Adaptive Quality Equalizing:
High-PerformanceL oad Balancing for Parallel Branch-and-Bound

Across Applicationsand Computing Systems*

NIHAR R. MAHAPATRA

mahapatr @eng.buffalo.edu

Dept. of Electrical & Computer Eng.
State University of New York at Buffalo
Buffalo, NY 14260

Abstract

In this paper, we present an adaptive version of our pre-
viously proposed quality equalizing (QE) load balancing
strategy that attempts to maximize the performance of par-
allel branch-and-bound (B&B) by adapting to application
and target computing system characteristics. Adaptive QE
(AQE) incor porates the following salient adaptive features:
(1) Anticipatory quantitative and qualitative load balanc-
ing mechanisms. (2) Regulation of load information ex-
change overhead. (3) Deterministic load balancing in ex-
tended neighborhoods instead of just immediate neighbor-
hoods as in non-adaptive QE. (4) Randomized global load
balancingto fetch work from outsi dethe extended neighbor-
hood. AQE yields speedup improvements of up to 80%, and
15% on the average, compared to that provided by QE for
several real-world mixed-integer programming (MIP) prob-
lems, and near-ideal speedups for two of the largest prob-
lemsinthe MIPLIB benchmark suiteon an |BM SP2 system.

1. Introduction and Background
Branch-and-bound (B&B) is among the most popular
global optimization methods used to solve NP-hard com-
binatorial optimization problems (COPs) [7]. Many prac-
tical search problems solved by B&B are sequentidly in-
tractable, consegquently, parallel processing has been em-
ployed as an effective means to meet the computationa re-
quirements of such hard application problems. Sample ap-
plications include mixed-integer programming (MIP), air-
line crew scheduling, VLS| CAD, database design, and ge-
netics[7]. In this section, we briefly review sequential and
paralel B&B to provide the background and motivation for
the subject of thispaper, the adaptivequality equalizing load
balancing strategy, presented in the remaining sections.

*N.R. Mahapatra was supported by startup funds from the State Uni-
versity of New York at Buffalo and S. Dutt was supported by NSF grant
MIP-9210049. Cornell Theory Center provided accessto its IBM SP2.

AND SHANTANU DuUTT

dutt@eecs.uic.edu

Dept. of Electrical Eng. & Comp. Sc.
University of Illinois at Chicago
Chicago, IL 60607

1.1. Sequential Branch-and-Bound

B&B performs a best-first search (BFS) for a least-cost
leaf node (representing an optimal solution) starting from a
singleroot node corresponding to the COP P tobesolvedin
astate-space tree 7 [8].! Each nodein 7 represents a sub-
problem derived fromP and hasacost that isalower bound
on the cost of an optimal solution to that subproblem. The
set of unexplored nodesisstoredinan OPEN list. We denote
by best_soln the cost of the current best solution at any time
during B& B’s operation. Dueto itsBFS ordering, B& B ex-
plores only nodes with cost less than the optima solution
cost—these nodes are called essential nodes since they must
be expanded by any search agorithm that guarantees opti-
mality; al other nodes are termed non-essential .
1.2. Parall€elization of B& B

B&B is most commonly paralelized on distributed-
memory machines by first exploring the search space from
the root nodeto generate a starting node for each of the pro-
cessors, and then conducting sequential BFS on each of the
processors from its starting node. Processors broadcast any
improvements in best _soln which is maintained consistent
across all processors.

1.2.1. Best-Node Rank and Degree of L oad Balance

We now define a few terms used in the sequel. We de-
note the set consisting of processor i and its neighbors by
netghbors(i). For aset S D ¢ of processors, the S-rank of
anode u, denoted ranks (u), in processor i isthe position of
the first equal-cost node » in a non-decreasing cost ordering
of nodesin the OPEN lists of those processors. The S-rank
isreferred to as u’slocal rank when S = {7}, as u’sneigh-
borhood rank when S = neighbors(7), and as u’s global
rank when S isthe set of al P processors (see Fig. 1 for an

10ther search orderings such as depth-first search can also be used in
B&B, but in this paper we consider B& B with BFS.

illustrativeexample). Note that sequential B&B using BFS
expands nodes in order of their (global) ranks, and conse-
guently expands the minimum number of nodes. Therefore,
inaparalel B&B algorithm, the S-rank of the best nodein
any processor ¢ € S (i.e,, ranks (best_node;)) accurately re-
flects the degree of 10ad balance withinthat set—the smaller
it is, the better is the load balance, and vice versa. Idedly,
ranks (best_node;) < |S|, or when S isthe set of al P pro-
cessors, rankg (best_node;) < P.

The above pardlel B&B agorithm can be very scal-
able provided good load balancing methods are employed
to address its following two inefficiencies. (1) Starvation:
This occurs when processors run out of work/nodes and
idle. (2) Non-essential work: This occurs when processors
processing nodesin non-global -best-first order expand non-
essential nodes. We have devel oped one such method called
Quality Equalizing (QE) strategy comprising quantitative
and qualitative load balancing schemes; these schemes are
summarized next.

1.2.2. QE: Quantitativeand Qualitative L oad Balancing

Quantitativeload balancing is performed by having proces-
sors that are expected to become idle soon—processors in
which the number of nodes is decreasing and is below a
certain threshold called acceptor threshold—request work
from neighboring processors with the largest humber of
nodes. This mitigatesthe idling that would otherwise occur
due to interprocessor communication latency. The amount
of work transferred depends upon work load conditionsin
theimmediate neighborhoodsof the donor and acceptor pro-
cessors [2].

The basic idea behind the qudlitative load balancing
schemeisto ensurethat for any two neighboring processorsi
and 7, the cost of i’ sbest node < the cost of j's sth best node
or threshold node, i.e., to ensure that ranky; ;1 (best_node;)
<ranky; jy(threshold_node;); here s < 2 isthe span and
isaparameter that isinversely related to the degree of load
balance and directly related to the overhead of 1oad balanc-
ing. For this purpose, each processor reports its threshold
cost (the cost of itsthreshold node) whenever it changes to
itsneighbors. We have derived thefollowing resultsfor QE.

Theorem 1 [3] In the QE strategy:

1. The neighborhood rank of the best node in any pro-
cessor can becomeatmostd - (s — 1) + 1 (i.e, a small
congtant factor of s more than optimal) before work
transfer is triggered to reduce it, where s is the span
and d is the degree or number of neighbors of a pro-
cessor in the architecture.

2. Ifaprocessor hasno essential nodes, and hasat least
one neighbor with s or more essential nodes, it will re-
guest essential hodes from such a neighbor.

OPEN,

| @) [[5]+ +[68]
9 .0

T = neighbors(i) U {i}
rank

Span,s=3 {i,i4}
OPEN,, OPEN-5 6 6 8.. OPEN,
|57 [55) (58] (5] -[51] | | 5] [59] [59) [« +[88] | | 48] [39] [58]) (62 « 5]
7 9 11

I9.. rank; >13\16 16 20+« 74 I3 BBaee
Best node at pos— Work transfer consisting of
ition 1 in proc. i is > < few nodes in processor i4
compared against rank,. . .1 2 4 with cost less than the
threshold node at Giia} b best-node cost of i
position s in proc. i4OPEN, oo[71]

Figure 1: Processor : requests work from 4 when its best-node
rank relative to {7, 14} deteriorates beyond the threshold value s.

Sinced + 1 istheideal worst-case neighborhood rank for
the best node, for small s, parallel search usingthe QE strat-
egy iscloseto an ideal near-neighbor scheme. Furthermore,
through interaction between neighborhoods, good neighbor-
hood load balance trand ates to good global load balance.

1.3. Randomized Load Balancing - Random Seek-
ing

Here we describe the basic idea behind a randomized
global load balancing scheme called random seeking (RS)
that attemptsto achieve " peer-peer” relationship between all
processor pairs by probabilistically locating “source-sink”
pairs of processors, and transferring work from the sources
to the corresponding sinks [6]. Two processors i and j are
defined to have a source-sink relationship if the threshold
cost of 7 is less than the lead cost of j—note that near-
neighbor QE (described in Section 1.2.2) performs work
transfer between neighboring processors that have thisrela-
tionship. They have a sink-source relationshipif the thresh-
old cost of j islessthan thelead cost of ;. Otherwise, 7 and
j are defined to be peers. A source processor locates arela
tive sink by flinging probe messages to random processors.
The probe messages, during their visits to processors, aso
collect load distribution information that is used by the ini-
tiating processor to efficiently regul ate | oad-bal ancing activ-
ities. We have derived the following result which applies
some time after parallel B&B has started when processors
have obtained sufficient load distribution information.

Theorem 2 [6] The average number of flings required by
the random seeking scheme to transfer a node from a source
to a sink processor is % where ¢ isthe fraction of sink pro-
Cessors.

From Theorem 2, RS is a negative feedback scheme—
more the load imbalance (as reflected by the fraction of
sinks), quicker the reaction (as reflected by the number of
flings) to correct it. RSisthusasophisticated, informed ran-
domized schemefor performing fast qualitativel oad balance
globally with very low overhead.

We have extensively evaluated, both anaytically and em-
pirically, the scalability and performance of our QE and

RS load balancing methods and shown that they are signif-
icantly better than those of previous deterministic and ran-
domized methods [2, 3, 5, 6, 7]. Our analysis of load bal-
ancing methods revesl ed that the overheads of paralel B&B
(processor idling, nonessential work, and load-baancing
overheads) depend upon application granularity or node-
expansion time and the topologica characteristics of the
target computing system, such as its degree and diameter
[3, 7]. A load balancing strategy that minimizesidling and
nonessential work with the least load balancing overhead,
will have the best performance. Clearly, such a load bal-
ancing strategy must adapt to application and target system
characteristics to extract the best performance. In the next
five sections, we describe in detail our new adaptive load
balancing method that is based on the near-neighbor, non-
adaptive QE strategy discussed above and that also incorpo-
ratesthe RS scheme.

2. The AdaptiveQuality Equalizing Strategy—
An Overview

In this section, we present an overview of our adaptive
quality equalizing (AQE) strategy. AQE adapts load bal-
ancing parameters (such as acceptor threshold and span) to
application granularity and target system topology. While
the topology is known a priori, granularity is known only
at run time and may change, usually becoming smaller [7],
asthe paralel B&B search progresses. Therefore AQE ad-
justs parameter values continuoudly to current granularity.
Parameters like acceptor threshold are loca parameters and
hence are adjusted independently in processors. Other pa-
rameters such as span are global parameters and should be
consistent in all processors. Global parameters are updated
in phases. A new phase is initiated by processor 0 after a
minimum fractiona change in average node expansion time
(granularity) has occurred, after it has expanded aminimum
number of additional nodes, and a minimum time interval
has elapsed—all three of these conditions must be met. To
initiate a new phase, processor O computes the new values
of global parameters and broadcasts them to al other pro-
cessors, which then update their parameter values.

The “average’ node expansion time used to determine
parameter valuesis an exponential average, denoted by ¢/,
computed as follows. Let ¢, (n) denote the value of ¢/ after
the nth node expansion (i.e., the value of ¢/, after itsnth up-
date). Let r, ;1 denotethe (n + 1)th node expansion time.
Then after the (n + 1)th node expansion, we incorporate the
new information, r,, +1, in the new average as[9]:

ttin+) =a rpp+(1—a) th(n), 0<a<l.

The parameter « controls the relative weight of recent (1st
term in the above Eq.) and past (2nd term in the above Eq.)
history in the average estimation. Wechosea = 0.25 inour
implementation so that recent history is captured well in the

estimation. Consequently, ¢/, reflectsthe average timeto ex-
pand a node in the recent past well. Henceforth, whenever
werefer to exponentia averages, we mean computationsim-
ilar to the above equation with o = 0.25.

In the following sections, we describe in turn the various
features of AQE.

3. Anticipatory Quantitative L oad Balancing

In QE, acceptor threshold, which determines the amount
of anticipation to hidethe latency between work request and
work procurement, is kept constant. Since this latency de-
pends upon both application granularity and interprocessor
message communication time, we make acceptor threshold
adaptive in AQE. In our implementation, we keep track of
an exponential averaget.. of thelatenciesto obtain work for
all past work requests and an exponential average ¢, of the
timesto expand nodes, as stated earlier. Sincethe number of
nodes decreases by one in a most ¢/ time, acceptor thresh-
old can besetto ¢, /t., to prevent idling. We update and set it
to 1.2t/ /t. after every work procurement—thefactor of 1.2
is used to make the anticipation conservative.

4. Anticipatory QualitativeL oad Balancing

Due to latency between work request and procurement,
non-essential work may be performed in the QE strategy
by a processor i even if essential nodes were availablein a
neighboring processor at thetime of thework request from .
To address thislatency problem, we use a generd anticipa
tory mechanism in AQE of which QE isa specia case with
zero amount of anticipation. We call the node at position A
the lead node and the node at position = the threshold node,
wherer > A > 1. Sanisthendefinedass = 7—A+1 > 2.
INQE, A = 1 and s = 7. Thebasic ideaisto check for any
cost deterioration in thelead node (instead of the best node
as was done without the anticipatory mechanism) of a pro-
cessor 7 relative to the threshold node of any neighbor 7,
and to trigger work transfer to correct this condition just be-
fore the lead node becomes the best _node in processor i at
alater time. We have derived expressionsin[7] for A and 7
in terms of granularity and message latency. We have aso
determined in [7] that span s should be increased at arate
dightly lessthan d, the number of neighbors of a processor;
when quditativeload balancing is performed in an extended
neighborhood (see Section 6.1), d should be replaced by the
number of extended neighbors. We vary globa parameters
A, 7, and span in phases as discussed earlier.

5. Regulating Qualitative Load Information
Exchange Overhead

For small granularity applications, the quditative load

balancing overhead per node expansion can be high. The

overhead due to work transfer can be reduced by increasing

span. This, however, may not reduce the overhead of 1oad-

informationexchange, sincethreshold cost, thecost ¢, of the

node at position r, is reported whenever it changes. To cir-
cumvent this problem, instead of just a threshold cost, we
use athreshold cost interval, & > 1, defined as follows. We
define r; = max(r — §/2,A+)andmy, = 7 + 6 — 1,
and ¢;, and ¢, asthe costs of the nodes at positions; and
79, respectively; § = 1 in QE. Instead of processors re-
porting ¢, whenever it changes, they now report ¢,, when-
ever either the current ¢,, exceedsthec,, at thetime of the
last load-information report (i.e., when the current cost in-
terval [c;, , cr,] StOpsoverlapping theprevious|c,, ¢,]), O
thecurrent ¢,, issmaller than the ¢, previoudy reported, a
less likely event. Note that in QE, at any given time, there
are at least 7 nodesin a processor of cost no more than the
threshold cost (¢) last reported, whilein AQE using thresh-
oldcostinterval, a any giventime, thereareat least m, nodes
of cost no more than the ¢, last reported. Qualitativeload-
information exchange overhead can be reduced by increas-
ing é, therefore, we vary 6 inversely with granularity.

6. Combining Deterministic and Randomized
L oad Balancing

Ideally, we would like to have deterministic global load
balance. However, in practice, the costs of ensuring load
balance deterministically over the entire processor space
will be prohibitive. Therefore we can perform determinis-
tic load balance in small processor neighborhoods, the size
of the neighborhood being dependent upon the application
granularity, and randomized | oad bal ance beyond the neigh-
borhoods. These are described below.
6.1. Deter ministic »-Neighborhood L oad Balancing

Followingour terminologyin Sec. 1.2.1, let neighbors™ (i),
for » > 1, denote all processors a a distance of r or
less from processor i (including processor 7); thisis aso
caled the r-neighborhood of i. We can extend the near-
neighbor QE strategy of Section 1.2.2 by having proces-
sorsperform load balancing with respect to all processorsin
their r-neighborhoodsinstead of only their near-neighbors.
Thefollowing result, similar to the one derived for the near-
neighbor QE strategy, is easily obtained.

Theorem 3 In AQE with r-neighborhood |oad balancing:

1. Thek-neighborhood rank of the best nodein any pro-
cessor < di(s — 1) + 1,1 < k < r, otherwise
work transfer will be triggered to reduce it, where s
is the span and d;, the number of processors in a k-
neighborhood.

2. Ifaprocessor hasno essential nodes, and hasat least
one processor in itsr-neighborhood with s or more es-
sential nodes, it will request essential nodes from such
a processor.

Thusthe above schemewill providegood »-neighborhood
load balancing. In our implementation, we perform both
guantitativeand qualitative r-neighborhood | oad bal ancing.

Thechoiceof r isrelated to the choi ce of span, sinceas noted
in Section 4, span isincreased at arate dightly lessthan d,.,
the number of processorsin an r neighborhood. Also, since
asmaller span means more stringent | oad bal ancing and con-
sequently more load-balancing overhead, we vary span in-
versely with application granularity.

6.2. Randomized Global L oad Balancing

To complement the r-neighborhood deterministic load
balance achieved by the above scheme, we use the ran-
dom seeking scheme of Section 1.3 outside of the r-
neighborhoodsto achieve probabilistic global 1oad balance.
For thispurpose, probemessages are flung to processors out-
side the » neighborhoods. Among processors that are more
than a distance r apart, the interaction via the determinis-
tic r-neighborhood scheme between processorsthat are far-
ther apart will be less and dlower compared to those that are
nearer. Therefore we keep the probability of flinging probes
to processors at adistance! > r inversely proportional to /
and directly proportional to the number of processors at that
distance.

In RS, acertain number of probe messages (proportional
to the number of relative sources and inversely proportional
to the probability that a probe will locate such a source) is
flung from sink processors in every fixed time interval A.
Thisway probe-flinging overhead is automatically adapted
to grain size—the number of probes flung is inversaly re-
lated to granularity.

The RS scheme thus enables quick work transfer from
source neighborhoods to sink neighborhoods, after which
the deterministic »-neighborhood | oad bal ancing scheme fa-
cilitates distribution of the work received within the sink
neighborhood.

7. Performance Results

In this section, we give performance results for adap-
tive and non-adaptive QE by solving severa real-world MIP
problems from the MIPLIB benchmark suite [1], drawn
from a variety of applications, on an IBM SP2. Table 1
shows improvementsin speedup (theratio of sequentia ex-
ecution time 7} to paralel execution time 7p on P pro-
cessors) obtained by using AQE over QE for five problems
on 16 processors using both a high-performance switch and
Ethernet as interconnects. Observe that the performance
with a high-performance switch is generally higher com-
pared to that with an Ethernet, although the differenceisnot
very great. Thisislikely duetotheanticipatory natureof our
load balancing schemes which effectively mitigate the im-
pact of interconnect latencies. Although, there is one case
(out of ten) where adaptive QE deteriorates performance to
some marginal extent (5.35%), there are several instances
where it yields considerably better performance, up to as
much as amost 80%, and the average speedup improvement
obtainedis15%. Next, Table2 gives speedupsobtained with

Problem | Cnstr. | Vars. | Int. | O/1 | Nodes | Ti¢ (ms) | Inteconn. | Spdup. | % ASpd.
bng3 20 27| 27| 27 631 2040 HPS | 13.333 +20.34
bn3 20 27| 27| 27 559 1640 Ethernet | 13.015 +2.04

m sc01 54 83| 8 | 82 697 2499 HPS | 13.068 -0.70

m sc01 54 83| 82 | 82 701 2350 Ethernet | 12.575 +8.62

nod013 62 9% | 48 | 48 411 1380 HPS | 12.580 +29.16

nod013 62 9% | 48 | 48 399 1410 Ethernet | 10.417 -5.35

pi pex 24 48 | 48 | 48 | 2377 5789 HPS | 14571 +0.28

pi pex 24 48 | 48 | 48 | 2577 6349 Ethernet | 14.745 +8.45
st ei n15 36 15| 15| 15 275 710 HPS | 10.794 +79.96
st ei n15 36 15| 15| 15 283 770 Ethernet | 11.616 +6.97

Table1: Comparison of speedups obtained by the adaptive and non-adaptive QE strategiesfor five problemsfromthe MIPLIB
benchmark suite on 16 processors of an IBM SP2. Columns 1 through 11 of the table give the following information: (1)
problem name, (2) number of constraints, (3) number of variables, (4) number of integer variables, (5) number of integer
variablesthat are binary, (6) number of essential nodes, (7) execution time on 16 processors, (8) interconnect type, (9) speedup
obtai ned with adaptive QE, (10) speedup improvement obtai ned with adaptive QE over non-adaptive QE speedup.

Problem Cnstr. | Vars. | Int. | O/1 | Nodes | 75 (ms) | Inteconn. | Spdup.
bel | 3a 123 | 133 | 71 | 39 | 48523 | 273674 HPS | 7.832
rent acar 6803 | 9557 | 55 | 55 | 2820 | 3242789 | Ethernet | 7.454

Table 2: Speedups obtained using adaptive QE strategy for two problems from the MIPLIB benchmark suite, one with the
maximum number of non-binary integer variables (bell3a) and the other with the maximum number of constraints (rentacar).

AQE on eight processorswith ahigh-performanceswitchin-
terconnect for two large MIPLIB problems: bel | 3a, the
problemin MIPLIB with themost number of genera or non-
binary integer variables, and r ent acar , the problem in
MIPLIB withthe most number of constraints. The speedups
obtained are amost idedl .

8. Conclusions

In this paper, we presented an adaptive version of our
near-neighbor QE strategy that incorporates the following
adaptive features. anticipatory quantitative and qualitative
load balancing mechanisms, regulation of load-information
exchange overhead, and integration of deterministic and
randomized load balancing methods. We explained how
these features are made adaptive with respect to applica-
tiongranularity and target system characteristics (such asde-
gree, diameter, and communication delay) to maximize per-
formance. We abtained significant speedup improvements
of up to 80%, 15% on the average, using AQE over QE for
severa rea-world MIP problems from the MIPLIB bench-
mark suite, drawn from avariety of applications, onan IBM
SP2 with Ethernet and high performance switch asintercon-
nects. Further, we obtained near-ideal speedups for two of
the largest problemsin MIPLIB. To the best of our know!-
edge, thisis the first time that an adaptive load balancing
strategy that adapts to both application and target-system
characteristics with such generality has been presented. In
the future, we will augment AQE and test it on more appli-
cation problems like airline crew scheduling, and on other

paralel and distributed platformswith larger number of pro-
Cessors.

References
[1] R.E. Bixby, E.A. Boyd, and R.R. Indovina, “MIPLIB: A
test set of real-world mixed-integer programming problems,”

SIAM News, Vol.25, No.2, pp.16, 1992.
S. Dutt and N.R. Mahapatra, “Parallel A* algorithms and

their performance on hypercube multiprocessors,” Seventh

Int’l Par. Proc. Symp., pp.797-803, Apr. 1993.
S. Dutt and N.R. Mahapatra, “ Scalableload balancing strate-

giesfor paralel A* algorithms,” J. of Par. and Distr. Comp.,

Vol.22, No.3, pp.488-505, Sep. 1994.
N.R. Mahapatra and S. Dutt, “Scalable duplicate pruning

strategiesfor parallel A* graph search,” 5th IEEE Symp. Par.

and Distr. Procg., pp.290-297, Dec. 1993.
N.R. Mahapatraand S. Dutt, “ New anticipatory load balanc-

ing strategies for parallel A* algorithms,” DIMACS Seriesin
Disc. Math. and Theor. Comp. Sc.—Par. Procg. of Disc. Opt.
Probs., Pardalos, et al. (Eds.), Vol. 22, pp. 197-232, 1995.

N.R. Mahapatra and S. Dutt, “Random seeking: A general,
efficient, and informed randomized scheme for dynamic load
balancing,” Proc. 10th Int. Par. Procg. Symp., pp. 881-885,

Honolulu, Hawaii, Apr. 1996.
N.R. Mahapatra, “Scalable, high-performance parallel

branch-and-boundalgorithmsfor solving large combinatorial
optimization problems,” Ph.D. Thesis, Dept. of Elec. Eng., U.

of Minnesota, Minneapolis, 1997.
E. Rich, “Artificial Intelligence,” McGraw Hill, New York,

pp.78-84, 1983.
A. Silberschatz and PB. Galvin, Addison-Wesley, Reading,

Massachusetts, pp.138-140, 1994.

(2]

(3]

[4]

(5]

(6]

(7]

(8]
(9]

