dP¼ 0
that equilibrium for the swollen gel is governed by

div
@cg

@F
FT
þ cg�rg

@cg

@rg

 !
I

( )
¼ 0 in Og , ð14Þ

grad
@cg

@rg

( )
¼ 0 in Og , ð15Þ

and

grad cf�rf

@cf

@rf

( )
¼ 0 in Of , ð16Þ

with conditions at the gel surface of

F
@cg

@F

� �T

þ cg�rg

@cg

@rg

�cf þrf

@cf

@rf

 !
I

( )T

ng ¼ t on Gg , ð17Þ

@cg

@rg

¼
@cf

@rf

on Gg , ð18Þ

and boundary conditions on the external boundary of the fluid bath of

cf�rf

@cf

@rf

¼�papp on Gf : ð19Þ

As stated before, these governing equations and boundary conditions have here been derived without considering the
incompressibility constraint on the fluid or the volume additivity constraint on the gel. In particular, the fluid is so far
regarded as compressible.

The scalar Eq. (19) would be expected to have a unique solution, which we denote by rf ¼ r̂f ðpappÞ. It then follows from
(16) that rf ¼ r̂f ðpappÞ throughout the fluid bath. This, in turn, permits additional simplification of the gel surface conditions
(17) and (18). We collect these together with (14) and (15) to give a fully posed set of field equations and boundary conditions
for the gel in the form

div
@cg

@F
FT

� �
þgrad cg�rg

@cg

@rg

( )
¼ 0 in Og , ð20Þ

grad
@cg

@rg

( )
¼ 0 in Og , ð21Þ

with

@cg

@F
FT ngþ cg�rg

@cg

@rg

 !
ng ¼ t�pappng on Gg , ð22Þ

@cg

@rg

¼
1

rf

ðpappþcf Þ

�����
rf ¼ r̂ f ðpappÞ

on Gg : ð23Þ

As discussed in detail in Baek and Srinivasa (2004a), the derivative @cg=@rg corresponds to the chemical potential of the gel,
and (21) is a requirement that this potential has zero gradient within the gel. Similarly Eq. (18), and its equivalent form (23), is
a requirement that the gel chemical potential matches the bath chemical potential at the gel/bath interface.

While the set (20)–(23) applies to a gel in a compressible fluid bath, the more standard case of a gel in an incompressible
fluid bath is easily obtained. For an incompressible fluid, the fluid density has constant value rf 0 and the fluid free energy has
constant valuecf 0. As discussed in Ball and Schaeffer (1993), it was shown by Rivlin (1977) that endowing an incompressible
material model with a slight degree of compressibility gives rise to a regular perturbation in the governing equations. In the
present context, one may penalize fluid compressibility by introducing parameter ef 40 and taking

cf ðrf Þ ¼cf 0þ
ðrf�rf 0Þ

2

2ef

�cf ðrf ,ef Þ, ð24Þ

where the function �cf is positive, is bounded away from zero, and has bounded derivative with respect to rf . Then ef-0þ

describes the fluid in its incompressible limit. In this limit, one obtains the anticipated result that (20)–(22) continue to hold,
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whereas (23) is replaced by

@cg

@rg

¼
1

rf 0

ðpappþcf 0Þ on Gg : ð25Þ

The right hand side of (25) now represents the chemical potential of the incompressible fluid when it is subject to the external
pressure papp.

2.2. The volume additivity constraint

The governing Eqs. (20), (21) and boundary conditions (22), (25) apply to a compressible gel that is immersed in an
incompressible fluid. By compressible we mean that the gel is not as yet subject to the volume additivity constraint (2). Such a
theory of compressible gels would, for example, permit the existence of a void fraction at each location within the gel. In many
situations, however, the volume additivity condition is met to within any reasonable measurement, and it is under these
circumstances that a theory incorporating (2) has great utility (Rajagopal and Tao, 1996). In the context of porous media
models that are obtained from continuum mixture theory as presented by Bowen, compressible gels are described in his 1982
paper (Bowen, 1982), whereas gels that satisfy the volume additivity constraint are described in his 1980 paper (Bowen,
1980).

For our purposes, the volume additivity constraint (2) can now be obtained by applying a limiting procedure to a suitably
penalized version of the compressible theory in a fashion that is analogous to that associated with (24). Namely (viz. Baek and
Srinivasa, 2004a), let eg 40 and consider cg in the form

cgðF,rgÞ ¼cgðFÞþ
f2

2eg

�cgðF,rg ,egÞ, f� rg�rf 0�
rs0�rf 0

J
, ð26Þ

where the function �cg is positive, is bounded away from zero, and has bounded derivatives. Then eg-0þ requires f-0, and
hence recovers (2). One then computes for example that

@cg

@F
¼
@cg

@F
þ

f
eg

rs0�rf 0

J

� �
�cgF�T

þO
f2

eg

 !
: ð27Þ

The essential feature of the limiting procedure is thatf-0 in the same order as eg-0þ so thatf=eg remains finite in the limit,
whereas f2=eg-0. Introduce

Kg ¼ lim
eg-0þ

f
eg

�cg , ð28Þ

which becomes indeterminate in the limit; in particular, the constitutive information resident in �cg is not retained in the
limit. Thus (27) gives

@cg

@F
-
@cg

@F
þ

rs0�rf 0

J

� �
KgF�T

ð29Þ

in this limit. In a similar fashion one finds that

@cg

@rg

-Kg , cg�rg

@cg

@rg

-cg�rgKg : ð30Þ

Now substituting from (29), (30), and using (2), one finds that (20), (21), (22), and (25) become

div
@cg

@F
FT

( )
þgradfcg�rf 0Kgg ¼ 0 in Og , ð31Þ

gradðKgÞ ¼ 0 in Og , ð32Þ

with

@cg

@F
FT ngþðcg�rf 0KgÞng ¼ t�pappng on Gg , ð33Þ

Kg ¼
1

rf 0

ðpappþcf 0Þ on Gg : ð34Þ

Inspection of the above equations shows that (32) can be used to simplify (31), and that (34) can be used to simplify (33). After
making these simplifications we make a return to the notationcg by making the replacementcgðFÞ-cgðFÞ. The result is that
(31) and (33) become

div
@cg

@F
FT
þcgI

� �
¼ 0 in Og , ð35Þ
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@cg

@F
FT
þðcg�cf 0ÞI

� �
ng ¼ t on Gg : ð36Þ

It is significant to note that neither Kg nor the pressure papp of the surrounding fluid appear in the set (35) and (36). As
discussed in Baek and Srinivasa (2004a), Kg corresponds to the chemical potential of the gel, which, as the above procedure
shows, no longer has an essential role when incorporating the constraint (2). In fact, even though Kg is no longer essential,
Eqs. (32) and (34) formally give that Kg ¼ ðpappþcf 0Þ=rf 0 throughoutOg . Such a state of affairs is not unusual. Namely, when a
kinematical descriptor is no longer independent, as is the case of rg under (2), then its work conjugate kinetic quantity, here
Kg, satisfies its appropriate balance principle a-priori in a manner that is independent of the constitutive theory (viz. Gurtin,
2000).

Let us now assume that the total free energy of the swollen polymer can be written in the form

cgðFÞ ¼
1

J
ðCðFÞþHðJÞÞþ 1�

1

J

� �
cf 0, ð37Þ

whereCðFÞ and H(J) represent the free energies due to polymer deformation and polymer-fluid mixing, respectively. It is then
convenient to define the new energy function

WðFÞ ¼CðFÞþHðJÞ: ð38Þ

In terms of this W=W(F) the governing equation for the gel (35) and its accompanying boundary condition (36) become
simply

div
1

J

@W

@F
FT

� �
¼ 0 in Og , ð39Þ

1

J

@W

@F
FT

� �
ng ¼ t in Gg : ð40Þ

The form of these equations is exactly that which applies to a compressible hyperelastic solid with stored energy density W.
This correspondence was remarked upon by Treloar (1975). For a fluid saturated gel polymer, this ‘‘apparent compressibility’’
is a consequence of the fact that a fixed amount of polymer can be associated with a variable amount of fluid. Eqs. (38)–(40)
also form the basis for treating the equilibrium of saturated gels in Deng and Pence (2010a,b).

The form of W as given by (38) indicates that physical considerations giving rise to any proposed form of W should not
account for the underlying free energy of the base fluid within the gel, i.e., energy stored in the fluid that does not arise from
interaction with the polymer component is not to be included in W. Instead W should only account for the free energy of the
deforming polymer, along with free energy terms associated with interactions between the polymer and fluid components of
the gel. In addition, comparing (37) with (38) we note the absence of the multiplier 1/J in (38). This can be viewed as scaling
the energy function W so that it is an energy density with respect to polymer volume in the reference configuration, which is
again consistent with the formulation of compressible hyperelasticity. Constitutive forms for energy functions appropriate
for polymeric gels can be obtained for example from Treloar (1975), Wineman and Rajagopal (1992), Baek and Srinivasa
(2004a,b), Deng and Pence (2010a). Later in this paper when we turn to specific examples we shall consider a standard form
for W in (38) which takes a neo-Hookean form for C and the Flory–Huggins form for H, namely

C¼
m
2
ðF : FÞ ¼

m
2
ðC : IÞ, HðJÞ ¼MððJ�1Þlnð1�J�1Þþwð1�J�1ÞÞ, ð41Þ

where m, M, and w are constitutive parameters whose physical significance is discussed for example in Wineman and
Rajagopal (1992), Deng and Pence (2010a).

3. Interactions with a vapor phase and loss of saturation

The volume additivity constraint as considered in the previous section was developed in the context of a fluid saturated gel
that is surrounded by a bath of the pure fluid. The pure fluid itself was taken to be incompressible. One could alternatively
consider the case where the saturated gel is removed from this fluid bath and is instead placed in an environment where it
makes direct contact with a gaseous phase consisting of the gel fluid in vapor form. Here we consider modifications to the
previous treatment to address such vapor phase interactions. It is the vapor phase that is now subject to the pressure load papp.
It will be assumed that the fluid within the gel can still be regarded as being in the liquid form. In other words the gel is still a
solid–fluid mixture as opposed to a solid–gas mixture. The liquid within the gel is still regarded as incompressible when in its
fluid form. We also wish to consider gels that obey the volume additivity constraint. For simplicity, the gaseous phase is
treated as consisting of a gas of a pure vapor of the same liquid that constitutes the gel.

3.1. A gel in direct contact with the vapor phase

To obtain governing equations and boundary conditions, it is again useful to start by considering a gel whose external
boundary is in contact with a surrounding media, where the gel and media are not constrained by notions of incompressibility
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and volume additivity. This was in fact the situation considered in the previous section, where the variational procedure
eventually led to (20)–(23). Eqs. (20)–(23) also serve as the starting point for the consideration of vapor phase interactions.
The main difference between the treatment of this section with that of the previous section is due to the compressibility of the
vapor phase. Thus we do not invoke the limiting process associated with (24) that in turn led to (25). We do, however, wish to
invoke the limiting process associated with (26) as eg-0þ . In this way we consider a gel that is subject to the volume
additivity constraint (2) while being in contact with a vapor phase instead of being in contact with an incompressible
fluid bath.

In order to emphasize this new state of affairs we shall use notation rv for the vapor density, and cv ¼cvðrvÞ for the free
energy of the gas phase. We also write Ov and Gv in place of Of and Gf . It is then the case that the pressure in the gas is
determined by equations analogous to (16) and (19), namely

grad cv�rv

@cv

@rv

� �
¼ 0 in Ov, ð42Þ

and

cv�rv

@cv

@rv

¼�papp on Gv: ð43Þ

It is again assumed that the latter equation has a unique solution which defines the function r̂vðpappÞ that gives the density of
the gas as a function of the pressure. It then follows from (42) that rv ¼ r̂vðpappÞ throughout the vapor domain Ov. Eqs. (20)–
(22) are unchanged, while (23) is simply rewritten with new subscripts as

@cg

@rg

¼
1

rv

ðpappþcvÞ

����
rv ¼ r̂vðpappÞ

on Gg : ð44Þ

The constraint of volume additivity is now enforced by a limiting procedure that is formally identical to that associated with
(26)–(30). By this means, one again eliminates Kg as defined in (28) so as to arrive at

div
@cg

@F
FT
þcgI

� �
¼ 0 in Og , ð45Þ

@cg

@F
FT
þðcg�cf 0ÞI

� �
ng ¼ tþ

rf 0

rv

�1

� �
pappþ

rf 0

rv

cv�cf 0

� �����
rv ¼ r̂vðpappÞ

ng on Gg : ð46Þ

These equations are to be compared with the previous set (35), (36) which applied to a gel in contact with a liquid bath. Here it
is to be noted that the governing Eqs. (35) and (45) are the same, whereas the boundary conditions (36) and (46) are different.
In particular, the boundary condition (46) is now influenced by both the external pressure papp and by the vapor free energy
cv.

In view of (43) it is to be noted that (46) can also be rewritten as

@cg

@F
FT
þðcg�cf 0ÞI

� �
ng ¼ tþ rf 0

@cv

@rv

�cf 0

� �
� rv

@cv

@rv

�cv

� �� �����
rv ¼ r̂vðpappÞ

ng on Gg : ð47Þ

As an aside, it follows that formally taking rv ¼ rf 0 and cv ¼cf 0 in (47) now retrieves (36). Note therefore that a limiting
process akin to that associated with a modified form of (24), namely cvðrvÞ ¼cf 0þðrv�rf 0Þ

2 �cvðrv,evÞ=2ev in the limit
ev-0þ , will makerv-rf 0 andcv-cf 0. One therefore concludes, from a strictly mathematical point of view, that the order of
the limiting processes associated with incompressibility of the material comprising the bath and volume additivity in the gel
does not affect the final outcome. In other words governing Eqs. (35) and (36) are obtained provided that both limiting
processes are considered irrespective of the order in which they are conducted.

However, for our present consideration of a gel in direct contact with a vapor phase, the bath is regarded as compressible
and we have obtained governing equations (45) with gel boundary conditions (46). In terms of the free energy W defined via
(37) and (38) one thus obtains

div
1

J

@W

@F
FT

� �
¼ 0 in Og , ð48Þ

1

J

@W

@F
FT

� �
ng ¼ tþ

rf 0

rv

�1

� �
pappþ

rf 0

rv

cv�cf 0

� �����
rv ¼ r̂vðpappÞ

ng on Gg : ð49Þ

3.2. Loss of saturation

The equilibrium states described in the preceding section are, for a given constitutive description, determined by the
loading variables t and papp. Subsequent changes to either t or papp would disrupt this equilibrium state and give rise to
complicated non-equilibrium processes before the new equilibrium state associated with the changed t and papp is attained.
This new equilibrium is attained only after these processes have come to rest. In general there would be a variety of time
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scales associated with these non-equilibrium processes. Time scales associated with stress equilibration within the solid
component of the gel would generally be much shorter than time scales associated with fluid migration within the gel. For the
various gel scenarios discussed thus far, one could generally estimate the various time scales and so identify, in each case, the
slowest non-equilibrium process.

Consider the case of a gel that is directly in contact with the vapor phase. The various non-equilibrium process would then
consist of stress wave propagation in the solid and fluid components of the gel, fluid seepage within the gel, evaporation and
condensation at the gel surface, pressure wave transit in the vapor, and motion of the vapor component. Each has its
characteristic time scale, and it would often be the case that the slowest time scale would be that associated with evaporation
and condensation processes at the gel surface. In addition, there is a loading time scale associated with changes in t and papp.

In this context, let us consider the case where the evaporation and condensation time scale is much longer than all other
time scales. Changes in loading then lead to a situation where the other physical processes: stress and pressure wave
propagation, fluid seepage, gas motion, etc., all essentially come to rest with respect to the current, slowly changing, mass
distribution at the gel’s interface with the vapor phase. As mass is transferred across this surface, these other processes are
regarded as giving rise to equilibrated stress and chemical potential fields within the gel, even though mass transfer is
proceeding at the gel surface, albeit it at a time scale that is much longer than all other time scales in the problem.

To describe this state of affairs at the faster time scales of interest, one may consider a treatment in which there is no
transfer of the gel’s liquid component across the gel surface. Prior to the imposition of any constraints, the variational
procedure is still dP¼ 0 with

dP¼ d
Z
Og

cgdVþ

Z
Ov

cv dV

 !
�

Z
Gg

t � dug dAþ

Z
Gv

pappnv � duf dA, ð50Þ

for all admissible variations fdug ,dq,duvg. One then obtains

d
Z
Og

cgdVþ

Z
Ov

cv dV

 !
¼

Z
Og

dcgdVþ

Z
Gg

ðcg�cvÞdug � ng dAþ

Z
Ov

dcv dVþ

Z
Gv

cvduv � nv dA, ð51Þ

and we observe that (50) and (51) could be obtained directly from (6) and (7) by replacing all subscripts f with subscript v. In a
similar fashion (3), (4), (5), (8), (10), (11), and (12) continue to hold under this same subscript replacement. We are therefore
led to an expression for dP that is given by (13) provided that subscripts f become subscript v. In this setting we consider the
case in which there is no liquid flux through the gel interfaceGg . Thus the variation dq is subject to the condition dq � ng ¼ 0 on
Gg . In view of the f-v analogue of (3) this is equivalent to the kinematic constraint dug � ng ¼ duv � ng on Gg on the
displacement variations.

In extracting governing equations from the variational requirement dP¼ 0 it follows that the multiplier of dq � ng onGg is
no longer required to vanish. Thus by the same reasoning as that used in the first paragraph of Section 3.1 it is concluded that
rv ¼ r̂vðpappÞ throughout Ov and that the gel is subject to governing Eqs. (20) and (21) on Og , and boundary condition (22) on
Gg . However, the other boundary condition on Gg , namely (44) which derived from (19) under f-v, is no longer required to
hold. Instead it is replaced by the kinematic condition of no mass transfer through the gel boundary Gg prior to
reestablishment of equilibrium within the gel. This gives that

M� ¼

Z
Og

rg dV ¼

Z
OgX

rgJ dVX, ð52Þ

where Mn is the now fixed total mass within the gel. The second integral in (52) is taken as over the reference volume of the
gel, which is why we use the notation OgX

and dVX in the second integral expression.
We now impose the constraint of volume additivity (2) within the gel while still treating the vapor as compressible. This is

the same procedure that led to (45) and (46) when condition (44) was operative. This again leads to (45). However now,
because (44) no longer applies, one does not obtain the condition (46) on Gg . Instead of (46) one obtains

@cg

@F
FT
þðcg�cf 0ÞI

� �
ng ¼ tþ ðrf 0Kg�cf 0Þ� rv

@cv

@rv

�cv

� �� �����
rv ¼ r̂vðpappÞ

ng on Gg , ð53Þ

where Kg is again as defined in (28). It is to be remarked that this Kg is spatially constant since the limiting process again gives
(32). All of the other variables appearing within the brackets of (53) are also independent of location on Gg . Thus the
bracketted expression within (53) is constant on Gg , although its value is so far arbitrary since it contains Kg. It is therefore
convenient to define a new arbitrary constant

P¼ ðrf 0Kg�cf 0Þ� rv

@cv

@rv

�cv

� �� �����
rv ¼ r̂vðpappÞ

ð54Þ

so that (53) can be written

@cg

@F
FT
þðcg�cf 0ÞI�PI

� �
ng ¼ t on Gg : ð55Þ
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In addition, in terms of the free energy W defined via (37) and (38) one now obtains from (45) and (55) that

div
1

J

@W

@F
FT

� �
¼ 0 in Og , ð56Þ

1

J

@W

@F
FT
�P

� �
ng ¼ t on Gg : ð57Þ

We may now also simplify the mass conservation condition (52) by using (2) so as to obtain

M� ¼

Z
OgX

rgJ dVX ¼

Z
OgX

ðrs0þðJ�1Þrf 0Þ dVX: ð58Þ

Introduce the dry volume of the polymeric constituent

Vp ¼

Z
OgX

dVX, ð59Þ

whereupon (58) finally givesZ
OgX

J dVX ¼ V�, ð60Þ

where

V� ¼
1

rf 0

ðM��ðrs0�rf 0ÞVpÞ ð61Þ

is the fixed total volume of the unsaturated gel. Eqs. (56), (57), and (60) are equivalent to those employed in Deng and Pence
(2010a,b) for the description of equilibrium deformations of unsaturated gels.

3.3. Recapitulation

Table 1 summarize various gel scenarios described in this and the previous section. All of the cases listed in the table
correspond to a gel in which the constraint (2) holds throughout the gel. Alternatively the field equations and gel surface
conditions can be expressed as

divr¼ 0 in Og , rng ¼ t in Gg , ð62Þ

where the stress tensor r is given by

r¼
2

J
F
@W

@C
FT
þ

0I if saturated;

�PI if unsaturated;

�
rf 0

rv

�1

� �
pappþ

rf 0

rv

cv�cf 0

� �
I

����
rv ¼ r̂vðpappÞ

, if equilibrated with vapor:

8>>>><
>>>>:

ð63Þ

Here the objectivity condition W=W(C) is used in (63). Note also that the final multipliers of the identity tensor I are constant
for each of these three scenarios.

In view of these different gel scenarios let us consider again load induced loss-of-saturation. Specific examples of loss
of saturation were examined in Deng and Pence (2010a,b). The loss-of-saturation transition corresponds to the governing
Eqs. {(39), (40)} changing to governing Eqs. {(56), (57), (60)} at the instant when the last bit of liquid is imbibed by the gel. As
our focus is restricted exclusively to equilibrium states, it is assumed therefore that the change in load t – which is driving the
process – takes place sufficiently slowly so that the various dynamical phenomena described earlier come to rest on time
scales that are much shorter than that of the change in load. In particular, the present treatment does not apply at shorter time
scales when such dynamical processes are active (such as the liquid diffusion within the gel). At the instant that saturation is
lost, the value of P is initially zero because the final saturated state determines Vn and so, by definition, satisfies the global
constraint (60). Additional change in t that increases the amount of undersaturation gives rise to a nonzero P with changes in P

correlating to changes in t in a continuous manner. This in turn accounts for the stiffer response of the unsaturated gel. Indeed
Table 1
Governing equations for different types of systems.

Situation Surrounded by Gel boundary Field Gel surface Side

variation equation condition condition

Saturated Liquid (incompressible) (3) (39) (40) None

Unsaturated Vapor (compressible) dq � ng ¼ 0 (56) (57) (60)

Equilibrated with vapor Vapor (compressible) (3) (48) (49) None
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P can be viewed as an all-around constant hydrostatic pressure that drives out just the right amount of liquid from a
hypothetical saturated gel so as to make the overall liquid content consistent with the constraint (60).

In one respect, however, the process as described in the previous paragraph is not a sequence of equilibrium states. This is
because the mass transfer at the gel surface by evaporation/condensation is regarded as taking place on a time scale that is
even slower than that of the changing load t. On time scales that are on the order of the evaporative time scale, equilibrium is
described mathematically by means of (48), (49). Consider therefore the following loading process. The gel first undergoes
loss-of-saturation by virtue of surface tractions t that are, at first, changing slowly with respect to all time scales except that of
evaporation which operates on an even longer time scale. Then, later, t is subsequently held fixed for all future time. Prior to t
being held fixed the system is modeled on the basis of (56), (57), (60). For sufficiently large time, however, the system is
modeled on the basis of (48), (49). Formally, (49) from the latter set is obtained from (57) of the former set by assigning to Kg

the value of @cv=@rv given in Eq. (54). Thus the transition from the unsaturated treatment in the second line of the Table to the
fully equilibrated treatment of the third line of the Table can be viewed as described by the value of Kg changing from its
constraint value as determined by (60) – which makes this initial Kg independent of vapor properties – to the value @cv=@rv

which is the chemical potential of the vapor phase.
The determination of complicated states of deformation for any of the situations indicated in Table 1 motivates the consideration

of finite element methods. Accordingly, new constitutive models are often implemented using a user-supplied subroutine in
commercial FEM software. Recently, for example, a variety of inhomogeneous deformation solutions corresponding to a swollen
saturated gel were obtained with the aid of ABACUS by Hong et al. (2009). Developing such a user-supplied subroutine in the context
of a commercial software package presents its own issues, one of which is that it is not always clear that such an implementation–
even if possible with regard to current modeling–will be consistent with an easy route for continued modification so as to incorporate
future modeling advances. This motivates us to develop from scratch both 2D axisymmetric and 3D FEM codes using Matlab so as to
describe these states of gel equilibrium. We now describe the essential features of such algorithms and then demonstrate their
efficacy in analyzing inhomogeneous deformation of a swollen gel.

4. Application: Modeling of an everted swollen tube

As demonstration we consider equilibrium deformations corresponding to the axisymmetric eversion of a cylindrical gel
tube, meaning that the tube is turned inside-out. This is easily accomplished for example in short pieces of rubber hosing. The
eversion deformation has a long history of study in conventional hyperelasticity beginning with Rivlin in the context of the
incompressible theory (Rivlin, 1949) and then leading through more recent work (Haughton and Orr, 1997, 1996; Chen and
Haughton, 1997) in the context of the compressible theory. The case of tubes composed of polymer gels, which for saturated
gels corresponds to the compressible theory with W given by (41), was examined in Deng and Pence (2010a). That work also
examined aspects of the eversion deformation for an unsaturated gel.

LetOgX be the domain of the initially dry polymer body B in the reference configuration. The position of a particle in OgX is
denoted by Xg ¼ X̂gðRs,Ys,ZsÞ in a cylindrical coordinate system with

Rs
i rRsrRs

o, 0rYso2p, �LsrZsr0: ð64Þ

The swollen and deformed body kðBÞ occupies domain Og with particle positions denoted by x¼ x̂ðr,y,zÞ. General
axisymmetric eversion deformations are then of the form r¼ ~rðRs,ZsÞ, y¼Ys, and z¼ ~zðRs,ZsÞ where @~r=@Rso0.

In Deng and Pence (2010a) it is the special case ~r ¼ ~rðRsÞ and ~z ¼�lzZs, where lz40 is a constant, that is studied in detail.
The inherent simplification of this special case reduces boundary value problems to the consideration of ordinary differential
equations. These simplifications are generally not consistent with zero tractions at each point on the external boundary.
Specifically, to obtain equilibrium deformations of such a simplified form it is necessary to impose the normal displacement
on the tube caps (the surfaces that were Zs=�Ls and Zs=0 in the reference configuration). On the other hand, if one seeks
equilibrium solutions corresponding to a completely released and everted tube (i.e., zero tractions on all external surfaces)
then one must consider deformations with the more general function dependence r¼ ~rðRs,ZsÞ and z¼ ~zðRs,ZsÞ. Such
deformations are not treatable by the method of ordinary differential equations given in Deng and Pence (2010a). This is what
accounts for their consideration here in the context of more general finite element methods. To this end the overall mapping
ðRs,Ys,ZsÞ-ðr,y,zÞ will be decomposed into a suite of three separate mappings:
�
 A free swelling mapping ðRs,Ys,ZsÞ-ðRfs,Yfs,ZfsÞ.

�
 A mapping to a convenient computational domain ðRfs,Yfs,ZfsÞ-ðR,Y,ZÞ.

�
 The mapping to the final deformed configuration ðR,Y,ZÞ-ðr,y,zÞ.
We represent this decomposition as B-kfsðBÞ-kRðBÞ-kðBÞ and now describe each mapping in turn.
After immersing the initially dry polymer into the liquid, the resulting gel gradually swells and reaches an equilibrium

state in the absence of external loading. If sufficient fluid is available to saturate the polymer then the gel is said to be freely
swollen. The freely swollen gel then occupies a new domain Ofs

g and this deformation is described in a cylindrical coordinate
system as

Rfs ¼ zRs, Yfs
¼Ys, Zfs ¼ zZs, ð65Þ
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where z41 is the free swelling ratio. Under free swelling the inner radius and outer radius become zRs
i and zRs

o, respectively.
The free swelling deformation gradient is Ffs

¼ zI whereupon it follows that z can be found from W(F) by requiring that

d

dz
WðzIÞ ¼ 0: ð66Þ

For WðFÞ ¼CðFÞþHðJÞ in the form (41) this gives

lnð1�z�3
Þþz�3

þwz�6
þ
m
M
z�1
¼ 0, ð67Þ

which is one form of the Flory–Huggins equation. Even if there is insufficient liquid to freely swell the body, we continue to
use the mapping (65) in the ensuing development.

Now the swollen cylinder is everted by applying external tractions sufficient to turn the tube inside-out. Releasing the
tube may or may not cause the tube to pop back to its original shape depending on material properties and tube dimensions. If
the tube remains everted then it again slowly reaches a new equilibrium under the influence of various dynamical process
such as fluid migration within the gel. Alternatively, the eversion process may take place sufficiently slowly so as to proceed
through what is essentially a sequence of equilibrium states. Either way, the deformed equilibrium shape of the fully released
everted tube kðBÞ will no longer be that of a perfect cylinder due to residual stress.

The direct mapping kfsðBÞ-kðBÞwould introduce extreme distortions to finite elements defined directly on kfsðBÞ. This is
avoided by considering the configuration kRðBÞ that has the shape of a perfect cylinder with domain OR where the associated
particle positions X¼ X̂ðR,Y,ZÞ are mapped from Xfs

g by

R¼�RfsþzRs
i þzRs

o, Y¼Yfs, Z ¼�Zfs: ð68Þ

Since @R=@Rfso0 this mapping kfsðBÞ-kRðBÞ represents an extremely simple eversion. In what follows we shall make use of
the notation Ro ¼

def zRs
i and Ri ¼

def zRs
o which acknowledges that the eversion maps particles that were originally on the inner

radius to the outer radius and vice-versa. In general, stresses computed in the bodykRðBÞwould not satisfy (62)1 and so such a
state would require not only the application of surface tractions, but also the application of body forces. This is, however, not
relevant for our purposes since kRðBÞ here serves as a convenient hypothetical configuration on which to define finite
elements. After the final mapping kRðBÞ-kðBÞ, all stresses in kðBÞ will satisfy finite element equations associated with Eq.
(62) of the theoretical development. The position of the particle in the current (deformed) configuration is denoted by
x¼ x̂ðr,y,zÞ and the mapping kRðBÞ-kðBÞ is the axisymmetric deformation given by

r¼ r̂ðR,ZÞ, y¼Y, z¼ ẑðR,ZÞ: ð69Þ

It is this mapping which is determined by the finite element procedure.
At this point in the development we amend our notation so as to replace F in all previous sections by the notation FgX . In the

present example of the eversion deformation, FgX represents the deformation gradient associated with the full deformation
mapping B-kðBÞ. This replacement is made so as to now use the notation F for the deformation gradient associated with the
mapping (69) which is to be obtained directly by the finite element procedure. In view of the three mappings (65), (68), and
(69) – that together comprise the deformation from the nominally dry reference configuration of the polymer constituent to
that of the swollen, everted gel cylinder – we write

FgX ¼ FFRFfs, ð70Þ

where Ffs
¼ zI,

FR
¼

�1 0 0

0 RoþRi

R �1
h i�1

0

0 0 �1

2
664

3
775, and F¼

@r̂
@R 0 @r̂

@Z

0 r̂
R 0

@ẑ
@R 0 @ẑ

@Z

2
664

3
775: ð71Þ

In the above expression for FR we recall that Ro ¼ zRs
i and Ri ¼ zRs

o.
In what follows it is convenient to consider Fs

¼
def FRFfs which can be considered as a tensorial quantity representing the

pre-stretch of the body in the computational domain OR. It is written from (71) as

Fs
¼

�z 0 0

0 z RoþRi
R �1

h i�1
0

0 0 �z

2
664

3
775: ð72Þ

In Sections 2 and 3, it has been shown that the form of the equilibrium equation under a static loading condition is exactly
that which applies to a compressible hyperelastic solid with stored energy density W. Thus, we model the quasi-static
behavior of the swollen polymer as a compressible material whose stored energy density (per unit volume inOgX ) is given by a
function of the right Cauchy–Green tensor CgX

¼ FT
gX

FgX
. Specifically, we take this stored energy in the form (38), i.e.,

WðCgX Þ ¼CðCgX ÞþHðJgX Þ where, henceforth, C and H are given by (41).
Since a nominally pre-stressed configurationkRðBÞ is used as the computational domainOR, it is convenient to reformulate

the constitutive relation with respect to kRðBÞ. It is similarly convenient to make use of standard indicial notation to present
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the ensuing finite element equations. For example, the stress r in (63) for a saturated gel would now be written as

r¼
2

JgX

FgX

@WðCgX
Þ

@CgX

FT
gX
: ð73Þ

However, using a push-forward operation, the stress r in (73) is now written with respect to kRðBÞ as

r¼
2

J
F
@Ŵ ðCÞ

@C
FT with Ŵ ðCÞ ¼

1

Js
WððFs

Þ
T CFs
Þ, ð74Þ

where J=det F and Js=det Fs. The ‘‘known’’ quantities Cs and Js are suppressed in the notation Ŵ ðCÞ. By virtue of (38) and (41)
this gives Ŵ ðCÞ ¼ ĈðCÞþĤðJÞ where

ĈðCÞ ¼
m

2Js
ðFs
aiF

s
biCab�3Þ,

ĤðJÞ ¼
M

Js
ðJsJ�1Þln 1�

1

JsJ

� �
þw 1�

1

JsJ

� �� �
, ð75Þ

and m, M, and w are again the material parameters. The local volume change from the solid state can also be calculated by
JgX

= JJs.

5. Finite element formulation

A weak form for a saturated gel can be obtained by finding x which satisfies the following equation for all admissible dx,

dP¼
Z
OR

@Ĉ
@C

: dCþĤ uðJÞ
@J

@C
: dC dV�

Z
Gt

t � dx da¼ 0, ð76Þ

where the last term represents the work done by the traction t on the boundary Gt in the current configuration. Using
nda= JF�TN dA and defining to= JTF�TN on GR (the inverse image of Gt on the boundary of OR) this surface integral can be
rewritten with respect to the computational domain as

R
GR

to � dxdA. To solve various boundary value problems, we present
both a 2D FEM for axisymmetric loading and a 3D FEM for more general problems.

5.1. FE formulation for an axisymmetric deformation

The axisymmetric FEM for (76) involves approximating the current position x={r(R,Z), z(R,Z)} in a triangular element by

xi ¼FiBxp
B, ð77Þ

where xp
B=[r(1),z(1),r(2),z(2),r(3),z(3)]T and FiB is the shape function matrix given by

U¼
f1
ðR,ZÞ 0 f2

ðR,ZÞ 0 f3
ðR,ZÞ 0

0 f1
ðR,ZÞ 0 f2

ðR,ZÞ 0 f3
ðR,ZÞ

" #
: ð78Þ

Here fj
ðR,ZÞ is a shape function with respect to the jth nodal point and the shape functions satisfy

Pðall nodesÞ
j fj

ðR,ZÞ ¼ 1.
Variations are given in terms of the directional derivative (Gâteaux derivative)

dðxÞf ðxÞ ¼
dðf ðxþedxÞÞ

de

����
e ¼ 0

: ð79Þ

In a Galerkin treatment, the shape function itself is typically chosen as a weight function (i.e., dxi ¼FiA). Using the chain-rule,
the variational operation can be expressed with respect to the nodal position vectors as

dðxÞf ðxÞ ¼
dðf ðxp

BFiBþeAFiAÞÞ

deA

����
eA ¼ 0

¼
@f ðxÞ

@xp
A

: ð80Þ

Thus, the finite element formulation (76) can be written in the form

½F ðxÞ�A ¼
ZZ

@Ĉ
@Cab

@Cab

@xp
A

þĤ uðJÞ
@J

@Cab

@Cab

@xp
A

( )
ðR dR dZÞþ

Z
to
kF̂kAðR dSÞ ¼ 0, ð81Þ

where dS2=dR2+dZ2. Eq. (81) are solved by using Newton–Raphson iteration

fxpgnþ1 ¼ fxpgn�
@F ðxÞ
@xp

� ��1

fF ðxÞg, ð82Þ

where

@½F ðxÞ�A
@xp

B

¼

ZZ
@2Ĉ

@Cab@Cgo

@Cab

@xp
A

@Cgo

@xp
B

þ
@Ĉ
@Cab

@2Cab

@xp
A@xp

B

(
þĤ uðJÞ

@2J

@Cab@Cgo

@Cab

@xp
A

@Cgo

@xp
B

þĤ uðJÞ
@J

@Cab

@2Cab

@xp
A@xp

B
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þĤ 00ðJÞ
@J

@Cab

@J

@Cgo

@Cab

@xp
A

@Cgo

@xp
B

)
ðR dR dZÞ ð83Þ

and the derivatives of the Jacobian with respect to the Cauchy–Green stretch tensor are given by

@J

@Cab
¼

J

2
C�1
ab , ð84Þ

@2J

@CabCgo
¼�

J

4
½C�1

ag C�1
boþC�1

aoC�1
bg �þ

J

4
C�1
ab C�1

go : ð85Þ

For an unsaturated gel, the weak form is augmented so as to include the global constraint (60). Since
R
OgX

JJs dV ¼
R
OR

J dV

the variational equation can be written

Z
OR

@Ĉ
@C

: dCþĤ uðJÞ
@J

@C
: dC dV�

Z
Gt

t � dx da�Pd
Z
OR

J dV�V�

� �
¼ 0, ð86Þ

where Vn is the known total volume and the as yet unknown constant P is the associated Lagrange multiplier. Hence,
one solves the following weak form equation

Z
OR

@Ĉ
@C

: dCþðĤ uðJÞ�PÞ
@J

@C
: dC dV�

Z
Gt

t � dx da¼ 0, ð87Þ

with Z
OR

J dV�V� ¼ 0: ð88Þ

To treat (87) and (88), one begins with an initial guess P=P0 and solves (87) as in the case of a saturated gel. Then P is updated
so as to converge upon (88) by Newton iteration, i.e.,

Pnþ1 ¼ Pn�
VðPnÞ�V�

dV=dP
, ð89Þ

where VðPnÞ ¼
R
OR

J dV is calculated from the solution of (87) with P=Pn and dV/dP is its derivative with respect to P which is
obtained numerically.
5.2. FE formulation for a 3D model

In a manner similar to that resulting in (81), governing equations for the 3D finite element formulation for the saturated
gel are obtained as

½F ðxÞ�A ¼
Z
OR

@Ĉ
@Cab

@Cab

@xp
A

þĤ uðJÞ
@J

@Cab

@Cab

@xp
A

( )
dVþ

Z
Go

t

to
kF̂kA dA¼ 0: ð90Þ

The tangent matrix for the Newton–Raphson method is then given by

@½F ðxÞ�A
@xp

B

¼

Z
OR

@2Ĉ
@Cab@Cgo

@Cab

@xp
A

@Cgo

@xp
B

þ
@Ĉ
@Cab

@2Cab

@xp
A@xp

B

(
þĤ uðJÞ

@2J

@Cab@Cgo

@Cab

@xp
A

@Cgo

@xp
B

þĤ uðJÞ
@J

@Cab

@2Cab

@xp
A@xp

B

þĤ 00ðJÞ
@J

@Cab

@J

@Cgo

@Cab

@xp
A

@Cgo

@xp
B

)
dV : ð91Þ

Let {E1, E2, E3} and {Ee
1, Ee

2, Ee
3} be orthonormal basis vectors in the global and local coordinates, respectively. Since the pre-

stretch tensor Fs is given a matrix representation with respect to a polar coordinates in (72), we take basis vectors of the polar
coordinate system to be the local basis. The center of an element Xc is then set to the origin O={0, 0, 0} of the local coordinates.
Then the normalized vector in the radial direction becomes Ee

1, and {0, 0, 1} is set to Ee
3. Ee

2 is obtained by the cross product of Ee
3

and Ee
1. A point X={X1, X2,X3} in the global Cartesian coordinate system is transformed to the local Cartesian coordinate

Xe={Xe
1,Xe

2,Xe
3} by

Xe
a ¼ Ee

a � ðX�Xc
Þ, or Xe

a ¼QabðXb�Xc
bÞ, ð92Þ

where Qab ¼ Ee
a � Eb. A linear element has four nodal points and it is convenient to define vectors for the nodal points as

Xep
¼ fXeð1Þ

1 ,Xeð1Þ
2 ,Xeð1Þ

3 ,Xeð2Þ
1 ,Xeð2Þ

2 ,Xeð2Þ
3 ,Xeð3Þ

1 ,Xeð3Þ
2 ,Xeð3Þ

3 ,Xeð4Þ
1 ,Xeð4Þ

2 ,Xeð4Þ
3 g

T , ð93Þ

Xp
¼ fXð1Þ1 ,Xð1Þ2 ,Xð1Þ3 ,Xð2Þ1 ,Xð2Þ2 ,Xð2Þ3 ,Xð3Þ1 ,Xð3Þ2 ,Xð3Þ3 ,Xð4Þ1 ,Xð4Þ2 ,Xð4Þ3 g

T : ð94Þ



S. Baek, T.J. Pence / J. Mech. Phys. Solids 59 (2011) 561–582 575
Vectors xep and xp can de defined in a similar fashion. The coordinate transform between the global and the local coordinates
is given by

Xep
¼ ~Q ðXp

�Xcp
Þ, xep ¼ ~Q ðxp�Xcp

Þ, ð95Þ

where ~Q is a 12� 12 matrix representing the rotation. The position vector in the local coordinate is

xeðX1,X2,X3Þ ¼Uxep ð96Þ

where

U¼

f1 0 0 f2 0 0 f3 0 0 f4 0 0

0 f1 0 0 f2 0 0 f3 0 0 f4 0

0 0 f1 0 0 f2 0 0 f3 0 0 f4

2
664

3
775, ð97Þ

and fj
ðX1,X2,X3Þ is the shape function with respect to the jth nodal point. The shape functions satisfyPðall nodesÞ

j fj
ðX1,X2,X3Þ ¼ 1. Using (95) and (96), the vector xe can be written as

xe ¼U ~Q ðxp�Xcp
Þ, ½xe

a ¼FaA
~Q ABðx

p
B�Xcp

B Þ�: ð98Þ

Define Ue by components as follows:

Fe
aB ¼FaA

~Q AB: ð99Þ

The deformation gradient and the right Cauchy–Green tensor then have component representations with respect to the local
coordinates by

Fab ¼ xe
a,b ¼Fe

aA,bxp
A, Cab ¼ xe

g,axe
g,b ¼Fe

gA,axp
AF

e
gB,bxp

B: ð100Þ

The spatial derivatives of C appearing in (91) now follow directly from differentiation of (100) with respect to the components
of xp.

6. Eversion simulation by means of the FEM

For numerical simulation, consider a hollow cylinder such that Rs
o=2Rs

i and Ls=Rs
o. These ratios are preserved by the free

swelling (65). In addition, the deformation (68) which establishes locations in the computational domain then gives Ro=2Ri.
The lateral surfaces are the particle points that are at R=Ri and R=Ro in OR. The upper cap are the particles at Z ¼ zLs and the
lower cap are the particles at Z=0 in OR. As discussed in Wineman and Rajagopal (1992) and Deng and Pence (2010a) the
parameter values M¼ 100m and w¼ 0:425 are suggested by the work of Paul and Ebra-Lima on rubbers infused with toluene
(Paul and Ebra-Lima, 1970), and these values will be used here as well so as to provide results that can be directly compared to
those presented in Deng and Pence (2010a). For these parameter values it is found that the free swelling stretch takes on the
value z¼ 1:722. Axisymmetric FEM uses the cross-section of the cylinder as shown in the right panel of Fig. 2 in which
distances have been nondimensionalized by Ri. The left panel shows the 3D computational domain. A geometric mesh for
both the 3D and the axisymmetric FEM was then created on these domains using HyperMesh (HyperWorks, Altair). The
numerical computation as described in the previous section is then performed on Matlab. Various boundary conditions are
now prescribed on the caps and lateral surfaces for both the case of a saturated gel and that of an unsaturated gel.

6.1. Simple eversions with no Z variation and verification with Deng and Pence (2010a)

As discussed in Section 4, the special eversion deformation in which there is no Z variation in the radial displacement is
treated at length in Deng and Pence (2010a) by the previously indicated ODE method. Such a deformation is achievable with
traction free lateral surfaces provided that the caps are maintained to be flat by a suitable distribution of normal tractions.
Z

R

1

1 2

Fig. 2. A geometric model for finite element analysis. The inner and outer radii are 1 and 2, respectively, and the lateral length is 1. Left: a geometric model for

3D FEM, Right: the axisymmetric cross-section of the cylinder for 2D FEM.
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Hence the boundary conditions for the corresponding FEM is that of traction free lateral surfaces and caps that are each
subject to a uniform normal displacement and zero shear tractions. The polar coordinate system then provides a principal
frame for the resulting deformation which, as shown in Deng and Pence (2010a) and discussed here in Section 4, can be
described by r¼ ~rðRsÞ and z¼�lzZs ¼�l̂zzZs where we have introduced l̂z ¼ lz=z. By this means the axial deformation is
simply z¼ l̂zZ since Z ¼�zZs (viz. (65) and (68)). This permits the prescribed normal displacements to be expressed as zero
on the lower cap and as ðl̂z�1ÞLs on the upper cap. Unlike Deng and Pence (2010a) it is to be emphasized that the FEM does not
incorporate the deformation assumptions r¼ ~rðRsÞ, z¼�l̂zzZs since it proceeds directly using the formulation described in
Section 5.

The radial variation of JgX (normalized by z3), and the stress components (normalized by m) from the axisymmetric FEM
simulations are shown in Fig. 3 for the saturated material. Values are displayed for both l̂z ¼ 1 and 2; they show very good
agreement with the saturated condition results from Deng and Pence (2010a). As shown in the figure, the r domain is different
for the two values of l̂z because r is the deformed radial location. The case l̂z ¼ 1 keeps the caps at the same Z values as in the
computational domain, however the lateral surfaces have each moved outward, which is again reflective of the fact that
the computational domain is not itself in equilibrium without an appropriate distribution of external body forces. In contrast,
the case l̂z ¼ 1 displayed in Fig. 3 involves an equilibrated body (with nonzero stresses). The spatial variation in J is reflective
of a nonuniform liquid content within the gel. The simulations show that relatively more fluid is located at the outer portion of
the everted cylinder. As l̂z increases, the gel’s local volume (JgX=z

3) increases and hence the total amount of fluid absorbed
within the body.
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If the overall amount of fluid in the system is limited, then all of the fluid could be absorbed within the body at some value

of l̂z. Following Deng and Pence (2010a) we assume that this occurs at l̂z ¼ 2. The total volume of the swollen body then
remains constant as the cap displacement is subject to additional increase. In other words the body is now unsaturated for

l̂z42. Numerical results for the unsaturated material with l̂z ¼ 3 and 4 for loss-of-saturation at l̂z ¼ 2 are shown in Fig. 4. The
results are again compared to corresponding results obtained in Deng and Pence (2010a) by the ODE procedure which

assumes the special deformation form in which r¼ ~rðRsÞ and z¼�l̂zzZs.

Results from the 3D FEM for the saturated gel with l̂z ¼ 1 are plotted in Fig. 5. Comparison with the results from Deng and
Pence (2010a) show excellent agreement.
6.2. More complex eversion deformations

We now turn to consider more complex eversion deformations for which a nontrivial Z dependence no longer permits the
ODE treatment of Deng and Pence (2010a). Fig. 6 depicts the saturated deformation corresponding to boundary conditions of
fixed normal displacement and zero shear tractions on both the inner lateral surface and the lower cap. Specifically, the fixed
normal displacements are taken as r(R,Z)=Ri at R=Ri and z(R,Z)=0 at Z=0. The remaining surfaces (the outer lateral boundary
and the upper cap) are taken to be traction free. The traction free boundaries show significant deformation. Specifically, the
inner lateral surface lengthens axially while the outer lateral surface is contracted. As in the case of the simpler deformations
exhibited in Fig. 3 it remains the case that the outer periphery is higher in liquid content.
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Fig. 6. A saturated deformation with boundary displacement constraints rjR ¼ Ri
¼ Ri and zjZ ¼ 0 ¼ 0, from 3D FEM (left) and the axisymmetric FEM (right).

jgX/ζ3

saturated75 %

50 %

20 %

Fig. 7. An everted tube under saturated and unsaturated conditions. The boundary conditions are: traction free lateral surfaces, a traction free upper cap, and

a lower cap that is free of shear traction while subject to the fixed normal displacement condition zjZ ¼ 0 ¼ 0.
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If, for the deformation depicted in Fig. 6, the boundary condition on the inner lateral surface is changed from one of
prescribed normal displacement to one of zero normal traction, then that surface also becomes a free surface (like the outer
lateral surface and the upper cap). This results in additional deformation as shown in Fig. 7. As regards the stresses, it is found
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that the hoop stress syy is much larger in magnitude than the other two principal stresses srr and szz. The dependence of the
hoop stress upon r along the bottom cap is shown in Fig. 8. This stress is compressive for small r and tensile for large r. This
trend persists throughout the cylinder, although on the top cap one finds that the compressive zone is relatively smaller.

Fig. 7 also shows three different unsaturated deformations associated with these same boundary conditions. The
corresponding hoop stress distributions are also shown in Fig. 8. Rather than indicating values for Vn in these figures, we
present results in terms of the total volume of fluid Vf within the system (recall that the total volume of polymer is Vp as
defined in (59)). There is sufficient liquid to saturate the freely swollen system provided that Vf Zðz

3
�1ÞVp. If there is

insufficient liquid to provide for a freely swollen saturated system, then we may define the free swelling fluid volume
fractional percentage ðz3

�1Þ�1Vf =Vp � 100 as a measure of undersaturation with respect to the freely swollen state.
Specifically, Fig. 7 shows the unsaturated deformation when 75%, 50%, and 20% of the amount of fluid necessary for free
swelling saturation is actually available and absorbed. It is to be remarked that the calculation for the unsaturated case
becomes unstable as this percentage approaches zero; consequently the numerical implementation ceases to converge as
Vf-0. This singularity issue in FEM simulation is also discussed in Hong et al. (2009). The offset in every fifth data point on the
20% curve in Fig. 8 seems to be connected to this effect.

Finally, we simulate the deformation sequence between an everted tube and the original free swollen state by a
continuous process of equilibrium deformations. Fig. 9 shows different stages of such a process for a saturated tube using the
3D FEM. Each stage in the process is an equilibrium deformation such that both lateral surfaces are traction-free while the
caps are subject to displacement boundary conditions which, in effect, turn the tube inside-out. The leftmost cross-sectional
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Fig. 8. Stress distribution syy as a function of r on the lower cap Z=0 for the deformations depicted in Fig. 7.

Fig. 9. The everted tube is computationally returned back to the original freely swollen state by rotating both of the caps using the 3D FEM. The red circle

traces the inner boundary R=Ri of the computational domain, which returns to the outer boundary Rfs ¼ zRs
o of the freely swollen tube when the process is

complete. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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view in Fig. 9 gives the everted tube and so the elements (if shown) would display minimal distortion. As the sequence
proceeds from left to right these elements, if shown, would become progressively distorted. The normalized volume (JgX=z

3)
exhibits various changes as the process proceeds, which corresponds to redistribution of the fluid within the gel. The
rightmost cross-section corresponds to the free swollen state formally described by (65) in which the value of JgX is uniformly
equal to z3. Reading the figure from right to left corresponds to supplying boundary displacements that provide for an
eversion of an originally freely swollen stress-free tube. The deformation sequence from the everted saturated tube to the
saturated freely swollen state is also simulated using the axisymmetric FEM in the top panels of Fig. 10. The bottom panels
show the corresponding deformation sequence for an unsaturated system in which 75% of the amount of fluid necessary for
free swelling is available.

To gauge the mechanical effect of loss-of-saturation for this process, define an everting moment per unit angle y as

My ¼

Z
@O
9ðx�xcÞ � t9r dr dz where xc ¼

R
Oxr dr dzR
Or dr dz

ð101Þ

and t denotes the traction vector on the boundary. Here O is the 2D cross-section of the axisymmetric gel, @O is its boundary,
and xc is its centroid. Fig. 11 exhibits this moment during the deformation sequence for both the saturated case and for
Fig. 10. The everted tube is computationally returned back to the original freely swollen state for the saturated (top) and unsaturated condition (bottom) by

rotating both of the caps using the 2D axisymmetric FEM.
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different unsaturated cases corresponding to various amounts of available fluid. For the unsaturated case, liquid can neither
enter nor leave during the deformation and this is found to increase the magnitude of the everting moment. Hence, as
discussed in Deng and Pence (2010a,b), loss of saturation gives rise to an effective stiffness increase.

Fig. 11 also shows an unsaturated curve labeled 100% and this curve is quite different from the saturated curve. To explain
the meaning of the 100%-curve consider first the total gel volume associated with the saturated deformation sequence. This
total gel volume varies during the saturated deformation sequence since there is no volume constraint on the saturated gel.
Using the result of the FEM to calculate this saturated volume, one finds that it is initially less than the free swelling volume
but then at some point in the sequence it becomes greater than the free swelling volume. It then remains greater than the free
swelling volume for the rest of the sequence, only returning to the free swelling volume at the conclusion of the sequence
when the final state is that of a freely swollen uneverted tube. Now consider the system with overall liquid content that
exactly corresponds to a freely swollen gel. The gel in this ‘‘100% system’’ will be saturated for the portion of the sequence
when the saturated tube has a volume that is less than that of the freely swollen tube. This is because sufficient liquid is
available in the 100% system to maintain such a volume. However, during the latter portion of the deformation sequence,
when saturation requires more liquid than that of the freely swollen system, it will then be the case that the 100% system will
be unsaturated. The 100%-curve in Fig. 11 is computed on such a basis. Hence the curve is initially coincident with the
saturated curve. However, upon loss-of-saturation the curve departs from the saturation curve. After this departure its
qualitative form is essentially the same as that of all of the other unsaturated curves.
7. Summary

In this work we examine swollen deformations for elastomeric gels subject to surface tractions. The gel is described as a
mixture in which both the porous solid constituent and the interstitial liquid co-occupy each point of the material. Swelling is
due to an increase in the amount of liquid constituent. These aspects are all quite standard in continuum mixture theory.
Attention is focussed upon equilibrium states, so that there is no motion of the liquid constituent with respect to the solid
constituent. Since we examine the effect of changing the boundary conditions upon the gel surface, such boundary conditions
are viewed as varying sufficiently slowly so as to be consistent with a process such that each deformation in the sequence is
equilibrated. In particular, we do not treat non-equilibrium dynamical processes, such as the migration of the interstitial
liquid with respect to the deforming porous solid. Such dynamical processes are regarded as taking place and concluding on
much faster time scales than that associated with changes to the applied tractions.

Instead our interest is on examining three situations corresponding to different ways in which the gel interacts with its
external environment. The first is that of a saturated gel; this occurs when the gel is immersed in a bath of its liquid
constituent. Changes in the applied traction will then generally alter the overall amount of liquid within the gel. The second is
that in which the gel’s external surface is in contact with a vapor phase of its liquid constituent. The third is that in which the
liquid constituent does not pass through the gel’s external surface so that the total amount of liquid constituent within the gel
is fixed. This third situation is useful in modeling an unsaturated gel, meaning a gel that has less overall liquid content than
that required for a saturated deformation. Governing equations and boundary conditions associated with these various
situations are obtained through the use of a variational procedure described by Baek and Srinivasa (2004a).

A finite element method is created on the basis of the variational method and demonstrated for both saturated and
unsaturated deformations. For an unsaturated deformation, the degree of undersaturation – a measure of the amount of
liquid that would restore a state of saturation – affects the subsequent mechanical behavior. Specifically, the mechanical
response stiffens as the overall amount of liquid within the gel is reduced. The cylindrical eversion deformation (turning a
tube inside-out) is examined in some detail. In certain cases, as determined by the amount of available liquid, a loss-of-
saturation can occur during the eversion processes. This greatly increases the torque which must be supplied per unit polar
angle on the ends of the tube.

The variational procedure also clarifies the relation between an unsaturated gel and a gel that is in equilibrium with its
vapor phase. The former may eventually transition to the latter if the unsaturated system is allowed to condense or evaporate
its liquid component at the gel surface. The transition between the unsaturated case and the case of being in equilibrium with
the vapor phase corresponds to the chemical potential variable of the gel changing its value from one that is determined by
the original liquid content to the value of the chemical potential in the vapor phase.
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