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ABSTRACT
Helmholtz resonators are commonly used for tuning of

acoustic systems such as industrial processes, vehicle exhaust,
engine intake manifold systems and more.  Past efforts resulted
in limited tuning capability and significant mechanical
complexity. The work presented here considers a system that
modifies the acoustic response of a system continuously, on-
line, allowing optimum performance over a range of operating
conditions in contrast to discrete points.  The system consists
of a static Helmholtz resonator designed to enforce a nominal
resonance and an active control of an audio speaker that
provides a variable acoustic impedance. The combination of
the nominal impedance of the resonator and the differential
impedance of the control speaker results in a active controlled,
variable frequency Helmholtz resonator, named for simplicity
the “Smart Helmholtz Resonator.” The system is modeled
using bond graph methods and state space formulation is used
to analyze the frequency response.

INTRODUCTION
The Helmholtz resonator (HR) is an ideal, simple acoustic

device that has applications in acoustic systems.  In acoustic
system design, a HR is often used to modify the acoustic
response.  For example, internal combustion engine intake
manifold systems are designed so that the acoustic response
enhances the engine performance, increases fuel economy and
reduces emissions (Kong, Woods, 1992).  When design
considerations such as space and material limitations cause
the acoustic response to degrade engine performance and/or
create excessive noise, the solution is often to add a designed
HR to the system, thus improving  the response.

Tuning of engine intake manifold systems is commonly used
in the automobile industry.  Engine performance can be greatly
improved by designing the dimensions of the intake manifold
system to improve the engine “breathing” (Jameson, Hodgins,
1990).  More recently, efforts have been made to change the
acoustic response of the intake manifold system on-line.  The
GM 4.3L V6 engine uses a butterfly valve to change the
manifold acoustic response between two configurations at a
given engine speed (Grahm et al., 1992).  The result is an
engine that is tuned at two speeds, instead of one,  and thus
has greater performance and  higher fuel economy.  Another
model, the engine in the Mazda Wankel engine powered car
changes the length of the acoustic space in the intake manifold
continuously as the engine speed changes using a unwinding

coiled acoustic duct (Garret, 1992).  The result is an engine
that can be tuned at a range of frequencies and thus improved
performance over a range of engine speeds.  However the
complex mechanism used to control and link the coil duct to
the engine adds significant complexity to the manifold design.

This paper considers the solution of using active control to
modify the acoustic response of a HR in real time.  A successful
working model of the Smart HR could be used in engine intake
manifold systems to continuously tune the engine over a range
of operating speeds and thus improve engine performance over
a wide range of operating speeds.  This system would function
as a self-contained device with few moving parts and integrate
smoothly with the manifold system, thus eliminating the
complexity of changing the physical dimensions of the
acoustic system during operation.

MODEL DEVELOPMENT
The model of the Smart Helmholtz Resonator (SHR) consists

of an ideal HR, with a complex impedance boundary condition.
A controller is used to implement the boundary condition and
bond graph modeling and frequency response is used to
analyze the resulting system.

An ideal HR is an acoustic resonant system whose
volumetric flow ua, to input pressure, Pin relationship can be
represented by a second order transfer function.  The HR
consists of a rigid-wall cavity and at least one short and
narrow orifice thorough which the fluid filling it
communicates with the external medium (Temkin, 1936) as
shown in Figure 1. 
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Figure 1:  Ideal Helmholtz Resonator
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The complex acoustic impedance of the HR, z relates the
pressure Pin in the cavity to the acoustic velocity ua flowing
into the cavity as

Pin = zua  (1)

The complex impedance for a HR is given as (Temkin, 1936)

z = R' + iρo
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where R’ is the resistance due to radiation losses, ρo is  the
density of the medium, co is the speed of sound in the medium,
S is the cavity orifice cross sectional area, and V is the cavity
volume.  When dissipation is very small resonance occurs at a
frequency

ω = co
1

Ca Ia
(3)

where Ca and Ia are the effective compliance and inertia
respectively and are given by

Ca =
V

ρoco
2S

(4)

Ia = ρol e (5)

and le is the length of the cavity orifice opening.

The acoustic loss associated with the R’ term in (2) will be
small for the system in this study and is therefore neglected in
the following analysis.  Although this term could be carried
throughout the derivation, it increases the order of the transfer
functions and adds considerable complexity to the results,
obscuring the overall resonant nature of the system, while
adding little information.  With this assumption, a transfer
function representation of the system is given by
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The ideal HR model can be modified by adding a boundary
condition to modify the system dynamics (Radcliffe, Gogate,
1994).  Figure 2 shows a HR with a massless piston connected
to a boundary condition indicated by an element labeled
‘G(s)’ where G(s) is a transfer function relating the piston
displacement xm to the force acting on the piston.
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Figure 2.  HR with Complex Impedance Boundary Condition

The impedance will be implemented by an electro-
mechanical sensor-controller-actuator system resulting in a

multidomain system.  Bond graph modeling is a powerful
method for forming multidomain system models and will be
used here (Karnopp et. at.  1990).  This method will be further
justified when the model complexity is increased.  Figure 3
shows the bond graph model with the complex boundary
condition. The input pressure is represented by a source of
effort Se, the acoustic inertia and compliance of the HR are
represented by the I and C elements respectively, and the
complex impedance is represented by the G(s) element.  The 1
junction represents the fluid velocity in the neck of the HR
and the 0 junction represents the pressure in the cavity.  The
causality of each element in the system is indicated by the
causal stroke.  All acoustic elements have integral causality
and the causal stroke on the complex impedance indicates that
an effort (pressure) is input to the G(s) element which returns a
flow (velocity).  This action can be implemented with a
microphone to sense pressure and an audio speaker to return a
velocity flow rate.
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Figure 3.  HR with Complex Impedance Bond Graph Model

The causal stroke on the bond graph model indicates that
the correct causality for G(s) is given by

um = G(s )Pin (7)

where Pin is the input and the velocity um is the output.

State equations can be written for the bond graph model
taking ua and xm as the states giving
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The transfer function that relates the input pressure to the
acoustic velocity can then be found as
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The dynamic response of the system can be modified by
designing the transfer function G(s).  Consider replacing the
impedance with a Proportional-Integral-Derivative Control
transfer function defined by

G (s) = KP +
KI

s
+ KD s (10)

where KP, KI and KD are the proportional, integral and
derivative gains respectively.
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The closed loop transfer function can be computed by
replacing G(s) in (9) with (10) and simplifying which gives
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Some intuitive understanding of the effect of KP, KI and KD

on the response of the system can be obtained by studying
(11).  For example it is clear that KD appears only as a term that
is added to Ca.  This suggests that KD effects the roots of the
transfer function in the same way as Ca. Also, KI appears in the
denominator as a term that is added to the inverse of the inertia
suggesting that it effects the roots of the transfer function in a
similar manner as Ia.  

A more clear view is given by considering each term
separately.  Taking KD while setting KP and KI equal to zero in
(11) gives
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which shows that KD acts as a compliance in series with the
acoustic compliance.

Taking KP while setting KI and KD  equal to zero in (11)
gives
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which shows that  a term has been added that acts as a
damping term that is proportional to KP.

Taking KI and setting KP and KD equal to zero in (11) gives
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which shows that KI combines with the inertia term.  These
results can be illustrated by plotting the frequency response of
the system for each type of controller as shown in Figures 4, 5,
and 6.  Values used for the model parameters were
V = 0.00742 m3, ρo = 1.18 Kg/m3, co = 343 m/s,
S = 0.000113 m2, and le = 0.055 m.
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Figure 4:  Bode Diagram for Proportional Controller
with KP Ranging from 0 to 0.04
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Figure 5:  Bode Diagram for Integral Controller
with KI Ranging from 0 to 4
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Figure 6:  Bode Diagram for Derivative Controller
with KD Ranging from 0 to 5E-4.
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These figures illustrate the ability of the SHR to change the
dynamic response of the system.  Each gain KP, KI, KD gives an
input to change the apparent inertia, damping and compliance
of the HR.  In each case the resonance is preserved but the
resonant frequency or damping is altered.  The advantage of
this effect is that the response of the HR is modified without
changing the physical dimensions, i.e. cavity volume, neck
length or cross section area.   The change in response is caused
only by the interaction of the boundary condition with the
HR. 

This design also has the benefit that when the boundary
condition is removed, i.e. the controller is turned off,  the
system reverts to the nominal resonance defined by the
physical dimensions of the HR.  Since these dimensions can
designed to meet nominal performance requirements, turning
off the controller will only remove the variable tuning leaving
the nominal tuning in tact. 

Another important design consideration of this system is
that the sensitive moving parts, microphone and actuator are
not directly in the path of the fluid flow.  Instead, they are
located inside of the HR.  This provides the advantage that
debris carried by the fluid in the system will not come in direct
contact with the microphone and actuator.  Failure due to
fouling from debris and harsh environmental conditions has
limited previous implementations of active automotive muffler
systems.

MODELING THE COMPLEX BOUNDARY CONDITION
The model can be made more realistic by replacing the ideal

boundary condition G(s) with a model of a physical system,
namely a microphone, controller, and speaker that produces
the desired boundary condition response.  The bond graph
model given in Figure 7 is augmented by adding a microphone
to sense the pressure in the HR, and a controller and actuator
to produce the desired volumetric flow rate at the boundary.
The actuator model uses internal compensation to eliminate
the speaker internal resonance and the dynamics due to the
pressure interactions with the HR (Birdsong 1996), (Radcliffe,
Gogate, 1996), (Radcliffe, Gogate, 1992).
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Figure 7: Bond Graph Model of SIR with Microphone,
Controller and Actuator

The state equations of the HR and actuator in open-loop can
be assembled from bond graph model and are given by
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The output equation is given by
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where the states are the acoustic velocity and displacement at
the HR neck VA, and xa, the speaker face velocity and
displacement vs, and xs, and the electromagnetic flux in the
speaker coil λ.   The inputs are the primary coil current ip, the
primary coil voltage ep and the input pressure to the HR neck
P in, and the outputs are the acoustic velocity va, the voltage in
the secondary coil ebs, the current in the primary coil ip and the
pressure at the speaker face Pspkr.  The new parameters in (15)
and (16) relate to the compensated acoustic actuator model and
are the speaker face area, Sd, the speaker inertia Is, speaker
compliance Cs, speaker friction Rs, speaker coil resistance Rc,
speaker coil inductance Ic, speaker coil mutual inductance Mc,
speaker electromechanical coupling factor bl, and the primary
coil current sensing resistance Rm.

The closed loop response of the system can be computed by
applying the speaker compensation and feeding the output
P spkr to the controller then to the input of the actuator as
illustrated in Figure 8.  The blocks Hp, Hbs, and K1 implement
the speaker compensation.   This model represents the SHR in
the final form.
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Figure 8: SHR Model Showing Closed-Loop HR
Configuration

The frequency response of the closed-loop SHR system can
be computed and compared to the ideal boundary condition for
similar controller parameters.  Figure 9 compares the two
models for an integral controller with KP = KD = 0, and KI

ranging between 0 and 6.
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Figure 9: Bode Diagram of SHR for Integral Controller
for KI Ranging from 0 to 6.

These results show that while the introduction of the
actuator into the model changes the dynamics somewhat, the
desired resonance is preserved.  Figure 9 clearly shows that
varying KI results in changing the system resonant frequency.
This result indicates that the compensated acoustic actuator
will perform the task of the complex boundary condition as
hoped. Some differences between these results and the ideal
boundary condition model response should be noted.  In
Figure 9 the peak value of the gain at resonance changes as KI

is modified in contrast to the ideal response given by (14),
which shows that the gain become infinite at resonance since
there is no damping in the model.  Also, the low frequency

response shown in Figure 9 differs from the ideal boundary
condition model.  This should be expected from the dynamics
introduced into the system by the actuator.  However, in all
cases the resonance phenomenon is preserved and the
effectiveness of the system as a acoustic vibration absorber is
maintained.

CONCLUSIONS
The SHR system developed in this study represents a

powerful new tool in tuning acoustic systems. The SHR adds a
nominal resonance to any acoustic system and allows the
resonance to be changed on-line, continuously over a range of
frequencies.  It has advantages over other technologies in that
it does not add significant mechanical complexity, and the
design places the sensitive sensor and actuator away from the
direct path of the process.  Future work in this area will
include experimental model verification, and investigation of
on-line control strategies.
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