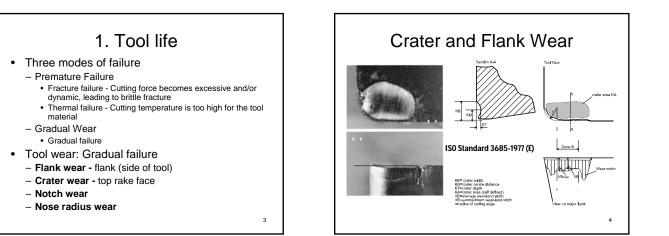
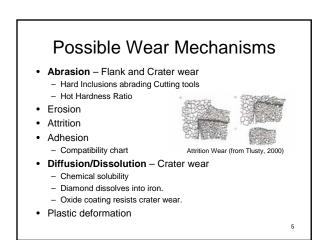
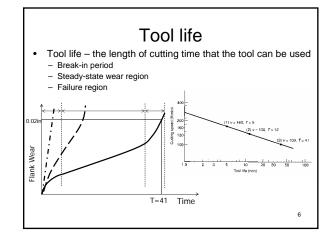
CUTTING TOOL TECHNOLOGY

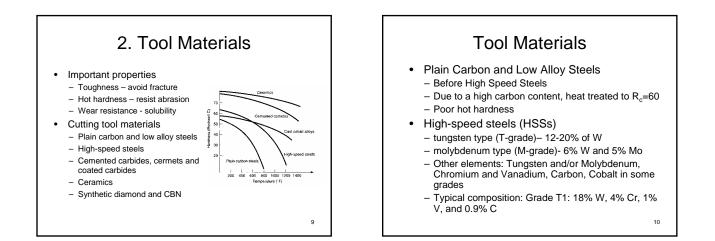

Tool life
 Tool Materials
 Tool Geometry
 Cutting fluids


Introduction


• Machining is accomplished by cutting tools.

2

- Cutting tools undergo high force and temperature and temperature gradient.
- Tool life
- · Two aspects of design
 - Tool Materials
 - Tool Geometry
- Cutting fluids



 F. W. Taylor [1900]'s Equation vTⁿ = C Generalized Taylor's Equation vTⁿ f^md^p = C where v = cutting speed; T = tool life; and n and C depend on feed, depth of cut, work material and, tooling material n is the slope of the plot C is the intercept on the speed axis 					
Tool material	<u>n</u>	<u>C (m/min)</u>		<u>1)</u>	
High speed steel: Non-steel work Steel work Cemented carbide Non-steel work Steel work Ceramic Steel work	0.125	120 70 900 500 3000	350 200 2700 1500		7

Tool Life Criteria in practice

- 1. Complete failure of cutting edge
- 2. Visual inspection of flank wear (or crater wear) by the machine operator
- 3. Fingernail test across cutting edge
- 4. Changes in sound emitted from operation
- 5. Chips become ribbony, stringy, and difficult to dispose of
- 6. Degradation of surface finish
- 7. Increased power
- 8. Workpiece count
- 9. Cumulative cutting time

Tool Materials

- HSSs
 - Still used extensively for complex geometry such as drills
 - Heat treated to R_c=65
 - Re-grinded for reuse
 - Thin coating
- · Cast Cobalt Alloys
 - 40-50% Co, 25-35% W, 15-20% others
 - Casting in a graphite mold and grind
 - Toughness is not as good as HSS but hot
 - hardness is better.
 - Not so important

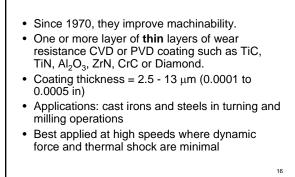
11

Cemented Carbides, Cermets & Coated Carbides

Advantages

- High compressive strength and modulus
- High room and hot hardness
- Good wear resistance
- High thermal conductivity
- Lower in toughness that HSSs
- For machining steels, the solubility of WC is very high resulting in extensive crater wear

 Steel grades – with TiC and TaC
 - Nonsteels grade


Cemented carbides

- Cemented Carbides Mainly WC-Co
- As grain size is increased, hardness decreases but TRS increases.
- As the content of cobalt increase, TRS increases but hardness decreases.
- For roughing or milling, high cobalt is desirable
- For finishing, low cobalt is desirable.

Classification of C-grade carbides Nonsteel-cutting grades Steel-cutting grades Wear Resistance C1 Roughing C5 conten Toughness content C2 C6 General purpose C3 Finishing C7 Cobalt Ц Precision Finishing C4 C8 With TiC and TaC Abrasive wear resistance Crater wear resistance

14

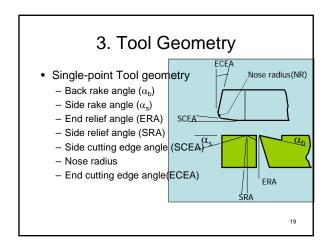
Cermets • Cermets – TiC, TiN and TiCN with Ni or Mo as binders - Applications: High speed finishing and semifinishing of steels, stainless steels and cast iron - Higher speeds than carbides - For better finish, low feed

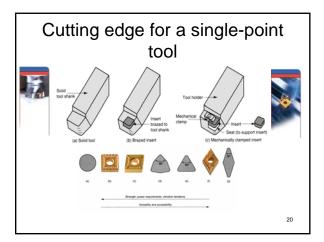
Coated carbides

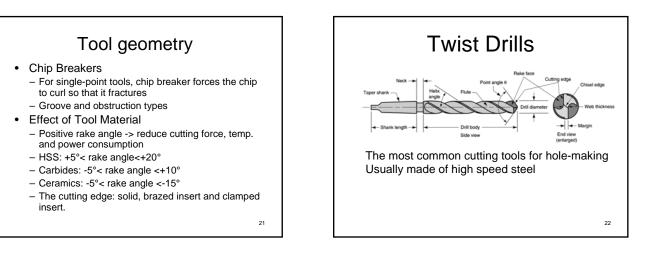
Ceramics

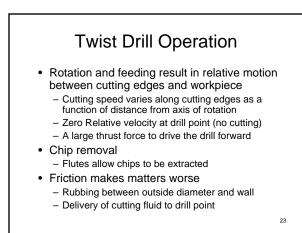
- Fine alumina powder is pressed and sintered at High pressure and temperature.
- Other oxide such ZrO₂ are added.
- Used in finishing of harden steels, high v, low d and f and rigid work setup.
- Not for heavy interrupted cutting
- Other ceramic tools: Si₃N₄, sialon(Si₃N₄-Al₂O₃), Alumina and TiC and SiC whiskers-reinforced alumina.

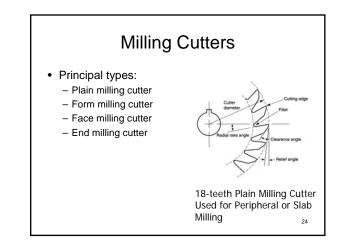
17


13


15


Synthetic diamond and CBN


- Diamond the hardest material.
 - Usually applied as coating (0.5 mm thick) on WC-Co insert
 - Sintered polycrystalline diamond
 - Applications: high speed cutting of nonferrous metals
- Cubic Boron Nitrides (CBN)
 - For steels and Nickel alloys
 - Expensive


18

