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Abstract

For many applications of the A* algorithm, the state space is a graph rather than a tree.
The implication of this for parallel A* algorithms is that different processors may perform
significant duplicated work if inter-processor duplicates are not pruned. In this paper, we con-
sider the problem of duplicate pruning in parallel A* graph-search algorithms implemented on
distributed-memory machines. A commonly used method for duplicate pruning uses a hash
function to associate with each distinct node of the search space a particular processor to which
duplicate nodes arising in different processors are transmitted and thereby pruned. This ap-
proach has two major drawbacks. First, load balance is determined solely by the hash function.
Second, node transmissions for duplicate pruning are global; this can lead to hot spots and
slower message delivery. To overcome these problems, we propose two different duplicate prun-
ing strategies: (1) To achieve good load balance, we decouple the task of duplicate pruning from
load balancing, by using a hash function for the former and a load balancing scheme for the lat-
ter. (2) A novel search-space partitioning scheme that allocates disjoint parts of the search space
to disjoint subcubes in a hypercube (or disjoint processor groups in the target architecture), so
that duplicate pruning is achieved with only intra-subcube or adjacent inter-subcube communi-
cation. Thus message latency and hot-spot probability are greatly reduced. The above duplicate
pruning schemes were implemented on an nCUBE2 hypercube multicomputer to solve the Trav-
eling Salesman Problem (TSP). For uniformly distributed inter-city costs, our strategies yield a
speedup improvement of 13-35% on 1024 processors over previous methods that do not prune
any duplicates, and 13-25% over the previous hashing-only scheme. For normally distributed
data the corresponding figures are 135% and 10-155%. Finally, we analyze the scalability of our
parallel A* algorithms on k-ary n-cube networks in terms of the isoefficiency metric, and show
that they have isoefficiency lower and upper bounds of @(P log P) and ©(Pkn?), respectively.

Index Terms: A* algorithm, branch-and-bound search, communication delay, du-
plicate pruning, graph search, isoefficiency function, k-ary n-cubes, parallel A*,
scalability, traveling salesman problem.
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1 Introduction

The A* algorithm [23] is a well-known generalized branch-and-bound search procedure that is widely
used in the solution of many computationally demanding combinatorial optimization problems
(COPs) [26]. Its operation, as detailed later, can be viewed essentially as a best-first search of
a state-space graph. Parallelization of branch-and-bound methods provides an effective means to
meet the computational needs of many practical search problems [7].

Many researchers have adopted a tree search-space formulation in problems like the Travel-
ing Salesman Problem (TSP) [12, 22], the 15-puzzle problem [12], and the vertex cover problem
[12], where the natural formulation is a graph. This implies that nodes representing identical sub-
problems are artificially defined to have different states. Thus identical-subproblem nodes remain
undetected resulting in duplication of search. This leads to an inefficient, although easily paral-
lelizable, sequential A*/best-first search algorithm: each processor explores a different part of the
search space that is disjoint from the search spaces of other processors. Thus a “misleading” good
speedup can be obtained. A graph formulation, on the other hand, will enable detection of identical
subproblems in A* and hence avoid duplicated search. However, it is not as easily amenable to
parallelization on distributed-memory machines as a tree formulation, since duplicate nodes may
be generated in different processors.

A commonly used method for pruning inter-processor duplicates in graph search utilizes a
suitable hash function to associate an “owner” processor with each distinct node of the search
space. Every node upon generation is sent to its owner processor. Thus duplicate nodes arising in
different processors are transmitted to the same owner where they are pruned [8, 20]. There are
two significant shortcomings in this approach. First, load balance is determined solely by the hash
function and hence may not be very effective. Second, node transmissions for duplicate pruning
are global; this can lead to higher message contention (hot spots) and latency.

The overall goal of our work is to develop scalable high-performance parallel A* algorithms for
distributed-memory machines that can be applied to most COPs. In our previous work on parallel
A* we developed efficient load balancing strategies [5, 6] that are equally useful for both tree-
and graph-search problems, and demonstrated their superior performance over other competing
methods [1, 11, 13, 17, 24]. In this paper, we develop efficient inter-processor duplicate pruning
methods, and incorporate them in parallel A* algorithms to obtain high speedup over sequential

A* graph search.



In Sec. 2, we first describe A* and then present an improved version used in our implementations.
Next, in Sec. 3 we outline our application of A* to TSP, the test problem used to determine
the efficacy of our parallelization techniques. In Sec. 4, we briefly discuss a generic approach to
the parallelization of A*. In the following section, we describe the simple hashing-only scheme
for duplicate pruning. Next, in Secs. 6 and 7, we present in detail two new duplicate pruning
algorithms that overcome the aforementioned problems in the hashing-only scheme. The algorithm
in Sec. 6 derives its efficiency from decoupling the task of duplicate pruning from that of load
balancing by using a hash function for the former and a load balancing scheme for the latter, but
involves global communication. The algorithm in Sec. 7 uses a novel search-space partitioning that
allocates disjoint parts of the search space to disjoint processor-groups in the target machine for
the purpose of duplicate pruning. As a result, any set of duplicate nodes arise in only a particular
subcube. Hence communication for duplicate pruning is either confined to a subcube or occurs only
between neighboring subcubes. This makes hot spots more unlikely thus enhancing the scalability
of the parallel algorithm. In Sec. 8, we analyze in detail the new duplicate pruning algorithms, and
derive good upper and lower bounds on their scalability on a very general class of architectures,
the k-ary n-cubes. Section 9 presents empirical performance results of our algorithms. Conclusions

are in Sec. 10.

2 The A* Algorithm

The A* algorithm is used to find a least-cost solution to a COP P [23]. Its operation can be viewed
as a best-first search through a graph G of subproblems in which the original problem P occurs at
the root. Other nodes of G correspond to subproblems derived from their parent nodes with leaf
nodes representing solutions to P. To guide its best-first search, A* estimates the “cost” of each
generated node. The cost estimate f' of a node w is the sum of the path cost g from root to u,
and a heuristic cost h' that is a lower bound on the cost of the best path from u to any solution
node. Thus f’ represents a lower bound on the cost of the best solution node reachable from u.
The object of the search is to find a leaf node of minimum cost.

Two lists of nodes are utilized: OPEN and CLOSED. Initially, OPFEN contains just the root
node, and CLOSED is empty. At each iteration, A* picks a node from OPFEN with the minimum f’
value called best_node, generates its children, and computes their cost estimates. Next, it adds each

generated child to OPFEN, after checking to see if any duplicates exist in OPFN or CLOSED, in



which case the generated node is pruned and any cost improvement is propagated to the duplicate
node and its descendents. Finally, best_node is placed in CLOSED. Thus at any time, OPFEN stores
nodes that have been generated but not yet ezpanded (not had their children generated), while
CLOSED contains nodes that have been expanded. The above process is repeated until best_node
happens to be a solution node, which is then returned as an optimal solution. We will refer to
this algorithm as SEQ_A*. Any time during SEQ_A*’s execution, the f’ value of the current best
solution node is denoted by best_soln. All nodes expanded by SEQ_A* are called essential nodes,
and these include all nodes with cost less than or equal to the optimal solution cost;' all other
nodes are nonessential. This method of using directly computed lower-bound cost estimates f of
nodes is the most prevalent way of guiding A* search. There are, however, other ways of guiding
A* search that may reduce execution time in some applications as, for example, the search-space
abstraction method used in [10]. In this latter method, instead of directly solving the COP P in
the original search space, the problem is mapped into and solved in an “abstract” search space
whose solution is then used to guide the search for a solution in the original space. In this paper,
we are concerned with the former method of A* search.

In SEQ_A*, when a node is expanded (meaning that it is an essential node), all its children,
essential as well as nonessential, are generated. We have devised a partial expansion scheme that
generates only essential nodes. In this scheme, when a node in OPFEN is expanded, only its best
ungenerated child is selected for generation. Hence we will refer to the A* algorithm employing
this scheme as SEL_SEQ_A*. Here, instead of the A’ field, a node u in OPEN uses an h” field that

has a value defined as follows:
u.h” = u.h’, if u has not undergone any expansion, else (1)

u.h” = min((v.g — u.g + v.h') over all children v of u remaining to be generated). (2)

When a node u is expanded for the first time, the A’ costs of its children are computed and
stored. No child node of u is generated at this time, but the A” cost of u is updated according
to Eq. 2.2 Subsequent expansions of u result in the generation of the child with the least f’ cost
among all children yet to be generated, and also in the modification of u.h” in accordance with
Eq. 2. Furthermore, now the best_node picked for expansion in each iteration is the node with

the minimum modified cost estimate f"” = g + h'”. This ensures that no nonessential nodes are

1To be precise, some nodes with cost equal to the optimal solution cost may not be expanded by SEQ_A*.
21t turns out that the savings in the number of nodes generated more than compensates the extra memory used
to store the A’ costs of children that are not generated.



generated, thus leading to a faster and more memory-efficient A* algorithm. As a result of partial
expansion, at any time during the execution of SEL_SEQ_A*, a non-solution node in OPEN might
either be unexpanded or partially expanded (i.e., it might have only some children generated, but
not all). All other nodes that were generated have been completely expanded (i.e., they have had all
their children generated) and are discarded. Note that a solution node by definition is completely
expanded.

Although the partial expansion scheme above does reduce the number of nodes generated during
A* search substantially, for very large search spaces some technique for searching with limited or
fixed amount of memory may become necessary; this may be the case even in a parallel setting
when more memory is available in the multiple processors. In this situation, one can use any of
the limited-memory schemes proposed for best-first search (BIF'S)/A* in previous work like MREC
[25], MA* [2], and PRA* [8]. In these schemes, initially a best-first search is conducted, and on
running out of memory, either the search switches to a depth-first search at the tip nodes (MREC)
or some nodes from the search graph are retracted (MA* and PRA*). Since the focus of this paper
is on duplicate pruning in parallel A* algorithms, we have not specifically addressed the problem
of limited-memory search. However, as will become clear later, our duplicate pruning schemes are
independent of whether or not a limited-memory scheme is applied, and hence they can be easily

used in conjunction with the limited-memory schemes above as has been done, for instance, in [8].

3 Application of A* to TSP

The Traveling Salesman Problem can be posed as follows. Given a set 0,1,..,N — 1 of cities and
the associated inter-city distances, find the shortest tour that visits, starting from any arbitrary
city, every city exactly once and then returns to the start city. We have formulated TSP as a graph-
search problem, in which the state of a node is defined by a 3-tuple: [start city, set of visited cities,
present city]. Initially only root with root.state = [0,{0}, 0], exists. An expansion of a node u € G
yields a child » for each city that remains to be visited in w. This way a TSP tour is constructed by
visiting an additional unvisited city, from the present city, in each expansion. We have used two
different heuristic functions in our experiments to model different computational granularities and
different extents of duplicate-node occurrence that may arise in various applications. In the first
function the cost A’ of a node is equal to the average of two sums 5; and S,: S; is the sum of the

costs of the least expensive incoming edge incident on each unvisited city and the start city from



the set of unvisited cities and the present city, and 5, is the sum of the costs of the least expensive
outgoing edge from each unvisited city and the present city to the set of unvisited cities and the
start city. The other heuristic function is the well-known LMSK heuristic [16].?

While our formulation of TSP reduces it to a graph-search problem (as will be shown shortly),
previous sequential and parallel branch-and-bound methods employed to address TSP have used
a tree-search formulation [12, 16, 22, 28]. In their formulation, the state of a node is defined by
either: (1) a 1-tuple: [ordered list of cities visited], or (2) a 2-tuple: [set of edges currently in the
tour, set of edges excluded from the tour]. Consider two nodes u and v, whose states according to
the first tree formulation are defined by w.state = [(0,1,2,3,4)] and v.state = [(0,2,3,1,4)]; and
according to the second tree formulation by w.state = [{(0,1),(1,2),(2,3),(3,4)},0] and v.state =
[{(0,2),(2,3),(3,1),(1,4)},{(0,1)}] (where (¢,7) denotes the edge from city ¢ to city j). Thus, u
and v would be considered to represent two different subproblems (since their states are different)
according to these formulations. However, both u and v represent the same subproblem, which can
be posed as: find a minimal-cost path visiting exactly once all cities in the set {4,5,..., N — 1,0},
originating at 4 and terminating at 0. This statement is precisely captured by our formulation,
according to which the states of both u and v are given by: [0,{0,1,2,3,4},4]. Duplicates are
detected by the duplication check carried out in every iteration of A*. As a result, one of u or
v gets pruned. It can similarly be shown that a graph-search formulation is more appropriate for
problems such as the 15-puzzle and the vertex cover problems that have previously been tackled

using a tree-search formulation [12].

4 Parallelization of A*

Here we describe the generic high-level approach we have used to parallelize A* on distributed-
memory machines. Each processor executes an almost independent SEL_SEQ_A* on its own OPEN
and CLOSED lists. Initially, processor 0 has the root node. Subsequently, the child nodes gener-
ated by expanding nodes at a processor are hashed to specific processors determined by a suitable
hash function. In time, all processors receive nodes. This time period from the start of execution

till the time by which all processors receive at least one node is termed the startup phase. Pro-

3Since the focus of this paper is on the design and evaluation of general duplicate pruning strategies for parallel A*
algorithms that can be applied to most COPs, we have employed simple heuristic functions as opposed to a tighter
heuristic function possible for TSP [21]. In Secs. 6 and 7, we will see that while a different heuristic function can
affect the total number of duplicate nodes generated, it will not have any impact on the pruning capabilities of our
strategies since they prune all duplicates.



cessors broadcast any improvements in best_soln, which is maintained consistent in all processors.
Apart from solution broadcasts, processors interact to redistribute work for better processor utiliza-
tion, to send or receive cost updates, to detect and prune inter-processor duplicates and to detect
termination of the algorithm. Such algorithms can be characterized as parallel local A* (PLA*)
algorithms.

In contrast to a parallel local A* algorithm, a parallel global A* (PGA*) algorithm uses global
OPEN and CLOSFED lists or multiple lists that are kept consistent across processors, and processes
nodes in a strictly global best-first manner. Such an algorithm is suitable only for shared-memory
machines [12] and does not scale up well with the number of processors, since contention for the
global lists or the cost of maintaining consistent lists becomes excessive. PLA* algorithms, on the
other hand, can be implemented on distributed-memory machines and have better scalability; hence
we focus on them. However, the use of multiple inconsistent OPEN lists and a distributed-memory
implementation introduce a number of inefficiencies in a PLA* algorithm: (1) Starvation: when
processors run out of work and idle. (2) Nonessential work: when processors expand nonessential
nodes; it arises because processors perform local rather than global best-first search. (3) Memory
overhead: caused by the generation and storage of nonessential nodes. (4) Duplicated work: as-
sociated with processors pursuing duplicate search spaces and is due to inter-processor duplicates
(duplicate nodes that arise in different processors), when the search space is a graph.

Load balancing strategies are used to tackle the inefficiencies of starvation and nonessential
work (and hence that of memory overhead), while duplicate pruning strategies are required to
minimize duplicated work. In [5, 6], we developed the quality equalizing (QE) strategy in which
processors utilize load information at neighboring processors to effect quantitative and qualitative
load balance via nearest-neighbor work transfers. The type of load information and the manner
in which it is used give the QE strategy certain unique properties that enable it to effectively
reduce starvation and nonessential work. This paper presents novel duplicate pruning methods
that eliminate duplicated work in parallel A* graph-searches. We use these methods in conjunction
with the QE strategy to obtain near-linear speedup and high scalability.

Note that for PGA* algorithms, duplicate pruning is straightforward; any duplicate nodes aris-
ing during A* search can be readily detected in the global OPEN and CLOSED lists. Hence
duplicate pruning is an issue only in PLA* algorithms. In the next two sections we discuss dupli-
cate pruning schemes for PLA* algorithms—Sec. 5 describes a previous commonly-used duplicate

pruning strategy, and Secs. 6 and 7 detail our new duplicate pruning strategies. For termination



detection, we have used an optimal spanning-tree based algorithm which can be found in [5, 19].

5 Previous Duplicate Pruning Strategy—Global Hashing of
Nodes (GOHA)

The only duplicate pruning technique proposed previously applies a hash function H to a key
derived from the state of a node, to associate with each node a particular processor H(x), which
we will call its owner processor [8, 20]. No particular hash function is indicated in previous work
[8, 20]. Therefore to make a fair comparison between this and other hash-function-based methods
to be presented later, we have used the same hash function in all of them. The hash function used
is based on a multiplication method, which has been observed to hash a random key (node state)
to any of the P slots (processors) with almost equal likelihood [3]. Specifically, the hash function
is defined by:

(k)= [P (x- A - A]), (3)

where P is the total number of processors, (k- A — [k - A|) is the fractional part of K.A and can be
considered to be a random number in the range [0,1), A is a constant? in the range (0, 1), and the

key x of a node is defined by a binary vector as:
k= (by_1,bn_2,...,b1,b0) | b; = 1iff city 7 has been visited, 0 <7 < N, (4)

where N is the total number of cities in TSP. So whenever a node is expanded in any processor, all
the generated children are hashed to their respective owner processors. These children nodes are
then inserted into the OPFEN list of the owner processor after checking to see if a duplicate node
already exists in the owner’s OPFEN or CLOSFED lists. Since the key of a node is derived from its
state, all nodes with the same state, i.e., all duplicate nodes, will be hashed to the same processor.
This way all duplicate copies of a node arising in different processors are detected and pruned in
the owner processor of that node. The PLA* algorithm employing this duplicate pruning strategy
will be known as PLA*-GOHA for GIObal HAshing.

There are two major drawbacks in this method: 1) Load balance is determined solely by the
hash function. Since the hash function basically seeks to randomize the destination of hashed nodes,

the load balancing algorithm is in effect identical to a global random communication strategy [11].

*We chose A = (\/g — 1)/2, the golden ratio, since the hash function is known to work well with this value of A
[14].



In our previous work on parallel A* we have shown that the random communication strategy is not
very effective in achieving a good load balance [5, 6]. 2) Node transmissions for duplicate pruning
are global; this increases message latency and the likelihood of hot spots in the network.

In the next two sections we present two different duplicate pruning strategies that remedy the
above deficiencies. These strategies differ in their communication patterns and consequently in
their scalability. As noted earlier, we have developed the QE load balancing strategy and have
demonstrated its superior performance over other well-known methods in [5, 6]. Therefore in both

of the following algorithms, we use the QE strategy to achieve load balance.

6 Global Hashing of Nodes and QE (GOHA&QE)

In the algorithm PLA*-GOHA, the task of load balancing was combined with duplicate checking,
i.e., a processor receiving a hashed node not only checked for any existing duplicates of the node,
but also expanded the node. In this scheme, we decouple the two tasks by allowing processors
to participate in load balancing, using the QE strategy, after performing duplicate checking for
nodes that have been hashed to them. Therefore when a node w is first generated, it is hashed
to its corresponding owner processor. Recall from Sec. 2 that we use a partial expansion scheme
in the sequential A* algorithm on each processor. Hence node u may be partially expanded in its
owner processor and partially in other processors to which the load balancing algorithm transfers
it. Subsequently, when a duplicate copy v of node wu is generated in any processor, it will be
hashed to the same owner processor. Node v then gets pruned in the owner processor and any
cost improvement is propagated to the descendents of node u in the owner and other processors to
which u has been transferred.

In Fig. 1 we illustrate the way in which pruning and cost updates take place. In Fig. 1(a) node
u is shown expanded partially in its owner processor P, and partially in another processor Ps to
which it was subsequently donated. So when the duplicate node v of u is generated in processor Py,
it gets hashed to its owner processor P,. As a result node v is pruned and the cost improvement
is propagated to node u and its descendents in P, and Ps;. Thus the cost of node u in P, and Ps
improves by 8 from 68 to 60; other descendents of node u in both processors also receive the same
cost improvement. By decoupling the task of duplicate checking from load balancing, we are able

to achieve good load balance across processors, while performing complete duplicate pruning. This

new algorithm is called PLA*-GOHA&QE for GIObal HAshing plus the QE strategy.
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Figure 1: (a) Node u is partially expanded in its owner processor P, and another processor Ps. A duplicate
node v of u is generated in processor P;. (b) Node v gets hashed to its owner processor P2 and is thereby
pruned. A cost improvement of 8 is propagated to node u and its descendents in Py and Ps.

From Fig. 1 we notice that load balancing entails storing copies of nodes transferred in both
donor and acceptor processors to facilitate cost updates. Thus it may seem that GOHA&QE would
require more memory than GOHA. However, our experiments show that, because of the significantly
larger number of nonessential nodes generated in GOHA due to poorer load balance, its average
memory requirement is about 10% more than that of GOHA&QE.? The duplicate pruning scheme
described next also utilizes the QFE load balancing strategy and was found to have a memory

requirement similar to that of GOHA&QE.

7 Local Hashing of Nodes and QE (LOHA&QE)

In global hashing schemes such as GOHA and GOHA&QE, a node may be hashed to any of the P
processors. Therefore there exists a high degree of contention for communication links and router
buffers leading to slower message delivery. The situation is further aggravated for lower granularity
applications since they correspond to higher hashing rates. To circumvent this problem, we have

devised a novel search-space partitioning scheme that partitions the search space into disjoint

®This data was obtained on a 1024-processor hypercube for 10 44-city TSP instances with uniformly distributed
inter-city costs.



components and allocates these components to disjoint processor groups in the target architecture.
This ensures that any set of duplicate nodes arise only within a particular processor group. As a
result, complete duplicate pruning is achieved with node transmissions either confined to a processor
group, or occurring only between neighboring processor groups. The PLA* algorithm employing
this duplicate pruning method is referred to as PLA*LOHA&QE for LOcal HAshing plus the QE
strategy. In Sec. 7.1, we first illustrate the basic LOHA&QE scheme by applying it to solve TSP
on a hypercube, and then in Secs. 7.2 through 7.5 we generalize it to a large set of COPs and a

very broad class of multicomputer architectures called k-ary n-cubes.

7.1 Application to TSP on Hypercube

Define the level of a node to be the number of search-space edges between it and the root
node. Then for our 3-tuple graph formulation of Sec. 3 for TSP, the level of a node is simply
|set of visited cities| — 1. Since any set of duplicate nodes have the same set, and hence number,
of visited cities, they also belong to the same level. Moreover, when a node at level [ is expanded,
where 0 <! < N, the generated children will all belong to the next higher level [+ 1 since they cor-
respond to an additional city visited. We map adjacent groups or clusters of levels to neighboring
subcubes in a Hamiltonian cycle of s disjoint subcubes embedded in the hypercube. The subcubes
are numbered 0 through s — 1 in a Gray-code ordering. For a cluster size of ¢, the ith cluster
comprises levels ¢-i,c-i+1,...,¢c-(i+ 1) — 2, called non-boundary levels, and level ¢- (i + 1) — 1,
called boundary level, and is mapped to the (i mod s)th subcube.

For the search space of TSP, the total number of distinct nodes at different levels increases from
level 0 to level N/2 and then decreases from level N/2 + 1 to level N, with levels [ and (N —[+1)
having the same number W of nodes, where N is the number of cities in TSP. The variation
in the number of essential nodes at different levels, the essential-node distribution, will be somewhat
similar to this and is qualitatively depicted in Fig. 2(a) for N = 31. We fold the sequence of clusters
on the subcube ring f times, where f > 1 and is referred to as the folding of the mapping, so that
a subcube receiving a smaller cluster (a cluster with small number of nodes), also gets allocated

a bigger cluster, thus resulting in good static load balance across subcubes. Then the number of

subcubes s is related to the cluster size ¢ and the folding f by:
$ = min (p7 2{10g2<(f1\-]k-ll-)1~6)-|) , (5)
where N + 1 is the total number of levels, and (f + 1) -¢ (or f - ¢) is the number of levels assigned

10



to a subcube.® This assignment of clusters to subcubes is illustrated in Fig. 2(a) for N = 31, ¢ = 4,
f =1 and s = 4, with the clusters labeled cg,...,c7, the single fold labeled f;, and the subcubes
labeled sq,...,s3. Note that this cluster-to-subcube assignment affects only the initial placement
of nodes across processors; any load imbalances within and between adjacent subcubes is tackled
by the dynamic load balancing algorithm in a manner similar to that in GOHA&QE.

The operation of PLA*-LOHA&QE can now be described as follows. Initially, processor 0, which
belongs to subcube 0, has the root node, which belongs to level 0 and cluster 0. Subsequently, when
nodes belonging to the non-boundary levels of any cluster ¢ assigned to subcube 7 = ¢ mod s are
expanded, the generated child nodes, which belong to cluster ¢ and hence subcube j, are hashed to

an owner processor H; in subcube j:
p P
Hj(k) = origing + [— (k- A~ [k - A])] (6)

Here origin; denotes the smallest label of any processor in subcube j and the key & is again given by
Eq. 4. The expansion of boundary-level nodes in cluster ¢ yields child nodes that belong to the next
cluster 7+ 1; these child nodes are hashed to their owner processor H;1)moas it the next adjacent
subcube (j + 1) mod s in the Gray-code order. This communication pattern involving intra- and
inter-subcube node transmissions is shown in Fig. 2(b). Since any set of duplicate nodes belong to
the same level, and hence the same subcube, they are also hashed to the same processor within that
subcube, where duplicate detection and pruning takes place. This way complete duplicate pruning
is achieved with node transmissions occurring only between neighboring subcubes and within a
subcube. Hashing schemes with such localized communication are called local hashing schemes.
To preserve the above communication locality feature, we permit nodes in any cluster to move,
during load balancing, only within their assigned subcube, with the exception of boundary-level
nodes which are allowed to migrate to the next adjacent subcube as well. Without this constraint,
the load balancing algorithm may transfer some node u to a processor that is distant from the
subcube to which the children of node u belong, thus necessitating non-local hashing for the children

of u.

7.2 Generalization Across COPs and Architectures

We now describe the application of LOHA&QE to a variety of COPs on a family of architectures

called k-ary n-cube tori. A COP consists in finding a permutation or combination of N variables

N+1
6The expression 2 {1°g2((f+1)~c)—| is used instead of (fj\j-% because s must be a power of 2.
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Figure 2: (a) Hypothetical essential-node distribution curve, and the assignment of clusters to subcubes
for static load balance, and (b) Intra- and inter-subcube node transmission pattern for N =31, ¢ =4, f =1

and s = 4, in LOHA&QE.

that is optimal with respect to some objective function [15]. Its search space has nodes whose
states are basically defined by an ordered or unordered subset of the N variables. LOHA&QE is
applicable to those COPs whose search-space nodes have states defined by the same variables as
those in their parents’ state plus one more (or one less) new variable. Besides TSP, this is true of
search spaces of many COPs, including integer programming [7], vertex cover, min-cut partitioning
and global routing [26]. In such search spaces, every node has a unique level, i.e., the search space
is a levelized graph. Thus, if the root node’s state is defined by a single variable, the level of any
node is simply one less than the number of variables in its state. Since duplicate nodes by definition
have the same state and hence the same number of state variables, they also belong to the same
level. Thus LOHA&QE can be applied to such COPs in the same way as to TSP.

The family of k-ary n-cube tori is a very general class of architectures that includes rings
(n = 1), 2-D tori (n = 2), 3-D tori (n = 3) and hypercubes (k = 2) as special cases [4]. Here,
n is referred to as the dimension and & the radix of the architecture. The number of processors
P = k™. Every processor has an n-digit radix-k label (a,—1,an—32,...,0a;,...,a1,a0), and has
neighbors (a,—1,@,-2,...,(a¢;+1) mod k, ... ,a1,a0) and (ap—1,a,-2,...,(a;—1) mod k, ..., a1,ap)
along each dimension 7. Therefore every processor has m; neighbors along each dimension, where
mq = 2 for k > 2, and my = 1 for a hypercube (k = 2). Figure 3(a) shows how k-ary n-cubes
are recursively constructed starting from a single processor. Since the furthest processor along any

dimension is at a distance” of k/2, and since there are n dimensions, the diameter is n - k/2. Our

"In this paper, we assume k is even for simplicity; the discussion and results obtained are easily extendible to the
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discussion below on k-ary m-cube tori can be easily extended to k-ary n-cube meshes, which differ
from the former only in that they have no end-around connections in any dimension; the linear
array (n = 1) and 2-D mesh (n = 2) are special cases of the latter architectures. Henceforth, unless
otherwise specified, our discussion will pertain to k-ary n-cube tori.

The search-space partitioning scheme is extended to k-ary n-cube tori simply by folding the
sequence of clusters on a Hamiltonian cycle C of disjoint /%—ary fi-cube meshes® embedded in the
target k-ary m-cube torus, where k divides k and 0 < # < n. To obtain this embedding, a two-step
process, illustrated in Figs. 3(b) and (c) for £k = 8,n = 3,k =2, and 7 = 2, is used: (1) First, a
linear array of disjoint 2-ary 2-cube meshes is embedded in an 8-ary 2-cube torus. This is done
by first partitioning the 8-ary 2-cube torus into a 4-ary 2-cube mesh of 2-ary 2-cube submeshes
each of which is assigned a 2-dimensional radix-4 label. The partitioning is done so that processors
with labels (j1,j0) in the 8-ary 2-cube torus belong to the submesh with label (i1,%9), where
2. <75 <2-(4+1),0< iy <4and 2 <! <0. Then, a 2-dimensional radix-4 Gray code (obtained
as an extension of reflected binary Gray codes) is used to order the 2-ary 2-cube submeshes in
a snake-like fashion to form the required linear array (see Figure 3(b)). Note that consecutive
submeshes in this Gray code ordering are physically adjacent. We denote the first mesh in this
linear array by A and the last mesh by Z. (2) Next, we form a Hamiltonian cycle C’ of 8-ary 2-cube
tori on the target 8-ary 3-cube torus using 1-dimensional radix-8 Gray codes. Now, to obtain the
Hamiltonian cycle C of 2-ary 2-cube meshes, we alternately consider the two Z submeshes and the
two A submeshes in adjacent 8-ary 2-cube tori in C’ to be neighbors as shown in Fig. 3(c).

The above two-step embedding procedure may be generalized as follows: (1) First, a linear
array of disjoint /%—ary fi-cube submeshes is embedded in a k-ary n-cube torus by first partitioning
the k-ary fi-cube torus into a %—ary n-cube mesh of these submeshes and assigning each submesh
an n-dimensional radix—% label. Here each ]Ae—ary fi-cube submesh with label (i5-1,%4-2,...,%0)
corresponds to processors with labels (ji-1,Ja—2,-..,J0) in the k-ary fi-cube torus, where ki <
1< k- (i14+1),0< 4 < % and 7 < [ < 0. Then the submeshes are formed into a linear array by
using f-dimensional radix—% Gray codes. As before, we denote the first submesh in this linear array
by A and the last submesh by Z. (2) Next, a Hamiltonian cycle C’ of k-ary ni-cube tori is formed

in the target k-ary n-cube torus using (n — 72)-dimensional radix-k Gray codes. The Hamiltonian

cycle C of ]Ae—ary f-cube submeshes is formed by alternately considering the Z submeshes and A

case when k is odd.
8Note that, when & = k, the k-ary #-cubes are tori and not meshes.
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Figure 3: (a) Recursive construction of a k-ary n-cube torus starting with a single processor, where k > 2
and n > 0. (b) Embedding of a linear array of 2-ary 2-cube meshes in an 8-ary 2-cube torus using a reflected
2-dimensional 4-ary Gray code. (¢) Embedding of a Hamiltonian cycle of 2-ary 2-cube meshes in an 8-ary
3-cube torus using the embedding of (b), and a Hamiltonian cycle embedding of 8-ary 2-cube tori in an 8-ary
3-cube torus.

submeshes in adjacent k-ary #-cube tori to be neighbors.? The expression corresponding to Eq. 5

for the number of disjoint processor groups s then becomes:

k,TL
§ = —— = min (P,

kn

N+1 ) (7)

(f+1)-c
All that remains now to be discussed to implement LOHA&QE is to determine appropriate values
for the different parameters in the above equation. The choice of cluster size ¢ and folding f is
considered in Secs. 7.3 and 7.4, and the choice of number of subcubes s and subcube dimension
7 (and hence radix l%) is taken up in Sec. 8.6. Duplicate pruning is achieved as before in the case
of hypercubes, with communication occurring either within or between neighboring l%—ary n-cube

meshes.

7.3 Clustering

We now consider the choice of cluster size by analyzing its effect on the throughput requirement of

duplicate pruning for intra- and inter-subcube channels. Let the rate at which nodes are generated

While a linear array of ic—ary fn-cube meshes can always be embedded on a k-ary #i-cube torus, it turns out that
only a linear array (and not a Hamiltonian cycle) of k-ary #i-cube tori can be embedded on a k-ary n-cube torus when
k is odd. However, this will only marginally impact performance.
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to be hashed from any processor be A. Assume that there are two unidirectional channels between
any two neighboring processors, as it is the case on our target machine, the nCUBE2. First, consider
intra-subcube channel throughput. Since each processor in a subcube of size Q@ = P/s = k™ hashes
nodes at rate A, and since each hashed node travels an average distance equal to half the diameter of
the subcube, i.e., mq fzfc/4 hops, where my = 2 when <k (i.e., when each subcube is a mesh) and

my = 1 when k = k (i.e., when each subcube is a torus), the throughput required per channel for a

QAmok/4 _ Amy-k

total of approximately ¢ - m; - 7 unidirectional channels within the subcube is O h y

where recall that my = 2 for k > 2 and my = 1 otherwise. When & = k, each subcube is a torus, and

/\~m2~k

in this case the 7\
-m

intra-subcube channel throughput requirement in LOHA&QE is the same
as that in a global hashing scheme, since the latter is basically LOHA&QE with just one subcube
(i.e., k=Fkandn= n). Thus the intra-subcube channel throughput requirement in LOHA&QE is
either less than or equal to that in global hashing schemes and is independent of the cluster size.

Now to compute the throughput required for channels between subcubes, recall that only one
out of every c levels is transmitted to the next subcube in the Gray-code order, and hence these
boundary node transmissions are unidirectional. Therefore the rate'® at which nodes are transmit-
ted to the adjacent subcube is A/ec. Since there are a total of either g1 = Q/l% or () channels from
the i¢th to the (( + 1) mod s)th subcube, depending upon whether the subcubes lie in the same
k-ary n-cube (for example, two adjacent 2-ary 2-cube meshes in the 0th 8-ary 2-cube of Fig. 3(c))
or separate (but adjacent) k-ary n-cubes (for example, the Z subcubes in the Oth and 1st 8-ary
2-cubes of I'ig. 3(c)), respectively, the maximum throughput required per channel for channels be-
tween subcubes is %?—écl =A- ]2:/0 When k = k, there are always () channels from the ith to the
((i 4+ 1) mod s)th subcube and thus the maximum channel throughput requirement becomes A/ec.
Hence to avoid a bottleneck in inter-subcube node transmission, the cluster size ¢ should be large
enough so that X -k/c (or A/c for k = k) does not exceed the channel bandwidth,

Since the cluster size can be varied to adjust inter-subcube throughput requirement, the intra-
subcube throughput requirement of LOHA&QE determines whether a communication bottleneck
will occur for a given channel bandwidth. Recall that this determining throughput requirement of
LOHA&QE is the same as those of GOHA and GOHA&QE (in which k= k), and is proportional

to A and k. The hashing rate A is inversely proportional to the node-expansion granularity of an

application. Hence for the same channel bandwidth, LOHA&QE can be used in applications with

10This assumes that the static assignment of levels to subcubes achieves a reasonably good load balance (which, as
we will see next in Sec. 7.4, is a valid assumption), so that the message traffic corresponding to inter-subcube node
transmission is directly related to the fraction of all levels that are at the boundary.
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node-expansion granularities smaller by a factor of k/fe than those in which GOHA or GOHA&QE
can be used before encountering communication bottlenecks.

Another consideration in the choice of cluster size in LOHA&QE is its effect on startup idling.
Recall that in the beginning, there is only the single root node which belongs to the 0th cluster.
Subsequently, nodes at any cluster become available only after low-cost nodes at the boundary
level of the previous cluster have been generated and chosen for expansion. Thus a large cluster
size would mean that processors in higher-labeled subcubes, which are assigned higher-labeled
clusters, will begin receiving nodes much later than lower-labeled subcubes, leading to increased
startup idling. Thus the cluster size should be chosen as small as possible, without having A - IAC/C
exceed the channel bandwidth. In our implementation, we used a cluster size of one, since for the
node-expansion granularity of TSP, A is small enough so that this does not cause any router-buffer

overflow problems (which will occur when the required throughput exceeds the channel bandwidth).

7.4 Folding

Recall that folding is meant to achieve static load balance across subcubes. However, this may
not necessarily be always possible to achieve, even when the essential-node distribution curve is
symmetric about the center level as in Fig. 2(a). In fact, for folding to be effective, the essential-
node distribution curve should be linear (or approximately linear) as well. For instance, a convex
essential-node distribution curve like the one in Fig. 2(a) results in the center subcubes (s; and
s in Fig. 2(a)) receiving the maximum number of nodes and the extreme subcubes (sp and sz in
Fig. 2(a)) the minimum number of nodes, while a concave essential-node distribution curve has
an opposite effect. In any case, increasing the number of folds helps reduce static load imbalance.
However from Eq. 5, a large folding also means a small number of subcubes or a large subcube
size, which will cause increased contention and hence limit the scalability of the algorithm. Our
tests indicate that three folds yield a reasonably good load balance for TSP; the number of extra
folds that we use beyond three is fixed by the number of subcubes, since the cluster size was
predetermined from other constraints (stated in Sec. 7.3) to be one. In the next section, we will
determine analytically how the number of subcubes s should be varied with P to optimize the
scalability of LOHA&QE.

To determine the degree of static load imbalance that exists when folding is used, we collected
essential-node distribution data for 10 random TSP instances for N = 44; the corresponding average

essential-node distribution curve is plotted in Fig. 4. Note that the curve peaks at level 16, instead
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Figure 4: Empirical essential-node distribution curve used to determine static load imbalance under normal
clustering.

of at the center (level 22) as in the hypothetical curve of Fig. 2(a). This is because nodes at lower
levels are likely to be less expensive than nodes at higher levels. Hence a larger proportion of the
total nodes is likely to be essential at lower levels than at higher levels. Let ¢ = 1 and s = 8 (and
hence f =5 from Eq. 5). If w; denotes the number of essential nodes assigned to subcube ¢ and
Wpmae the maximum among all w;’s, then the overhead due to static load imbalance across subcubes
is Zf;&('wmaz — w;). It turns out that the average static load imbalance for the data of Fig. 4 is
about 0.75% of the total number of essential nodes. The reason for such a low load imbalance is
that the essential-node distribution curve is approximately linear and symmetric about level 16
where fold f; lies, so that different subcubes receive almost equal number of nodes. Note that the
dynamic load balancing algorithm will help further reduce the little load imbalance that remains.

Since it may not always happen that the essential-node distribution curve is nearly as linear
and symmetric about a level that is a multiple of s (so that a fold lies at that level) as in Fig. 4, we
consider a hypothetical essential-node distribution curve that peaks at level 20 in Fig. 5(a). For the
same values of ¢ and s, it turns out that the percentage static load imbalance for this case is about
6.7%. For a more non-linear curve the load imbalance will be higher. To address this problem,
we have developed a refinement of the cluster-to-subcube assignment scheme described next that
almost completely eliminates static load imbalance irrespective of the shape of the essential node

distribution curve.

7.5 Refined Clustering

This scheme uses average essential-node distribution data, which may be obtained either empirically

(as in Fig. 4) or analytically. It is clear from the above discussion that if the essential-node
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distribution curve is piecewise linear and symmetric about the center level, normal clustering as
previously discussed will effect perfect static load balance. The refined clustering method emulates
this idea by making the distribution of essential nodes across clusters, i.e., the cluster essential-
node distribution curve, piecewise linear and symmetric about the center cluster. The key to the
refinement consists in devising a search-space partitioning scheme in which cluster boundaries are
not necessarily coincident with level boundaries, i.e., it is possible for nodes belonging to the same
level to be arbitrarily split up into adjacent clusters for assignment to adjacent subcubes in the
Gray-code ordering. This enables one to choose the number of nodes assigned to different clusters,
within reasonable limits, in an arbitrary manner.

The refined method is as follows. Suppose we want to split nodes belonging to some level
between two consecutive clusters ¢ and j, such that cluster 7 receives a fraction r of the nodes.
Recall from Sec. 5 that for a random node with key x defined by Eq. 4, the fraction (k.A—|k.A]) is
a random number in the range [0, 1). Therefore by assigning nodes with (k.A—|k.A|) < r to cluster
t and the others to cluster j, we will have performed the required split. By appropriately splitting
essential nodes in different levels among adjacent clusters, one can make the cluster essential-node
distribution curve piecewise linear and symmetric about the center cluster. In Fig. 5(b), we illustrate
the cluster essential-node distribution curve corresponding to the essential-node distribution curve
of Fig. 5(a). Each linear segment of this curve corresponds to s clusters. The sequence of clusters
can now be folded on the ring of subcubes as before, with folds being placed at corners of the cluster
distribution curve. Note that nodes belonging to any one level should not be split between more
than two clusters, otherwise inter-subcube communication (for the purpose of duplicate pruning)
will not necessarily be between adjacent subcubes as it is in Fig. 2(b). We have observed that the
shape of essential-node distribution curves for individual instances deviates little from the shape
of the average essential-node distribution curve, although they may differ in magnitude. Therefore
our refined clustering method based on an average essential-node distribution curve will enable
us to achieve near ideal load balance for almost any instance of a problem whose essential-node

distribution curve is not known a priori.
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Figure 5: (a) Hypothetical essential-node distribution curve used to determine static load imbalance under
normal clustering. (b) Cluster essential-node distribution curve obtained via refined clustering to minimize
static load imbalance.

8 Scalability Analysis of GOHA&QE and LOHA&QE

8.1 Preliminaries

In this section, we analyze the scalability of the new duplicate pruning algorithms GOHA&QE
and LOHA&QE on P-processor k-ary m-cube tori; the analysis for GOHA&QE also applies to
GOHA except for the part accounting for the effect of the QE strategy (Secs. 8.5 and 8.6), which
significantly enhances the scalability of GOHA&QE. We focus on k-ary m-cubes because they
constitute an important class of architectures—many current distributed-memory machines like
the nCUBE2 (hypercube), Intel Delta (hypercube) and Paragon (2-D mesh), and Cray T-3D (3-D
torus) belong to the k-ary n-cube family. In order to make a fair comparison between k-ary n-cubes
of different dimensions, we will keep the network cost constant. We will use bisection width, defined
as the minimum number of wires that must be cut to separate the network into two equal halves,
as a measure of network cost [4]. The bisection width of a k-ary n-cube with two unidirectional
channels between neighboring processors is B = 2 - my - - P/k, where 1 is the channel width,
and m; = 2 for £ > 2 and my; = 1 for a hypercube (k = 2). We will keep B = P for all k-ary
n-cubes, so that n = k/(2 - my), i.e., we will compare low-dimensional networks having large 7
with high-dimensional networks having small 7. It is assumed that dimension-ordered worm-hole
routing is used, as is the case on our target machine, the nCUBE2.

We denote by ¢, the average time taken to expand and form a node.'’ Let t. = N¥, where N is

1 Actually, t. also includes the average time per node spent by the sequential algorithm in performing tasks such
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the number of variables in the COP to be solved.!?For both the heuristics used in our parallel A*
algorithms to solve TSP, viz., our simple heuristic of Sec. 3 and the LMSK heuristic [16], y = 2.
Note that since each node expansion involves computing the costs of its children, whose number
on the average grows as O(N), t. = Q(N) and y > 1. The average essential branching factor b is
defined as the number of distinct essential children of an essential node averaged over all such nodes.
It has been empirically seen that b increases very slowly with IV, and since in our analysis it appears
alongside terms that dominate it, we regard it as a constant. The hashing overhead per node tp
comprises: (1) The time t3; to compute the hash function, which from Egs. 3 and 6 involves a
constant number of N-bit multiplications. Since each such multiplication can be decomposed into
(%)2 M-bit multiplications, which can individually be done in ©(log M) time using an M-bit
binary multiplier [9], 51 = @((%)2 -log M). (2) The time %32 to initiate node transmission is
proportional to the length of the message. Since message length is ©(N) for ©(N) state variables
in a node, ty, = O(N). Therefore ¢, = @((%)2 -log M).
Now in GOHA&QE, nodes are hashed to random destinations in the architecture at a rate:

B b
_te‘l'b'th‘

(8)

For such a communication pattern and for a dimension-ordered worm-hole routing scheme, the

latency incurred by an L-bit message is [4]:
tc:Lw-Tf+Davg-Tc+£-Tc. (9)
n n

Here D,,, is the average distance traveled by a message and 7 is the flit transmission time over a
channel; a flit is n bits of message that are transmitted in parallel over a channel of width 7. The
first term in the above equation represents the delay incurred by the message due to contention,
the second term corresponds to the header flit transmission time over D,,, channels, and the last
term gives the time for the remainder flits to reach the destination processor once the header flit
has done so. For GOHA&QE, D,,, is the average distance between any two processors in the k-ary
n-cube, which is n - k/4. Therefore, by using L = N and n = k/(2 - m1), the latency expression in
Eq. 9 yields for GOHA&QE:

Aem?on- N2 Tk 2.my - N
tcz%-Tf—knT-Tc—l-%-Tc. (10)

as inserting nodes in OPEN, checking for duplicates and cost improvement propagation. Such a general definition of
te can be used, but does not alter the analysis.
12More appropriately, we can use t. = a- NY, for some constant a. This, however, also does not affect our analysis.
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Note that the communication pattern in LOHA&QE is the same as that in GOHA&QE except
that the former is confined to /%—ary fi-cube subcubes, so that Dy, = mg -7 - fc/4, where recall that

my = 2 when k <k and my = 1 when k = k. Hence for LOHA&QE we obtain:

/\-m%-mg-ﬁ-l%-NQ.T2+m2-ﬁ-k‘T L2me N
k? ¢ ¢

t, =
4 k

T.. (11)

Thus, message latency in LOHA&QE is less than that in GOHA&QE, except for the case n = n
and k = k/2 when it is equal in both.

In our analysis, we assume that all processors expand nodes synchronously and that all node
expansions take the same time. This makes the analysis tractable and will give correct performance
prediction in order terms. Let 77 and W denote the amount of work performed by SEL_SEQ_A*
in terms of its execution time, and the number of nodes expanded by it, respectively. Since the
sequential algorithm expands only essential nodes, Ty and W are also referred to as the total
essential work, and W is actually the total number of essential nodes. We let W = N¥; for instance,
the average-case complexity of solving TSP is polynomial in N [27]. Thus T3 = W - ¢, = N@+y),
Also, let Tp and Ip denote the parallel algorithm execution time, and the number of parallel
node-expansion iterations, respectively, on P processors. Then speedup S = T/Tp = W/Ip, and
efficiency £ = S/P. Any parallel algorithm must accomplish the essential work 77 (or W) and
may possibly incur other overheads. The total overhead over all processors T, = W, - t. for a
parallel algorithm is therefore equal to P-Tp — Ty = (P -Ip — W) - t.. Hence we have efficiency
E=T/T+T,)=1/1+T,/T1)=1/(14+ W,/W).

The temporal isoefficiency function @1 of a parallel algorithm is defined to be the required rate
of growth of T7 with respect to P to keep the efficiency fixed at some value, and is a measure of
the scalability of the algorithm [13]. Similarly, the work isoefficiency function ®w is defined as
the required rate of growth of W with respect to P to maintain efficiency at some value. Lower
values of @y like ©(P) and O(P - log* P) indicate that the algorithm is very scalable, while high
values like @(P?) imply poor scalability. From the expression for efficiency, we notice that Ty (W)
needs to grow as 7, (resp. W,) to maintain the efficiency at a particular value. In other words,
the rate of growth of T, (W,) with P (and other architectural parameters that change with the
size of the parallel machine) is the isoefficiency function of the parallel algorithm. Note that since
W = N” needs to grow as @(W,) for isoefficiency, Ty = N9 = Ww+v/%) will need to grow
as @(W§1+y/r)) to keep efficiency fixed. Thus &7 = @%—H’/I). For the heuristic functions used

in many applications, including the heuristics used for TSP in this work, y < z. In such cases,
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&7 =~ Py, and load balancing and duplicate pruning at the level of node expansions, as we have
done in this work, is sufficient. In fact, trying to parallelize node expansions in such cases may
deteriorate performance, since then parallelization overheads may become significant compared to
node-expansion computation. But for situations in which ¥ is comparable to z, as is the case when
the assignment heuristic is used for TSP [21], node expansions must be parallelized to keep @7
comparable to @ and obtain acceptable performance. Note that by parallelizing node expansion,
we divide it up into smaller atomic computation units and thus reduce the effective y (read NV
as the computation time of each atomic computation). For brevity, we will obtain expressions for
only @y .

In our previous work, we had derived the following result by analyzing the idling overhead
incurred by an optimal startup phase because of the limited initial parallelism available in the

search problem:

Theorem 1 [6] A lower bound on the isoefficiency function of any parallel A* algorithm on any

P-processor architecture is dy = O(P -log P).

This gives us a lower bound on @y for both GOHA&QFE and LOHA&QE. To obtain an upper
bound on their ®yy’s, we first establish upper bounds on the isoefficiency functions as determined by
the different overheads incurred by them, each considered in isolation. Since the overall isoefficiency
function of a parallel algorithm depends upon the total overhead, upper bounds on the isoefficiency
functions of GOHA&QE and LOHA&QE will just be the maximum of the isoefficiency functions
determined by the individual overheads. All subsequent execution times and overheads denoted
by T’s are in terms of actual time spent, while those denoted by W’s are measured in terms of

equivalent node-expansion time units, i.e., in terms of ¢, time units.

8.2 Hashing Overhead

First, we consider the effect of hashing overhead on the scalability of our duplicate pruning algo-
rithms. The time spent by a processor in hashing a node is considered to contribute to the total
hashing overhead T over all processors only when the processor has essential nodes to expand.
Otherwise, it is included in nonessential work overhead, which is examined later in Sec. 8.5. Thus

T! = W - t3,. For isoefficiency:

Ty=Wt,=0(T"=0(W-t) = t. = O(ty). (12)
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Since t. and tj both depend on only N, and not on P or other architectural parameters of the
machine,!® Eq. 12 does not yield any isoefficiency function for the algorithms, but tells us only
whether they are scalable or not. If ¢, = Q(#5), then the algorithms are scalable (assuming hashing
overhead to be the only overhead), else they are unscalable. Recall that ¢, = NY = Q(N) and
tn = @((%)2 -log M). Therefore applications with low enough granularity (i.e., y < 2) will be
unscalable. Moreover, for acceptable efficiency, the hashing overhead T should be low compared
to the total essential work T7.

In the above situations, one of two approaches can be followed to restrict the hashing overhead:
(1) The complexity of hash-function computation can be reduced to ©(log M), which is a constant,
by using just the least significant word of the key (defined in Eq. 4) in Eqs. 3 and 6. As noted earlier,
the other component of hashing overhead, i.e., initiating node transmission, takes ©®(N ) time, and
thus ¢, = O(N). Note, however, that this approach will adversely affect the randomized load
balance across processors obtained via hashing, since then the destination of hashed nodes will be
determined by only M of the N state variables (assuming M < N). While this will directly degrade
the performance of GOHA (since load balance is completely determined by the hash function), the
situation can be ameliorated to a large extent in GOHA&QE and LOHA&QE by the QF strategy.
(2) We can hash nodes, and hence prune duplicates, at only a subset of the N 41 levels, with the size
of the subset being large enough for the resultant duplication overhead to be easily compensated
by the decrease in hashing overhead. We found empirically that the hashing overhead for TSP
is quite low. For example, it is only 2% of the execution time for N = 44. Therefore the above
approaches for reducing hashing overhead were not needed. The primary reason for such a low
hashing overhead is due to our use of the partial expansion scheme of Sec. 2 in the sequential A*
algorithm on each processor. For N = 44, we found that the use of complete expansion increases
the hashing overhead to 30% and doubles the execution time and memory requirement. In the
remainder of the analysis, we assume that either one of the above two approaches is adopted, if

needed for some application, so that ¢, = Q(¢;) and the duplicate pruning algorithms are scalable.

8.3 Communication Latency Overhead

Here, we will examine how message latency can cause processors to idle when the hashing rate A
is reasonably high. For simplicity, we will consider just the latency caused by communication for

duplicate pruning. Communication required for load balancing is near-neighbor in both GOHA&QFE

Aslong as P> 1, TP = W - 1.
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and LOHA&QE and can be considered to consume the same fraction of the total channel bandwidth
in both cases. We first consider GOHA&QE. Since on the average a message travels n - k/4 hops,
the per-hop latency incurred by a message is'* § = 4 -t./(n - k), where 1, is given by Eq. 10. As
the hashing rate A increases, the rate of arrival g of nodes at processors also increases, with p = A
until the arrival rate saturates at some value pis,; and increases no further [4]. To determine g q¢,
consider the following scenario under saturation. For simplicity, assume that all nodes travel exactly
the average distance of n - k/4 hops, and that router buffers are large enough to accommodate the

largest messages. Then, after each § time interval, mq-n (the number of neighbors of each processor)

nodes will be incident on each processor, of which equal fractions ;”}C/Z = 4 - mq/k of nodes will
have traveled 1,2,...,n - k/4 hops of the total n - k/4 hops. Therefore after each ¢ time interval,
4-mq [k out of the my -n nodes incident on each processor will have traveled n-k/4 hops, and hence
will have reached their destination. Thus pisqr = 4 -mq/(k-6). At these higher saturation-hashing

rates, the first term (involving 72) in Eq. 10 dominates the other two, and hence the latter can be

neglected. Therefore at saturation:

4-m1 4-m1 1 k
A: sat = = AI sat = 0 —_— . 13
HPsat = =775 k.‘;}f]gj Hoat = N1 \ m (13)

In saturation, inter-arrival time of nodes at any processor is 1/ps.¢. Also, the average time to
expand and hash a node in a busy processor is b/\. Therefore from Eq. 8, when the hashing rate

is such that

b b 1 mi _ ma
-~ =N-T.-\/]— =NV <T.../]— 14
NN S Ve ™ < ko (14)

every processor idles for (1/psq¢ — b/A) time on the average for each node expanded. Thus the

idling overhead due to communication latency in GOHA&QE for a total of W essential nodes is:

1 b 1 mi . b
T =W - - ) =0(W- =O(W - -N-T,-/=>), given that > . 15
(,usat A) ( ,usat) ( k ) & Msat A ( )
Hence, given that 1/us.¢ > b/, we have for isoefficiency:
) m\ %/ @)
T :W-te:W-Ny:@(Tgl),:>W:N””:O(<Tc- - ). (16)

This leads to the following theorem:

4 More precisely, § = 4 - tcl/(n . k) + tc2, where t.1 comprises the first two terms and t.2 is the last term in Eq. 10,
since from Eq. 9 only t.1 i1s a function of distance traveled by a message. However, we will shortly see that at the
higher hashing rates we are concerned here, .2 can be neglected.
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Theorem 2 Given that the condition in Fq. 1/ is satisfied, the isoefficiency function of PLA*-
GOHA&QE on a P-processor k-ary n-cube architecture, as determined by communication latency

overhead, is @% = 0( (L) /o= )). Otherwise, communication latency does not limit the scalability

VE
of PLA*-GOHA&QE.

The idling condition in Eq. 14 implies that idling due to message contention is more likely to arise in
low-granularity applications (y small) and higher dimensional architectures, than in coarse-grained
applications and lower dimensional architectures.

The effect of communication latency in the case of LOHA&QE can be determined by noting
that a similar pattern of communication to that of GOHA&QE exists in each of the individual
/Ac—ary fi-cube subcubes. Thus using Eq. 11, we obtain the idling condition for LOHA&QE as:

NV T % (17)

Similarly, we can obtain the isoefficiency condition for LOHA&QE as:

P z/(y=1)
W %n%) ) (1s)

Thus:

Theorem 3 Given that the condition in Fq. 17 is salisfied, the isoefficiency function of PLA*-

LOHA&QEFE with l%-ary n-cube subcubes on a P-processor k-ary n-cube architecture, as determined

=\ #/(y—1)
by communication latency overhead, is (I)% =0( (\/;) ). Otherwise, communication latency

k
does not limit the scalability of PLA*-LOHA&QE.

Remarks regarding the scalability of different granularity applications, and the suitability of dif-
ferent dimensional architectures can be made similar to that in the case of GOHA&QE. However,
other important points to note from Eq. 17 and Theorem 3 are that idling in LOHA&QE will occur
at a much lower granularity than in GOHA&QE (compare with Eq. 14) and that LOHA&QE has
better scalability than GOHA&QE for any granularity application on any dimension architecture
(compare with Theorem 2).

The effectiveness of LOHA&QE over GOHA&QE will be more pronounced in a strictly dis-
tributed computing environment of, say, workstation clusters attached to a LAN in which there
is much more message contention and latency. In this situation, LOHA&QE can be implemented

by regarding each of the different computing units (workstations) as a separate subcube, and then
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suitably folding the sequence of clusters on them. Also, to reduce inter-computing-unit communi-
cations, a reasonably large cluster size should be used. GOHA&QE can be implemented as before
with the individual computing units playing the role of processors. Since there will be more inter-
computing-unit communications in GOHA&QE than LOHA&QE, average communication latency,

and any consequent idling, will be appreciably higher in the former than in the latter.

8.4 Startup Phase Overhead

The isoefficiency lower bound in Theorem 1 was derived assuming hashing overhead and commu-
nication latency to be zero [6]. Here we consider the effect of these two factors on startup phase
idling. The startup phase overhead W}* is defined to be the sum over all processors of the time
spent by each processor idling (or performing nonessential work in case nonessential nodes are re-
ceived initially by the processor), before obtaining its unique essential node. First, we determine
W2 for GOHA&QE. Initially, say, at time 0, processor 0 has the root node of the COP. It ex-
pands root in . time, then computes the destinations to which the b essential children generated
will be hashed in another b -1, time, and finally hashes them. The last node hashed will reach
its destination at time t., + b -ty + t. + b — 1. This completes one iteration. With successive it-
erations, more and more processors start receiving nodes as the above process repeats. At any
stage, the available nodes are randomly distributed among all P processors. Therefore for a total
of r available nodes at some time, the average number of processors with at least one node is
¢ = P-(1—-(1-1/P)"). For small values of r relative to P, ¢, ~ r. We assume for simplicity
that ¢, = r during the startup phase. Therefore the expansion of r nodes in r different processors
yields & - r nodes that lie in as many processors. These b - r nodes are then expanded in the next
iteration. Consequently, the time in which all processors receive at least one node, i.e., the startup
phase time, ts, = (t. +b-t, +1.+b—1)-log, P. During startup phase, message contention is small,
so the first term in ¢, in Eq. 10 can be neglected. Since in the ¢th stage of node expansion there are
b* nodes that are being expanded in parallel, the total amount of work accomplished in the startup
phase Ty, = t. - Eglzogbp_l) b= O(t. - P). Now, if we consider startup-phase idling to be the only
overhead, then Tp = t,, + (11 — Tsy)/P. Therefore using Eq. 10 and the fact that W = N*  we

obtain:

Tosu = Wju'te:P'TP_TIIP'tsu_TSU

O((te+b-th+t.+b—1)-P-logP)—0O(t. - P)
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nok/4) T+ (2-my-NJE) - T,

= W = 0O(mazx(1, t—“) - P -log P) = O(max(1, ( N )- P -logP)
n-k-T. B ’ n-k-T.

For isoefficiency:

n-k-T,P-log P\*/ (=)
) (20)

W =0(W")=> W = 0(maz(Plog P, ( 1

Hence we obtain:

Theorem 4 The isoefficiency function of PLA*GOHA&QE on a P-processor k-ary mn-
cube architecture, as determined by startup phase overhead, is @3 = O(maz(P -

log P,(n -k - P -log P)*/(=+v))),

Hence the scalability determined by startup phase overhead improves with increase in the dimension
of architectures; since ®7, which reflects the actual scalability, is equal to q)(v%,ﬂ//z), the scalability
of GOHA&QE is impervious to the granularity (i.e., value of y) of applications.

Next, we determine the startup phase overhead for LOHA&QE. Recall from Sec. 7 that we
use a cluster size of one to minimize startup-phase idling. Hence the children of nodes expanded
in any subcube will belong to the next subcube in the Gray-code order. At the start of the
algorithm, subcube 0 has the root node. After the first iteration, subcube 1 will have b nodes (the
children of the root node), and after the second iteration subcube 2 will have 62 nodes, and so
on. Therefore in (t. + b -1, +t.+ b —1)-logy(P/s) time all processors in one of the subcubes
(subcube logy(P/s) mod s) will have received nodes. It will take a further s — 1 node-expansion
stages to ensure that all processors in all subcubes receive nodes. So the startup phase time is
tow = O((te +b-th+t.+b—1) (log(P/s)+s)). The total work completed in the startup phase, as
in the case of GOHA&QE, is Ts, = O(t. - P). Using Eq. 11 and following a similar line of analysis
as for GOHA&QE, we can show that:
my ik T,

W = O(maz(1, e

) P (log(P/s) + s)), (21)

and that for isoefficiency:

my kT, P-log(P/s))Iﬂxﬂ) (m2 hET. P S)I/(I-H/)))
4 ’ .

W = O(maz(P-log(P/s), P-s, (
This leads to:
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Theorem 5 The isoefficiency function of PLA*-LOHA&QE with s /Ac-ary n-cube subcubes on a P-
processor k-ary n-cube architecture, as determined by startup phase overhead, is ® = ©(maz(P -

log(P/s), P - s, (ﬁ kP .log(P/s))I/(I—I_y) ; (ﬁ B p. S)Z‘/(I-I—y))).

When s < log P, scalability of LOHA&QE as determined by startup phase overhead is better than
that of GOHA&QE.

8.5 Nonessential Work Overhead

Define nonessential work overhead W}¢ to be sum over all processors of the time each processor
spends idling (due to nonavailability of work and not due to communication latency, which overhead
has been accounted for in Theorems 2 and 3) or performing nonessential work after the startup
phase. In our previous work [6], we had derived an upper bound on W€ for a PLA* algorithm

using the QE strategy for load balance across all P processors as:
Wre = O(P -k -n?). (23)
Since GOHA&QE is such a PLA* algorithm, Eq. 23 is valid for it as well. Therefore:

Theorem 6 The isoefficiency function of PLA*-GOHA&QE on a P-processor k-ary n-cube ar-

chitecture, as determined by nonessential work overhead, is ®3F = O(P - k - n?).

It can be easily shown from the above theorem that:

Corollary 1 The upper bound of O(P-k-n?) for nonessential work incurred by PLA*-GOHA&QE
on a k-ary n-cube architecture decreases with n until n = 0.51n P, when it is minimum, and then

increases with n.

Since @(P-k-n?) roughly reflects the average-case nonessential work overhead incurred [6], the scal-
ability of GOHA&QE for large machine sizes, assuming nonessential work to be the only overhead,
is better on higher than lower dimensional architectures.

Now consider nonessential work in LOHA&QE. In Sec. 7, we saw that the static load imbalance
across subcubes in LOHA&QE is negligible. Therefore nonessential work in LOHA&QE principally
arises from imperfect dynamic load balance within subcubes. Recall from Sec. 7 that load balancing
in LOHA&QE is essentially restricted to subcubes, i.e., each processor communicates for load

balance with neighboring processors within its subcube plus a constant number (two) of neighbors
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belonging to adjacent subcubes. Therefore for s k-ary f-cube subcubes of size P/s each we obtain
Wre from Eq. 23 as:
W =0(s-(P/s) - k-2%) = O(P -k -n?). (24)

This yields:

Theorem 7 The isoefficiency function of PLA*LOHA&QE with s /%-ary n-cube subcubes on a
P-processor k-ary n-cube architecture, as determined by nonessential work overhead, is ®3F =

O(P -k -a?).

Corollary 2 The upper bound of @(P-fc-fzz) for nonessential work incurred by PLA*LOHA&QE
on a k-ary m-cube architecture, for a given number s of subcubes, decreases with n until n =

0.5In(P/s), when it is minimum, and then increases with n.

Again, similar to the case of GOHA&QE, the optimally scalable dimension for a subcube in
LOHA&QE, assuming that the number of subcubes is fixed and that nonessential work is the only
overhead, increases with the machine size. Furthermore, we note that ®37 for LOHA&QE is much

better than that of GOHA&QE, since in general k< kand n < n.

8.6 Overall Scalability

We have already seen that Theorem 1 gives a lower bound of @(Plog P) on the isoefficiency
functions @%OHA and @%)HA of GOHA&QE and LOHA&QE, respectively. The upper bound on
®GOHA is O(max (P, P3¢, ®F)), where &5l @3 and ®%¢ are as given in Theorems 2, 4 and 6,

respectively. After simplification, we obtain:

Theorem 8 The isoefficiency function of GOHA&QE on a P-processor k-ary n-cube architecture

is ®GOHA = O(P - k - n?).

As noted earlier, the scalability of GOHA&QE favors higher dimensional architectures for larger
machine sizes. This is also evident from the following corollaries of the above theorem for the

hypercube (k = 2), 3-D torus (n = 3) and 2-D mesh (n = 2) architectures.

Corollary 3 The isoefficiency function of GOHA&QE on a P-processor hypercube architecture is
OGOHA = O(Plog® P).

Corollary 4 The isoefficiency function of GOHA&QE on a P-processor 3-D torus architecture is
@%OHA — O(P4/3)
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Corollary 5 The isoefficiency function of GOHA&QE on a P-processor 2-D mesh architecture is
@%OHA — O(PB/Q)

Similarly, from Theorems 3, 5 and 7, we obtain, after simplification, the following result:

Theorem 9 The isoefficiency function of LOHA&QE with s lAc-ary n-cube subcubes on a P-

processor k-ary n-cube architecture is ®EPTA = O(max(P - s, (i - k- P - s)"/ @) P #2)).

We should choose # and s (and hence k) so that ®LOHA is minimized. In general, it is not possible
to find a closed form expression for the optimal values of these parameters. However, for hypercube

(k= 2), 3-D torus and 2-D mesh (n = 2) architectures, we obtain the following corollaries:

Corollary 6 The isoefficiency function of LOHA&QE with s subcubes on a P-processor hypercube

architecture is ®PHA = O(maz(P - s, P - log?(P/s)).

It turns out that the optimal value of s for a hypercube is ©(log” P), where a increases with P
towards an asymptotic value close to 2. For instance, for P = 1024, a =~ 1.44. Therefore we can
say that the best isoefficiency function of LOHA&QE on a hypercube is O( P -logQ(logL;P)), which
is better than O(P -log® P) for GOHA&QE (Corollary 3).

Corollary 7 The isoefficiency function of LOHA&QE, when y < z, on a P-processor 3-D torus

architecture is @EOHA = O(P1/3),

Thus, when y < x, which is likely to be true for low to medium granularity applications like the
one considered in this paper, isoefficiency upper bound for LOHA&QE on a 3-D torus is the same

as that for GOHA&QE (Corollary 4).

Corollary 8 The isoefficiency function of LOHA&QE, when y > z /5, on a P-processor 3-D torus

architecture is ®LOHA = O(P5/4).

The above isoefficiency upper bound for the case y > /5, which is likely to be true for coarse-
grained applications, is better than O(P - v/P) for GOHA&QE (Corollary 4). Furthermore, we
have seen that all the different types of overheads considered earlier, except the hashing overhead
which is the same in both algorithms, are more in the case of GOHA&QFE than LOHA&QE. This
favors the performance of LOHA&QE.

Similar remarks apply to the following results for the 2-D mesh architecture.
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Corollary 9 The isoefficiency function of LOHA&QE, when y < z, on a P-processor 2D-mesh
architecture is ®EOHA = O(P . /P).

Corollary 10 The isoefficiency function of LOHA&QE, when y > x /4, on a P-processor 2D-mesh

architecture is @EOHA = O(P1/3).

9 Performance Results

We implemented three PLA* algorithms incorporating either one of GOHA, GOHA&QFE and
LOHA&QE duplicate pruning strategies on an nCUBE2 multicomputer. These algorithms use
the 3-tuple graph-search formulation of Sec. 2 to solve TSP. In order to study the advantage of
graph-search over tree-search methods used by other researchers [12, 22], we also implemented a
PLA* algorithm referred to as PLA*-QE-Tree. This algorithm uses the first tree-search formula-
tion of TSP described in Sec. 3 in which the state of a node is defined by an ordered list of cities
visited; the QFE strategy is used to achieve load balance. Two heuristic functions are used in the
above algorithms, viz., our simple heuristic of Sec. 3 and the LMSK heuristic [16]. The TSP city
graphs chosen were complete, with inter-city distances either uniformly or normally distributed
over the interval [1, 100]. Two merits of performance, averaged over ten TSP instances, are used:
(1) Average speedup defined as the ratio (average 77)/(average Tp); and (2) Average isoefficiency
function, which is measured as the required rate of growth of essential work (as represented by
average T for different values of N) with respect to P to keep the efficiency fixed at some value
and is a measure of the scalability of a parallel algorithm on a given architecture (see Sec. 8). Below
we present performance results of our duplicate pruning algorithms.

In Fig. 6, we plot the speedup curves for QE-Tree, GOHA, GOHA&QE and LOHA&QE strate-
gies using our simple heuristic.!® It can be clearly seen from the plots that our pruning algorithms
perform with high efficiency for as many as 1024 processors, the maximum number of processors
available on the nCUBE2 we used. Specifically, note that both our algorithms perform far superior
to those proposed in previous work—for uniformly distributed data, GOHA&QE and LOHA&QE
yield a speedup improvement of more than 35% on 1024 processors over a previous method that

does not prune any duplicates (QE-Tree), and more than 25% over the previous hashing-only

15Some large TSP instances included in the plots of Figs. 6, 7 and 8 could not be solved on processors less than a
certain number P’ due to memory overflow. Since the relative speedup Tp/ /Ty pr at P’ was found to be almost two
(i.e., almost perfect), and since this relative speedup could have only improved at smaller number of processors had
there been enough memory to solve these instances (because of lower overhead at smaller number of processors), we
assumed the speedup at P = P’ to be P’
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Figure 6: Speedup curves for different PLA* algorithms using the simple heuristic of Sec. 3 and employing
different duplicate pruning strategies for (a) uniformly distributed data and (b) normally distributed data.

scheme (GOHA) (Fig. 6(a)). For normally distributed data the corresponding figures are 135%
and 155% (Fig. 6(b)); the larger value for the latter means that duplicate pruning using a simple
hashing scheme performs worse than an algorithm that does not prune any duplicates. The rea-
son for this apparent anomaly is that the poor load balance dictated by the hash function in the
former algorithm, more than offsets any gains from duplicate pruning. We have observed that the
number of duplicates arising in A* algorithms increases with decrease in the deviation of the input
data distribution, and is more for normally distributed than for uniformly distributed data. This
is the reason for the deterioration in performance of PLA*-QE-Tree, when the data distribution
changes from uniform to normal. Since in practice data is most often distributed normally, a graph
formulation with effective duplicate pruning techniques is critical to attaining good performance in
parallel branch-and-bound-type search for solving combinatorial optimization problems.

Next in Fig. 7, we plot the speedup curves for the various duplicate pruning methods using the
LMSK heuristic, which is much tighter than the simple heuristic of Sec. 2; the curve for QE-Tree
could not be plotted for normally distributed data (Fig. 7(b)) because of memory overflow caused
by large amounts of duplicated work. Here again we notice that the speedups of GOHA&QE and
LOHA&QE are high and about 13% better on 1024 processors than that of QE-Tree and GOHA
for uniformly distributed data (Fig. 7(a)); the corresponding speedup improvement over GOHA
for normally distributed data is about 10% (Fig. 7(b)). Also, note from Fig. 7 that we obtain
an average speedup of about 970 on 1024 processors using GOHA&QE and LOHA&QE, which
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represents a very high efficiency of 0.95. The higher speedup values for the various algorithms in
Fig. 7 compared to that in Fig. 6 is because the former corresponds to a larger essential search

space, thus leading to a more efficient search.

N=44, Uniform Distribution, LMSK Heuristic N=44, Normal Distribution, Deviation=15, LM SK Heuristic
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Figure 7: Speedup curves for different PLA* algorithms using the LMSK heuristic and employing different
duplicate pruning strategies for (a) uniformly distributed data and (b) normally distributed data.

Finally, in Fig. 8 we plot the isoefficiency curves for the various algorithms using our simple
heuristic.'® Although not many data points are available, we notice that the general trends of the
isoefficiency functions for GOHA&QE and LOHA&QE are close to the lower bound of P - log P
(Theorem 1) and are much better than that of QE-Tree and GOHA. Also, note that GOHA&QE
and LOHA&QE have better isoefficiency functions than the upper bound of P -log? P (Sec. 8.6),
thus bearing out our analysis in the previous section. Furthermore, we observe that the isoefficiency
curves for PLA*LOHA&QE and PLA*-GOHA&QE meet each other at 1024 processors. From the
slope of these two curves at 1024 processors, it can be extrapolated that the isoefficiency curve of
PLA*-LOHA&QE will be better than PLA*GOHA&QE for larger number of processors. This is
because of higher overheads incurred by the latter algorithm as pointed out in Sec. 8. The observed
similarity in performance of GOHA&QFE and LOHA&QE is due to the fact that k/l%, the ratio

of the communication rates for the two methods (see Sec. 7.3), is one for the nCUBE2 hypercube

16Since points corresponding exactly to the desired efficiency could not be obtained, we used the closest points
available. The isoefficiency curves for the analytical lower and upper bounds were plotted by making them coincident
at P = 1 with the isoefliciency curve that corresponds to the minimum (among all curves) and maximum (among
GOHA&QE and LOHA&QE curves) sequential execution time, respectively, and then letting them grow for larger
values of P at the rates P -log P and P -log® P, respectively—this determines the constants associated with the
analytical bounds.
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system we used. LOHA&QE is likely to outperform GOHA&QE when k/l% > 1, such as on a 2-D

or a 3-D mesh system.

Efficiency=0.8, Normal Distribution, Deviation=15, Simple Heuristic
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Figure 8: TIsoefficiency curves for different PLA* algorithms using the simple heuristic of Sec. 3 and
employing different duplicate pruning strategies for normally distributed data.

10 Conclusions

In this paper we have seen that for search spaces that are actually graphs and not simple trees,
duplicate pruning is critical to attaining good performance. A graph formulation of the search space
is found to be superior to a tree formulation, since the former formulation enables the detection
and pruning of duplicates. The only previous scheme for complete pruning, called GOHA, uses a
hash function to hash duplicate nodes to the same owner processor, and thereby prunes duplicates.
However, it suffers from two major weaknesses: (1) Load balance is unsatisfactory. (2) It involves
global communication that makes hot spots very likely. We proposed two different duplicate pruning
strategies that address these drawbacks: (1) GOHA&QE decoupled the task of duplicate pruning
from load balancing, and achieved good load balance using the QE strategy. (2) LOHA&QE
utilized a search-space partitioning scheme that enabled it to perform complete duplicate pruning
with only localized communication, thus enhancing the scalability of duplicate pruning. Finally,
we analyzed the scalability of our algorithms on the k-ary n-cube family of architectures and
obtained lower and upper bounds of @(P-log P) and O( P-k-n?), respectively, on their isoefficiency
functions. We also showed that our algorithms scale better on higher than lower dimensional

architectures up to a certain dimension that increases with P. Performance results for TSP on
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an nCUBE2 hypercube corroborated our analysis, and revealed the superiority of our strategies
over previously known methods—for uniformly distributed inter-city cost data GOHA&QE and
LOHA&QE provided speedup improvements of 13-35% on 1024 processors over QE-Tree (that
used a tree formulation of the search space), and 13-25% over GOHA; for normally distributed
data the corresponding figures were 135% and 10-155%. For TSP (using the simple heuristic of
Sec. 3 and the LMSK heuristic, both with . = @(N?)) and for a hypercube system, for which
k/l% = 1, it turned out that GOHA&QE and LOHA&QE have similar performance. However, our
analysis showed that for lower granularity applications and in a distributed computing environment
where message latencies are significant or on a network such as a 2-D or a 3-D mesh with k/fc > 1,
LOHA&QE will prove to be a better choice because of its localized communication, and smaller
message contention and delay. In the future, we intend to apply our duplicate pruning techniques

to applications in VLSI CAD, scheduling and integer programming.
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