MACHINING OPERATIONS
AND MACHINE TOOLS

1. Turning and Related Operations
2. Drilling and Related Operations
 3. Milling
4. Machining & Turning Centers
5. Other Machining Operations
6. Shape, Tolerance and Surface Finish
 7. Machinability
8. Selection of Cutting Conditions
9. Product Design Consideration
1. Turning & Related Operations

• Turning – a machining process in which a single-point tool remove material from the surface of a rotating work piece. (Lathe)

Rotational Speed: \[N = \frac{v}{\pi D_o} \]

\[D_o - D_f = 2d \]

Feed rate: \[f_r = Nf \]

Time of machining: \[T_m = \frac{L}{f_r} \]

Material Removal Rate: \[MRR = vfd \]
Operations related to Turning

- Facing
- Taper turning
- Contour turning
- Form turning
- Chamfering
- Cutoff
- Threading
- Boring
- Drilling
- Knurling
Work Holding

- Mounting between two centers (Dog & Live center)
- Chuck
- Collet
- Face plate
Other Lathes & Turning Machine

• Toolroom Lathe and Speed Lathe
• Turret Lathe
 – The tailstock is replaced with a turret
• Chucking Machines – No tailstock
• Automatic Bar Machine – Similar to chuck machine but with a collet
 – A single- and multiple-spindle bar machines
• NC Lathe
Boring Machining

- Boring – Cutting is done inside diameter of the work material

Horizontal Boring Machining

Vertical Boring Machining
2. Drilling & Related Operations

• Geometry of Twist drill
 – Shank, Neck and Drill body
 – Helix angle, Point angle, Flute, cutting edge, Chisel edge, Margin

• Cutting conditions

 Spindle: \(N = \frac{v}{\pi D} \)
 Feed rate: \(f_r = N f \) \(\text{f(in/rev)} \)

 Metal Removal Rate: \(MRR = \frac{\pi D^2 f_r}{4} \)

 Machining time: \(T_m = \frac{t + A}{f} \) For a through hole

 \(T_m = \frac{d}{f_r} \) For a blind hole
Twist Drill and Drilling Operations

Figure 8.49 Various types of drills and drilling operations.

From Kalpakjian and Schmid (2003)
Machine Tool for drilling

- Drill press
 - Upright drill
 - Bench drill
 - Radial drill
 - Gang drill - 2-6 drills together
 - NC drill

- Vice, Jig and fixture
3. Milling

- **Milling**
 - A machine operation in which a work part is fed past a rotating cylindrical tool with multiple edges. (milling machine)

- **Types**
 - **Peripheral milling**
 - Slab, slotting, side and straddle milling
 - Up Milling (Conventional) & down milling (Climb)
 - **Facing milling**
 - Conventional face, Partial face, End, Profile, Pocket & contour millings
Cutting conditions

• Milling cutters
 – Plain milling cutters
 – Form milling cutters
 – Face milling cutters
 – End milling cutters

• Cutting conditions
 Spindle rotation speed: \(N = \frac{v}{\pi D} \)
 Feed rate: \(f_r = Nn_tf \)
 Material Removal Rate: \(MRR = wdf_r \)
Milling Machines

- Knee-and-column Milling Machine
 - Horizontal and Vertical types
 - Universal and Ram types
- Bed-type Mill
- Planer-type Mills – the largest category
- Tracer (profile) Mill – reproduce an irregular part geometry
- CNC Milling machine
Machining Centers

• Machining center – highly automated machine tool capable of performing multiple machining operations under CNC control.
 – Automatic tool changer
 – Pallet shuttles
 – Automatic workpart positioning

• CNC turning center
A CNC mill-turn center

A series of operations without human interactions

Stock Turning Milling Drilling

A part

From a round stock From a casting From another casting
5. Other Machining Operations

- Shaping and planing
 - A single-point tool moves linearly relative to the work part
 - Shaping - A tool moves
 - Planing - A workpart moves

- Broaching
 - Performed by a multiple-tooth cutting tool by moving linearly relative to the work in the direction of the tool axis.

- Sawing
 - Hacksawing, Bandsawing, and Circular sawing
Broaching

Semifinishing teeth

Finishing teeth

Roughing teeth

Cut per tooth
Sawing

Hacksaw - linear reciprocating motion

Bandsaw - linear continuous motion

Saw Blade (Straight & Undercut tooth or Straight & Raker sets)