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Abstract

In this paper, we present an adaptive version of our pre-
viously proposed quality equalizing (QE) load balancing
strategy that attempts to maximize the performance of par-
allel branch-and-bound (B&B) by adapting to application
and target computing system characteristics. Adaptive QE
(AQE) incorporates the following salient adaptive features:
(1) Anticipatory quantitative and qualitative load balanc-
ing mechanisms. (2) Regulation of load information ex-
change overhead. (3) Deterministic load balancing in ex-
tended neighborhoods instead of just immediate neighbor-
hoods as in non-adaptive QE. (4) Randomized global load
balancing to fetch work from outside the extended neighbor-
hood. AQE yields speedup improvements of up to 80%, and
15% on the average, compared to that provided by QE for
several real-world mixed-integer programming (MIP) prob-
lems, and near-ideal speedups for two of the largest prob-
lems in the MIPLIB benchmark suite on an IBM SP2 system.

1. Introduction and Background
Branch-and-bound (B&B) is among the most popular

global optimization methods used to solve NP-hard com-
binatorial optimization problems (COPs) [7]. Many prac-
tical search problems solved by B&B are sequentially in-
tractable, consequently, parallel processing has been em-
ployed as an effective means to meet the computational re-
quirements of such hard application problems. Sample ap-
plications include mixed-integer programming (MIP), air-
line crew scheduling, VLSI CAD, database design, and ge-
netics [7]. In this section, we briefly review sequential and
parallel B&B to provide the background and motivation for
the subject of this paper, the adaptive quality equalizing load
balancing strategy, presented in the remaining sections.
�
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1.1. Sequential Branch-and-Bound
B&B performs a best-first search (BFS) for a least-cost

leaf node (representing an optimal solution) starting from a
single ������� node corresponding to the COP � to be solved in
a state-space tree � [8]. 	 Each node in � represents a sub-
problem derived from � and has a cost that is a lower bound
on the cost of an optimal solution to that subproblem. The
set of unexplored nodes is stored in an OPEN list. We denote
by 
����� ������ the cost of the current best solution at any time
during B&B’s operation. Due to its BFS ordering, B&B ex-
plores only nodes with cost less than the optimal solution
cost—these nodes are called essential nodes since they must
be expanded by any search algorithm that guarantees opti-
mality; all other nodes are termed non-essential.
1.2. Parallelization of B&B

B&B is most commonly parallelized on distributed-
memory machines by first exploring the search space from
the ������� node to generate a starting node for each of the pro-
cessors, and then conducting sequential BFS on each of the
processors from its starting node. Processors broadcast any
improvements in 
����� ������ which is maintained consistent
across all processors.

1.2.1. Best-Node Rank and Degree of Load Balance

We now define a few terms used in the sequel. We de-
note the set consisting of processor � and its neighbors by
����������
����������� . For a set  "!#� of processors, the  -rank of
a node $ , denoted rank %&��$�� , in processor � is the position of
the first equal-cost node ' in a non-decreasing cost ordering
of nodes in the OPEN lists of those processors. The  -rank
is referred to as $ ’s local rank when  )(+*,�.- , as $ ’s neigh-
borhood rank when  /(0����������
�������1�2� , and as $ ’s global
rank when  is the set of all 3 processors (see Fig. 1 for an
4
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B&B, but in this paper we consider B&B with BFS.



illustrative example). Note that sequential B&B using BFS
expands nodes in order of their (global) ranks, and conse-
quently expands the minimum number of nodes. Therefore,
in a parallel B&B algorithm, the  -rank of the best node in
any processor ���  (i.e., rank % �1
��� � ���������1� ) accurately re-
flects the degree of load balance within that set—the smaller
it is, the better is the load balance, and vice versa. Ideally,
rank % ��
��� � ����� � � ���	�  
� , or when  is the set of all 3 pro-
cessors, rank %&��
����� ����� � � ��� 3 .

The above parallel B&B algorithm can be very scal-
able provided good load balancing methods are employed
to address its following two inefficiencies. (1) Starvation:
This occurs when processors run out of work/nodes and
idle. (2) Non-essential work: This occurs when processors
processing nodes in non-global-best-first order expand non-
essential nodes. We have developed one such method called
Quality Equalizing (QE) strategy comprising quantitative
and qualitative load balancing schemes; these schemes are
summarized next.

1.2.2. QE: Quantitative and Qualitative Load Balancing

Quantitative load balancing is performed by having proces-
sors that are expected to become idle soon—processors in
which the number of nodes is decreasing and is below a
certain threshold called acceptor threshold—request work
from neighboring processors with the largest number of
nodes. This mitigates the idling that would otherwise occur
due to interprocessor communication latency. The amount
of work transferred depends upon work load conditions in
the immediate neighborhoodsof the donor and acceptor pro-
cessors [2].

The basic idea behind the qualitative load balancing
scheme is to ensure that for any two neighboringprocessors �
and � , the cost of � ’s best node � the cost of � ’s  th best node
or threshold node, i.e., to ensure that rank  ��� ��� ��
��� � ����� � � �
� rank  ��� ��� ��� �������������� ������� � � ; here ���� is the span and
is a parameter that is inversely related to the degree of load
balance and directly related to the overhead of load balanc-
ing. For this purpose, each processor reports its threshold
cost (the cost of its threshold node) whenever it changes to
its neighbors. We have derived the following results for QE.

Theorem 1 [3] In the QE strategy:

1. The neighborhood rank of the best node in any pro-
cessor can become at most �����1���������� (i.e., a small
constant factor of  more than optimal) before work
transfer is triggered to reduce it, where  is the span
and � is the degree or number of neighbors of a pro-
cessor in the architecture.

2. If a processor has no essential nodes, and has at least
one neighbor with  or more essential nodes, it will re-
quest essential nodes from such a neighbor.
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Figure 1: Processor  requests work from  "! when its best-node
rank relative to #$ �%& "!(' deteriorates beyond the threshold value ) .

Since �*�+� is the ideal worst-case neighborhood rank for
the best node, for small  , parallel search using the QE strat-
egy is close to an ideal near-neighbor scheme. Furthermore,
through interaction between neighborhoods, good neighbor-
hood load balance translates to good global load balance.

1.3. Randomized Load Balancing - Random Seek-
ing

Here we describe the basic idea behind a randomized
global load balancing scheme called random seeking (RS)
that attempts to achieve “peer-peer” relationship between all
processor pairs by probabilistically locating “source-sink”
pairs of processors, and transferring work from the sources
to the corresponding sinks [6]. Two processors � and � are
defined to have a source-sink relationship if the threshold
cost of � is less than the lead cost of � —note that near-
neighbor QE (described in Section 1.2.2) performs work
transfer between neighboring processors that have this rela-
tionship. They have a sink-source relationship if the thresh-
old cost of � is less than the lead cost of � . Otherwise, � and
� are defined to be peers. A source processor locates a rela-
tive sink by flinging probe messages to random processors.
The probe messages, during their visits to processors, also
collect load distribution information that is used by the ini-
tiating processor to efficiently regulate load-balancing activ-
ities. We have derived the following result which applies
some time after parallel B&B has started when processors
have obtained sufficient load distribution information.

Theorem 2 [6] The average number of flings required by
the random seeking scheme to transfer a node from a source
to a sink processor is 	, , where � is the fraction of sink pro-
cessors.

From Theorem 2, RS is a negative feedback scheme—
more the load imbalance (as reflected by the fraction of
sinks), quicker the reaction (as reflected by the number of
flings) to correct it. RS is thus a sophisticated, informed ran-
domized scheme for performing fast qualitative load balance
globally with very low overhead.

We have extensively evaluated, both analytically and em-
pirically, the scalability and performance of our QE and



RS load balancing methods and shown that they are signif-
icantly better than those of previous deterministic and ran-
domized methods [2, 3, 5, 6, 7]. Our analysis of load bal-
ancing methods revealed that the overheads of parallel B&B
(processor idling, nonessential work, and load-balancing
overheads) depend upon application granularity or node-
expansion time and the topological characteristics of the
target computing system, such as its degree and diameter
[3, 7]. A load balancing strategy that minimizes idling and
nonessential work with the least load balancing overhead,
will have the best performance. Clearly, such a load bal-
ancing strategy must adapt to application and target system
characteristics to extract the best performance. In the next
five sections, we describe in detail our new adaptive load
balancing method that is based on the near-neighbor, non-
adaptive QE strategy discussed above and that also incorpo-
rates the RS scheme.

2. The Adaptive Quality Equalizing Strategy—
An Overview

In this section, we present an overview of our adaptive
quality equalizing (AQE) strategy. AQE adapts load bal-
ancing parameters (such as acceptor threshold and span) to
application granularity and target system topology. While
the topology is known a priori, granularity is known only
at run time and may change, usually becoming smaller [7],
as the parallel B&B search progresses. Therefore AQE ad-
justs parameter values continuously to current granularity.
Parameters like acceptor threshold are local parameters and
hence are adjusted independently in processors. Other pa-
rameters such as span are global parameters and should be
consistent in all processors. Global parameters are updated
in phases. A new phase is initiated by processor � after a
minimum fractional change in average node expansion time
(granularity) has occurred, after it has expanded a minimum
number of additional nodes, and a minimum time interval
has elapsed—all three of these conditions must be met. To
initiate a new phase, processor � computes the new values
of global parameters and broadcasts them to all other pro-
cessors, which then update their parameter values.

The “average” node expansion time used to determine
parameter values is an exponential average, denoted by ���� ,
computed as follows. Let ������1��� denote the value of ���� after
the � th node expansion (i.e., the value of ���� after its � th up-
date). Let ���	� 	 denote the �1� � ��� th node expansion time.
Then after the ��� � ��� th node expansion, we incorporate the
new information, �
�	� 	 , in the new average as [9]:

� � � �1� � ��� (�� ��� �� 	 � � ����� �*� � � � ��������� ��� � ���
The parameter � controls the relative weight of recent (1st
term in the above Eq.) and past (2nd term in the above Eq.)
history in the average estimation. We chose � (���� ��� in our
implementation so that recent history is captured well in the

estimation. Consequently, � � � reflects the average time to ex-
pand a node in the recent past well. Henceforth, whenever
we refer to exponential averages, we mean computation sim-
ilar to the above equation with � (���� ��� .

In the following sections, we describe in turn the various
features of AQE.

3. Anticipatory Quantitative Load Balancing
In QE, acceptor threshold, which determines the amount

of anticipation to hide the latency between work request and
work procurement, is kept constant. Since this latency de-
pends upon both application granularity and interprocessor
message communication time, we make acceptor threshold
adaptive in AQE. In our implementation, we keep track of
an exponential average � �� of the latencies to obtain work for
all past work requests and an exponential average ���� of the
times to expand nodes, as stated earlier. Since the number of
nodes decreases by one in at most ���� time, acceptor thresh-
old can be set to ����
� ���� to prevent idling. We update and set it
to ��� �������� ���� after every work procurement—the factor of ��� �
is used to make the anticipation conservative.

4. Anticipatory Qualitative Load Balancing
Due to latency between work request and procurement,

non-essential work may be performed in the QE strategy
by a processor � even if essential nodes were available in a
neighboringprocessor at the time of the work request from � .
To address this latency problem, we use a general anticipa-
tory mechanism in AQE of which QE is a special case with
zero amount of anticipation. We call the node at position �
the lead node and the node at position � the threshold node,
where � �!�#" � . Span is then defined as  (�� �$� ���%" � .
In QE, � ( � and  (&� . The basic idea is to check for any
cost deterioration in the lead node (instead of the 
��� � ����� �
as was done without the anticipatory mechanism) of a pro-
cessor � relative to the threshold node of any neighbor � ,
and to trigger work transfer to correct this condition just be-
fore the lead node becomes the 
��� � ����� � in processor � at
a later time. We have derived expressions in [7] for � and �
in terms of granularity and message latency. We have also
determined in [7] that span  should be increased at a rate
slightly less than � , the number of neighbors of a processor;
when qualitative load balancing is performed in an extended
neighborhood (see Section 6.1), � should be replaced by the
number of extended neighbors. We vary global parameters
� , � , and span in phases as discussed earlier.

5. Regulating Qualitative Load Information
Exchange Overhead

For small granularity applications, the qualitative load
balancing overhead per node expansion can be high. The
overhead due to work transfer can be reduced by increasing
span. This, however, may not reduce the overhead of load-
informationexchange, since threshold cost, the cost ')( of the



node at position � , is reported whenever it changes. To cir-
cumvent this problem, instead of just a threshold cost, we
use a threshold cost interval, � "�� , defined as follows. We
define � 	 (������ � � ��� � ������� ��� and �	� ( � 	 �
� � � ,
and ' (�� and ' (� as the costs of the nodes at positions � 	 and
��� , respectively; � ( � in QE. Instead of processors re-
porting '�( whenever it changes, they now report ')(  when-
ever either the current '�( � exceeds the '�(  at the time of the
last load-information report (i.e., when the current cost in-
terval � '�( � ��'�( �� stops overlapping the previous � ')( � ��'�( �� ), or
the current '�(  is smaller than the '
(  previously reported, a
less likely event. Note that in QE, at any given time, there
are at least � nodes in a processor of cost no more than the
threshold cost ( '
( ) last reported, while in AQE using thresh-
old cost interval, at any given time, there are at least � 	 nodes
of cost no more than the '
(  last reported. Qualitative load-
information exchange overhead can be reduced by increas-
ing � , therefore, we vary � inversely with granularity.

6. Combining Deterministic and Randomized
Load Balancing

Ideally, we would like to have deterministic global load
balance. However, in practice, the costs of ensuring load
balance deterministically over the entire processor space
will be prohibitive. Therefore we can perform determinis-
tic load balance in small processor neighborhoods, the size
of the neighborhood being dependent upon the application
granularity, and randomized load balance beyond the neigh-
borhoods. These are described below.
6.1. Deterministic � -Neighborhood Load Balancing

Followingour terminology in Sec. 1.2.1, let ���	���������! �" � ����� ,
for � " � , denote all processors at a distance of � or
less from processor � (including processor � ); this is also
called the � -neighborhood of � . We can extend the near-
neighbor QE strategy of Section 1.2.2 by having proces-
sors perform load balancing with respect to all processors in
their � -neighborhoods instead of only their near-neighbors.
The following result, similar to the one derived for the near-
neighbor QE strategy, is easily obtained.

Theorem 3 In AQE with � -neighborhood load balancing:
1. The # -neighborhood rank of the best node in any pro-

cessor � �%$ �� � ��� � ����� �&# � � , otherwise
work transfer will be triggered to reduce it, where 
is the span and � $ the number of processors in a # -
neighborhood.

2. If a processor has no essential nodes, and has at least
one processor in its � -neighborhood with  or more es-
sential nodes, it will request essential nodes from such
a processor.

Thus the above scheme will provide good � -neighborhood
load balancing. In our implementation, we perform both
quantitative and qualitative � -neighborhood load balancing.

The choice of � is related to the choice of span, since as noted
in Section 4, span is increased at a rate slightly less than � � ,
the number of processors in an � neighborhood. Also, since
a smaller span means more stringent load balancing and con-
sequently more load-balancing overhead, we vary span in-
versely with application granularity.

6.2. Randomized Global Load Balancing
To complement the � -neighborhood deterministic load

balance achieved by the above scheme, we use the ran-
dom seeking scheme of Section 1.3 outside of the � -
neighborhoods to achieve probabilistic global load balance.
For this purpose, probe messages are flung to processors out-
side the � neighborhoods. Among processors that are more
than a distance � apart, the interaction via the determinis-
tic � -neighborhood scheme between processors that are far-
ther apart will be less and slower compared to those that are
nearer. Therefore we keep the probability of flinging probes
to processors at a distance � � � inversely proportional to �
and directly proportional to the number of processors at that
distance.

In RS, a certain number of probe messages (proportional
to the number of relative sources and inversely proportional
to the probability that a probe will locate such a source) is
flung from sink processors in every fixed time interval ' .
This way probe-flinging overhead is automatically adapted
to grain size—the number of probes flung is inversely re-
lated to granularity.

The RS scheme thus enables quick work transfer from
source neighborhoods to sink neighborhoods, after which
the deterministic � -neighborhood load balancing scheme fa-
cilitates distribution of the work received within the sink
neighborhood.

7. Performance Results
In this section, we give performance results for adap-

tive and non-adaptive QE by solving several real-world MIP
problems from the MIPLIB benchmark suite [1], drawn
from a variety of applications, on an IBM SP2. Table 1
shows improvements in speedup (the ratio of sequential ex-
ecution time ( 	 to parallel execution time (*) on 3 pro-
cessors) obtained by using AQE over QE for five problems
on 16 processors using both a high-performance switch and
Ethernet as interconnects. Observe that the performance
with a high-performance switch is generally higher com-
pared to that with an Ethernet, although the difference is not
very great. This is likely due to the anticipatory nature of our
load balancing schemes which effectively mitigate the im-
pact of interconnect latencies. Although, there is one case
(out of ten) where adaptive QE deteriorates performance to
some marginal extent (5.35%), there are several instances
where it yields considerably better performance, up to as
much as almost 80%, and the average speedup improvement
obtained is 15%. Next, Table 2 gives speedups obtained with



Problem Cnstr. Vars. Int. 0/1 Nodes � 4�� (ms) Inteconn. Spdup. % � Spd.
bm23 20 27 27 27 631 2040 HPS 13.333 +20.34
bm23 20 27 27 27 559 1640 Ethernet 13.015 +2.04
misc01 54 83 82 82 697 2499 HPS 13.068 -0.70
misc01 54 83 82 82 701 2350 Ethernet 12.575 +8.62
mod013 62 96 48 48 411 1380 HPS 12.580 +29.16
mod013 62 96 48 48 399 1410 Ethernet 10.417 -5.35
pipex 24 48 48 48 2377 5789 HPS 14.571 +0.28
pipex 24 48 48 48 2577 6349 Ethernet 14.745 +8.45
stein15 36 15 15 15 275 710 HPS 10.794 +79.96
stein15 36 15 15 15 283 770 Ethernet 11.616 +6.97

Table 1: Comparison of speedups obtained by the adaptive and non-adaptive QE strategies for five problems from the MIPLIB
benchmark suite on 16 processors of an IBM SP2. Columns 1 through 11 of the table give the following information: (1)
problem name, (2) number of constraints, (3) number of variables, (4) number of integer variables, (5) number of integer
variables that are binary, (6) number of essential nodes, (7) execution time on 16 processors, (8) interconnect type, (9) speedup
obtained with adaptive QE, (10) speedup improvement obtained with adaptive QE over non-adaptive QE speedup.

Problem Cnstr. Vars. Int. 0/1 Nodes ��� (ms) Inteconn. Spdup.
bell3a 123 133 71 39 48523 273674 HPS 7.832

rentacar 6803 9557 55 55 2820 3242789 Ethernet 7.454

Table 2: Speedups obtained using adaptive QE strategy for two problems from the MIPLIB benchmark suite, one with the
maximum number of non-binary integer variables (bell3a) and the other with the maximum number of constraints (rentacar).

AQE on eight processors with a high-performance switch in-
terconnect for two large MIPLIB problems: bell3a, the
problem in MIPLIB with the most number of general or non-
binary integer variables, and rentacar, the problem in
MIPLIB with the most number of constraints. The speedups
obtained are almost ideal.

8. Conclusions
In this paper, we presented an adaptive version of our

near-neighbor QE strategy that incorporates the following
adaptive features: anticipatory quantitative and qualitative
load balancing mechanisms, regulation of load-information
exchange overhead, and integration of deterministic and
randomized load balancing methods. We explained how
these features are made adaptive with respect to applica-
tiongranularityand target system characteristics (such as de-
gree, diameter, and communication delay) to maximize per-
formance. We obtained significant speedup improvements
of up to 80%, 15% on the average, using AQE over QE for
several real-world MIP problems from the MIPLIB bench-
mark suite, drawn from a variety of applications, on an IBM
SP2 with Ethernet and high performance switch as intercon-
nects. Further, we obtained near-ideal speedups for two of
the largest problems in MIPLIB. To the best of our knowl-
edge, this is the first time that an adaptive load balancing
strategy that adapts to both application and target-system
characteristics with such generality has been presented. In
the future, we will augment AQE and test it on more appli-
cation problems like airline crew scheduling, and on other

parallel and distributed platforms with larger number of pro-
cessors.
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