
GATE TRIGGERING: A NEW FRAMEWORK FOR MINIMIZING GLITCH POWER
DISSIPATION IN STATIC CMOS ICs AND ITS ILP-BASED OPTIMIZATION

�
NIHAR R. MAHAPATRA RAJAGOPALAN JANAKIRAMAN�

mahapatr, rj1 � @cse.buffalo.edu
Dept. of Computer Sc. & Eng., State University of New York at Buffalo, Buffalo, NY 14260, USA

Submission Category: Regular Paper in Solid State Circuits Track

Abstract
Glitches are an important source of power dissipation in
static CMOS ICs that can contribute to as much as 70%
of total power dissipation in certain cases (e.g., arithmetic
modules). Although research into various aspects of glitch
power dissipation has been undertaken in the past, most ap-
proaches to addressing it are ad hoc and limited in their ap-
plicability. In this paper, we propose a new framework, gate
triggering, for systematically minimizing glitch power dis-
sipation in static CMOS ICs. The framework is based on the
idea that glitches can be effectively minimized by triggering
logic evaluation at a gate only when all of its inputs have
stabilized. For this purpose, to every potentially glitchy
gate is added a small amount of control logic, which, when
enabled, triggers logic evaluation at the gate. A clocked
delay chain is employed to generate enable signals at the
proper times for all gates to be triggered. We present an
integer linear programming (ILP) formulation to minimize
the overheads (viz. delay element, control logic, and ex-
tra wiring) of our approach subject to a critical-path delay
constraint. Application of the new approach to test circuits
(such as ripple carry adder and array multiplier) in �����	�
technology yields 95% or more elimination of glitch power
dissipation with negligible area and timing overheads af-
ter optimization. An added advantage of the approach is
that short-circuit power dissipation at all triggered gates
is also minimized—short-circuit power dissipation in cur-
rent standard-cell based designs can exceed 50% of the to-
tal power dissipation.

1 Introduction
Increasing levels of device integration, die size, and op-

erating frequency, combined with a burgeoning portable
computing and communications market, have made power
dissipation a major concern in VLSI design [12, 13].
Among VLSI technologies, digital CMOS is by far the
dominant one and consumes relatively less power. Com-
plementary static CMOS is a popular digital CMOS logic
style that is being increasingly employed because of its ro-
bustness, which lends itself to design automation, and be-
cause of its amenability to voltage scaling for low power
[13]. In this logic style, power is primarily dissipated dur-
ing logic transitions when gate load capacitances charge and
discharge.

N.R. Mahapatra was supported by startup funds from

the State University of New York at Buffalo.

While some logic transitions are necessary and are dic-
tated by circuit functionality, others, such as glitches, are
not. Glitches are spurious transitions that occur before a
gate output reaches a stable value and are caused by unequal
propagation delays of input signals to the gate. This is de-
picted in the synchronous sequential circuit, a popular and
structured design style [11], of Fig. 1(c). Also, evident in
Fig. 1(c) is that glitches multiply as they propagate through
the combinational logic block. Glitch power is typically
significant and can be as high as 70% of total power dissi-
pation in some cases [12]. As we go into deeper submicron
technologies, interconnect delays become more predomi-
nant, which leads to differential delays and more glitching
[16].

Glitch minimization is important not only for low power,
but also because of other reasons. Power estimation is a dif-
ficult problem because glitch power dissipation is signifi-
cant and is hard to estimate accurately [11, 12]. Thus min-
imizing it will improve the accuracy of power estimation.
Asynchronous systems need to be glitch-free to operate cor-
rectly [17], and so also does the clock-generation circuitry
in a synchronous system [4]. Finally, glitches are also im-
portant to minimize in high-performance digital-to-analog
converters [19].

Short-circuit power dissipation, which occurs because of
the DC current that flows from ���� to ����� during switch-
ing when both N pull-down and P pull-up conduct simulta-
neously, is another source of concern. This is especially so
in very high-performancecircuits and in standard-cell based
semicustom design, where it can be as high as 50% of to-
tal power dissipation [12, 13]. However, it should be noted
that short-circuit currents virtually disappear when � �����
������������� , which is somewhat true for digital signal pro-
cessors, but not so for microprocessors, where � ��� ’s are
relatively higher.

In this paper, we present a new framework called gate
triggering for minimizing glitch power dissipation in com-
plementary static CMOS ICs which we discuss in the next
section. An added advantage of our approach is that short-
circuit power dissipation at gates that are controlled is also
minimized. Next, in Sec. 3, we discuss approaches to mini-
mizing logic and wiring overheads in our framework. Sec. 4
presents an integer linear programming (ILP) formulation
to optimize overheads subject to a critical-path delay con-
straint. Application of the new approach to test circuits
(such as ripple carry adder and array multiplier) in �����	�

New inputs to
combinational
block available

Outputs of
combinational
block available

Clock
signal

C+5

C

(C+5) C

Enable
signal

C

Clock period = 22

Clock delayed by 5 (max. gate delay) units

Clock complement

Pulse width equal to 5 (max. gate delay) units Delay
Enable VSS

VDDEnable
Delay

n control
transistor

p control

pull-dn
N

pull-up
P

transistor

I/p F

Time when last
input is stable

Non-glitchy
output

Gate
label

Gate
delay

Clock
signal

output is stable
Time when

Negative edge-
triggered flip-flopGlitchy

outputs

2

4

5

5

3

5

2

4

4

3

3

2

3

0 4

0 5

0 4

2

5 10

5 8

4 9

10 12

10 14

10 14

9 12

14 17

12 14

14 17

x0

x1

x2

x3

x4

x5

x6

g10

g20

g30

g21

g11

g01

g02

g12

g22

g32

g23

g13

g03
y0

y1

y20

g00
4

C

Inputs

Outputs

Combinational Logic Block

(a) (b) (c)

5 5 4 1 2 2
C

Glitches
eliminated

Amount of
delay equals
max. gate delay

Delay
chain

Delay
elements

Enabling signal
for control logic Time after negative clock edge

when control logic enabled

logic
Control

2

4

5

4

5

3

5

2

4

4

3

3

2

3

0 4

0 5

0 4

0 2

5 10

5 8

4 9

10 12

10 14

10 14

9 12

14 17

12 14

14 17

x0

x1

x2

x3

x4

x5

x6

C

g00

g10

g20

g30

g21

g11

g01

g02

g12

g22

g32

g23

g13

g03
y0

y1

y2

1295 10 140 5 5
C

5 4

Critical
paths

Number of delay
elements in delay
chain reduced

Control logic for gates
(not on any critical path)
enabled later

2

4

5

4

5

3

5

2

4

4

3

3

2

3

0 4

0 5

0 4

0 2

5 10

5 8

10 12

10 14

10 14

13

14 17

14 16

14 17

x0

x1

x2

x3

x4

x5

x6

C

g00

g10

g20

g30

g21

g11

g01

g02

g12

g22

g32

g23

g13

g03
y0

y1

y2

0 5 10 14

4

10

9

(d) (e)

5 5
C

5 4

2

4

5

4

5

3

5

2

4

4

3

3

2

3

0 4

0 5

0 4

0 2

5 10

5 8

10 12

10 14

10 14

13

14 17

14 16

14 17

x0

x1

x2

x3

x4

x5

x6

C

g00

g10

g20

g30

g21

g11

g01

g02

g12

g22

g32

g23

g13

g03
y0

y1

y2

0 5 10 14

4

10

9

Control logic overhead
reduced by sharing

5 5
C

2 3 2 2

No control
needed for
gatesadded and/or enabled later

(not on any critical path)

2

4

5

4

5

3

5

2

4

4

3

3

2

3

0 4

0 5

0 4

0 2

5 10

7

12 14

10 14

10 14

13

14 17

14 16

14 17

x0

x1

x2

x3

x4

x5

x6

C

g00

g10

g20

g30

g21

g11

g01

g02

g12

g22

g32

g23

g13

g03
y0

y1

y2

0 5

5 10

10

10 147 12

10

Control logic for gates

(f) (g)

Figure 1: Minimizing glitch power dissipation in a synchronous sequential circuit design and various optimizations: (a) Timing waveform
for the clock signal and derivation of the enable signal for control logic from it. (b) Control logic comprising n and p control transistors con-
nected to ����� and ����� , respectively, is enabled when the last input to the gate arrives. This prevents unnecessary charging and discharging
to ����� and ����� , respectively, of output capacitance and internal capacitances in P pull-up and N pull-down and also prevents short-circuit
current during the time when input signals are unsteady. Note that for this particular control logic, two delay chains are needed, one for the
p and the other for the n control transistor. However, control logic types that control connection to only � ��� or only � ��� need a single
delay chain, but provide a little less effective glitch power reduction [8]. (c) Glitches occurring in a combinational logic block at the outputs
of gates that have multiple inputs changing asynchronously. (d) Glitches minimized by adding control logic to every potentially glitchy
gate and enabling it through a delay chain when the last input to the gate stabilizes. (e) Control logic enabled later for certain gates not on
any critical path so as to have synchronous evaluation of a number of gates and thereby reduce the number of delay elements required. (f)
Control logic overhead reduced by sharing control logic across multiple synchronously evaluating gates. (g) Control logic for certain gates
not on any critical path added and/or enabled later so as to make arrival times of inputs to a fanout gate(s) equal, thereby eliminating delay
element, control logic, and wiring overhead for the latter gate.

technology yields 95% or more elimination of glitch power
dissipation with negligible area and timing overheads after
optimization. Then in Sec. 5 we briefly discuss related pre-
vious work. Conclusions are in Sec. 6.

2 Proposed Methodology: Gate Triggering
The key idea we employ to minimize glitches is to trigger

logic evaluation at a gate only after all of its inputs have sta-
bilized. For this purpose, to every potentially glitchy gate,
we add some small control logic, which, when enabled, trig-
gers logic evaluation at the gate (see Fig. 1(d)). Essen-
tially, this logic controls gate connection to � ��� and/or
����� . Fig. 1(b) shows one possible type of control logic.
Various types of control logic and their analyses and associ-
ated simulation results are the subject of another paper [8].
In order to enable the control logic for different gates in the
combinational logic block of Fig. 1(d) at the proper times
(i.e., when the last input to the individual gates has stabi-
lized), we first perform a timing simulation of the combi-
national block. Timing simulation is an essential step in
the design flow of a VLSI chip [18] (e.g., to determine the
critical-path delay in a combinational block, which in turn
determines the clock period). Hence it does not represent an
extra step in the application of our method. From this timing
simulation, we obtain the delays of different gates and also
the latest times by which the various inputs of a gate will
have stabilized. For instance, in Fig. 1(d), gate g01 has a
delay of five time units, and its top, middle, and bottom in-
puts will have steady-state values latest by five, four, and
two time units, respectively.

In order to prevent glitches at the output of gate g01,
its control logic can be enabled at time five and should re-
main enabled for at least five time units, which is the de-
lay of the gate, so that the gate logic may evaluate com-
pletely. Therefore we use an enable signal for the combina-
tional block with a high period equal to the maximum delay
for any gate in the block (five units for the combinational
block of Fig. 1(d)). As shown in Figs. 1(a) and (d), the en-
able signal is generated by ANDing clock complement with
the clock signal delayed by this maximum delay. This ini-
tial enable signal is then delayed by various amounts us-
ing a delay chain comprising delay elements as in Fig. 1(d).
The output of a delay element in this chain provides an ap-
propriately delayed version of the initial enable signal that
can be used to trigger a gate(s). For example, in Fig. 1(d),
gates g01 and g11, for both of which the last input stabi-
lizes by time five, are controlled by the initial enable signal
delayed by five time units. Similarly, gate g32 is enabled at
time nine, since that is when its last input (the bottom input)
stabilizes. In contrast, gate g21 does not need any control
logic or enable signal since both of its inputs have equal de-
lays.

Using the above approach, all potentially glitchy gates
are triggered by the enable signal when the last input to

them stabilizes, thus ideally preventing all glitches in the
combinational block. In practice, however, minor or par-
tial glitches may occur due to the nonideal behavior of tran-
sistors. It should also be noted that short-circuit power dis-
sipation in all triggered gates can be minimized by trigger-
ing them after the last input has stabilized, since before trig-
gering, gate connection to � ��� and/or ����� is cut off by
the control logic. However, in most cases, it will not be
cost-effective to control all gates in this manner to minimize
short-circuit power dissipation because of the overheads it
will entail. Rather, it will be best to control few select gates
where potential for glitch and short-circuit power savings is
maximum.

The main overheads of our approach are logic (delay ele-
ment and control logic) overhead, wiring overhead for gen-
erating and routing the enable signal for potentially glitchy
gates, and a delay overhead because of an increased delay
for the combinational block. The logic overhead for gener-
ating the initial enable signal using an AND gate and a de-
lay element is minimal. We have observed in our simula-
tions that the delay overhead is negligible. Note that reduc-
ing the number of delay elements or the amount of control
logic should lead to lower wiring overhead, since each delay
element corresponds to a distinct enable signal to be routed
and each control logic corresponds to an enable signal to be
routed to control it. In the next section, we provide some
ways by which logic overhead, and thus wiring overhead,
can be minimized.

3. Logic and Wiring Overhead Optimization
3.1 Delay Element Optimization

The delay element overhead depends primarily upon the
total delay provided by all delay elements and the number
of delay elements. The number of delay elements in turn
depends upon the number of delayed versions of the enable
signal needed from the delay chain. Therefore, the number
of delay elements can be reduced by synchronously trigger-
ing with a common enable signal as many gates as possi-
ble after their last inputs have stabilized. For example, in
Fig. 1(e), the set of gates g01 and g11, the set of gates
g02, g12, g22, and g32, and the set of gates g03, g13,
and g23 are all triggered synchronously by enable signals
delayed by five, ten, and fourteen time units, respectively.
Note that to synchronize, some gates are triggered later than
normal (such as g32, and g13 in Fig. 1(e) compared to
Fig. 1(d)). Also, note that the gates selected for late trig-
gering are not on any critical path (shown with bold lines in
Fig. 1(e)) so as not to increase the overall delay of the com-
binational block. The application of this optimization thus
results in a much reduced number of delay elements in the
delay chain (three in Fig. 1(e) compared to five in Fig. 1(d))
Note that a smaller number of delay elements also means a
smaller wiring overhead, since a fewer number of distinct
enable signals need to be routed. The delay element we

chose is a transmission gate with appropriately-sized tran-
sistors to provide the required amount of delay. We selected
a transmission gate because it requires less area and con-
sumes very little power. A detailed discussion and compar-
ison of delay elements motivating our choice is the subject
of another paper ([9]).
3.2 Control Logic Optimization

There are two ways in which control logic may be op-
timized. First, after applying the technique to reduce the
number of delay elements discussed above, we can use the
same control logic to control all gates that are to be triggered
simultaneously. For instance, in Fig. 1(e), the set of gates
g01 and g11 can be controlled by the same control logic as
shown in Fig. 1(f). However, it should be noted that sharing
the control logic in this way may mean that the transistors
of the control logic will need to be sized up (compared to
when no sharing is done) to avoid increase in delay of the
combinational block.

Another way to reduce the amount of control logic is to
schedule the triggering of earlier gates so that inputs to later
gates are synchronized. For instance, in Fig. 1(g), gates
g11 and g02 are triggered later than normal and control
logic is added to gate g21 (compare Fig. 1(g) to Fig. 1(f))
so that all inputs to gates g12, g22, g03, and g23 are syn-
chronized, thereby obviating the need for controlling these
gates using control logic. Note again that the gates selected
for late triggering are those not on any critical path in order
not to increase the delay of the combinational block. This
results in less control logic, and possibly less delay element
and wiring overhead, since some enable signals no longer
need to be generated and routed.

The various optimizations discussed above are not exclu-
sive, but may be used in conjunction to various degrees de-
pending upon the combinational logic block under consid-
eration to minimize the total overhead. In the next section,
we formulate this overhead minimization problem as an in-
teger linear program (ILP) subject to a critical-path delay
constraint.

4 ILP Formulation for Overhead Minimiza-
tion

The overhead minimization problem can be stated as fol-
lows:

Problem 1 Minimize a weighted sum of the total amount of
delay and the number of delay elements in the delay chain,
and the number of gates triggered (which corresponds to the
amount of control logic and wiring required), such that: (1)
there are no glitches, and (2) the critical-path delay of the
circuit does not exceed a specified upper bound.

Clearly, the total amount of delay corresponds to the lat-
est triggering time over all gates, while the number of de-
lay elements to the number of distinct gate triggering times

(see Fig. 1(g)). No glitching requires that every gate with
asynchronous inputs must be triggered no earlier than the
latest input arrival time for that gate; obviously, a gate with
synchronous inputs will not glitch and hence should not be
triggered. The problem of glitch minimization, in which
the amount of glitching is part of the objective to be min-
imized, as opposed to glitch elimination being considered
here, seems to be more difficult, and will be considered in
future research. The second constraint in Problem 1 implies
the following theorem.

Theorem 1 There exists a finite set ��� of triggering time
instants for every gate � in the circuit such that the optimal
solution to Problem 1 is not affected by restricting � ’s trig-
gering time to � � .

Proof Outline: The latest input arrival time for a gate in
the original circuit (before applying the glitch-minimization
technique) and the upper bound on critical-path delay set
lower and upper bounds, respectively, on the triggering time
of the gate. Triggering a gate later than the lower-bound
time, rather than triggering it at the lower-bound time, can
lead to lower overhead only if it satisfies one of the follow-
ing two conditions. (1) The gate triggering time synchro-
nizes with the triggering time of at least one other gate, so
that a common control signal can be used for both gates,
thereby saving a delay element (see Fig. 1(f)). (2) The gate
triggering time is such that the gate output synchronizes
with the arrival of other inputs to some fan-out gate, thereby
saving a control element at the fan-out gate, which does not
need to be controlled (see Fig. 1(g)). There are only a finite
set of triggering time instants that will lead to one of these
two synchronizations. �

Space constraints do not permit us to specify and prove
what the exact finite set of triggering times implied by The-
orem 1 is for a gate.

The constants, variables, expressions, objective (corre-
sponding to Problem 1), and constraints for the ILP and
their descriptions are given for easy reference in Table 1.
Only two points need to be explained, and after that the rest
of the ILP is easily understood by inspection of the detailed
descriptions in the table. First, we need to understand for
each variable the constraints that enforce the values indi-
cated for it in the table. The value of variable ���	��
�� � is en-
forced by constraints ��� , ��� , and ��� , that of ��� � ���� � by ��� ,
��� , and ��� , that of ����� �! � by ��" , and that of ���� � by ��# and
��$. When gate � is triggered, the value of %&�� � is enforced
by constraints ���(' and �&�)� , otherwise, by constraints ���*' ,
� �+� , and � �+� . The value of � � is enforced by constraints
� �*� and � �*� , and finally, that of , � by � �+� , � �+" , and � �+# .

The second point to be understood is the correspondence
between the two principal constraints of Problem 1 (i.e., no
glitches and bounded critical-path delay increase) and the
constraints of the table. Constraints � � through � " ensure

that a gate is triggered when its inputs are asynchronous.
Constraints � # and � $ ensure that whenever a gate is trig-
gered, its triggering time is no earlier than the latest input ar-
rival time for the gate, so that all glitches are eliminated. We
note that the upper bound on the triggering time for every
gate automatically enforces the constraint on the increase in
the critical-path delay. The objective function in the table
directly corresponds to the objective in Problem 1.

5 Related Work
Glitch and short-circuit power dissipation are discussed

in [12, 13]. Glitch estimation, modeling, and propagation
issues are covered in [3, 11, 16]. The importance of glitch
minimization for various applications is considered in [4,
17, 19]. Designing two-level glitch-free circuits using logic
redesign, assuming only one input changes at a time, is ad-
dressed in [6]. Glitch removal through path balancing ob-
tained via, say, transistor sizing or layout changes, is dis-
cussed in [10, 12, 13]; this can be cumbersome and involves
trial and error. Furthermore, in deep submicron technolo-
gies, transistor sizing will not be very effective for path bal-
ancing since logic delays become relatively smaller com-
pared to interconnect delays. Retiming and buffer place-
ment approaches to filter or reduce glitches and glitch prop-
agation are described in [2, 7]; these approaches, although
somewhat effective, entail appreciable area overheads for
flipflops and buffers. Glitch reduction at the RTL level in
control flow intensive designs is given in [15].

Therefore, current methods for glitch reduction are ei-
ther (i) not applicable in all contexts, or (ii) can not be auto-
mated and are ad hoc, or (iii) are not very effective, or (iv)
have high area/delay overheads, or (v) restrict the manner
in which logic is transformed to a gate realization. There is
no methodical, generally applicable approach to minimiz-
ing glitch power dissipation. Our proposed gate triggering
approach in this paper attempts to overcome all the above
limitations of current approaches.

6 Conclusions
Although research into various aspects of glitch power

dissipation has been undertaken in the past, most ap-
proaches to addressing it are ad hoc and limited in their ap-
plicability. This paper presented a new framework called
gate triggering for systematically minimizing glitch power
dissipation in static CMOS ICs. The logic and wiring over-
heads of our approach were analyzed and an ILP formu-
lation was given to minimize these overheads subject to a
critical-path delay constraint. Application of the new ap-
proach to test circuits (such as ripple carry adder and array
multiplier) yields 95% or more elimination of glitch and, in
gates to which applied, short-circuit power dissipation with
very little to negligible area and timing overheads after op-
timization.

References
[1] A.P. Chandrakasan and R.W. Broderson, “Minimizing power

consumption in digital CMOS circuits,” Proceedings of the
IEEE, Vol. 83, No. 4, pp. 498-523, Apr. 1995.

[2] M. Favalli and C. Metra, “The effect of glitches on CMOS
buffer optimization,” Proc. PATMOS, Oct. 1995 in pp. 202-
212, Oldenberg, Germany, Oct. 1995.

[3] M. Favalli and L. Benini, “Analysis of glitch power dissipa-
tion in CMOS IC’s,” Proc. of ISLPED, pp. 123-128, 1995.

[4] “Gated clocks and hazards,”
http://erebor.cudenver.edu/courses/ee3651/hazards/hazard.html.

[5] F.S. Hillier and G.J. Lieberman, “Introduction to operations
research,” McGraw-Hill, 1995.

[6] R.H. Katz, “Contemporary logic design,” Addison Wesley
Publications, 1993.

[7] J. Leijten, et al., “Analysis and reduction of glitches in syn-
chronous networks,” Proc. EDAC, pp. 398-403, 1995.

[8] N.R. Mahapatra, S.V. Garimella, and A. Tareen, “Efficient
techniques for designing static CMOS ICs with very low
glitch power dissipation,” submitted to ISCAS 2000.

[9] N.R. Mahapatra, A. Tareen, and S.V. Garimella, “An experi-
mental and analytical comparison of delay elements,” Tech-
nical Report, Dept. of Computer Sc. & Eng., SUNY-Buffalo,
Buffalo, NY, 1999.

[10] E.J. McCluskey, “Logic design principles with emphasis
on testable semicustom circuits,” Prentice Hall, Englewood
Cliffs, NJ, 1986.

[11] F.N. Najm, “A survey of of power estimation techniques in
VLSI circuits,” IEEE T-VLSI, Vol. 2, No. 4, Dec. 1994.

[12] M. Pedram, “Power minimization in IC design: Principles
and applications,” ACM TODAES, Vol. 1, No. 1, pp. 3-56,
Jan. 1996.

[13] J.M. Rabaey, “Digital Integrate Circuits,” Prentice Hall,
1996.

[14] D. Rabe, et al., “Comparison of different gate level glitch
models,” Proc. PATMOS’96, Bologna, Italy, 1996.

[15] A. Raghunathan, S. Dey, and N.K. Jha, “Glitch analysis
and reduction in register transfer level power optimization,”
DAC, pp. 331-336, Jun. ’96.

[16] S.J. Abou-Samra and A. Guyot, “Glitch threshold,”
FTFC’97.

[17] P.S.K. Siegel, “Automatic technology mapping for asyn-
chronous designs,” Tech. Rep. CSL-TR-95-663, Stanford
Univ.

[18] N.H.E. Weste and K. Eshraghian, “Principles of CMOS
VLSI design,” Addison-Wesley, 1993.

[19] T.-Y. Wu, et al., “A low glitch 10-bit 75-MHz CMOS video
D/A converter,” IEEE JSSC, Vol. 30, No. 1, Jan. 1995.

Label Name Description Label Name Description
Constants� Set of all gates in the combina-

tional gate network.
��� , ��� � Delay for gate � .

����� �
	 � ��� ����*� ��������� Set of all possible gate trigger-
ing times.

� � �
� ���
� 	 � �
�
� � ����+� ���
� � � ����� Set of all possible triggering

times for gate � .������ �
� ������
� 	 � ������
� � ����+� ������
� � � ��� � ,��� �

Set of all possible input arrival
times for gate � . � ���� , ��� � Set of fan-in gates for gate � .

Variables
 �"!�#�
� � , '%$ �'&)(������ (, ��� �

� � , if the latest input arrival
time for gate � is ������
� � , else �' .

 � ����
� � , '*$ �+&�(������ (, ��� �
� � , if the earliest input arrival
time for gate � is ������
� � , else �' .

,.-0/ �21� , ��� �
= 1, if the inputs to gate �
are asynchronous (i.e., if gate �
needs to be triggered).

, �
� � , '%$ �+&)(��� (, ��� � � � , if gate � is triggered at
time � �
� � , else � ' .

3 �
� � , '4$ �5&6(� �+(, �7� � � � , if the output of gate � be-
comes stable at �8�
� ��9 � � ,
else � ' .

,
� , '*$ �'&)(� (� � , if at least one gate is trig-

gered at time � � , else � ' .

: � , '%$ �5$)(� (� � , if the latest triggering
time over all gates is � � , else� ' .

Expressions
; � � � � < 	�= �?>'@ A ���� @ �

 �"!�#�
� � B ������
� � � ,��� �
Latest input arrival time for
gate � .

;�C � � � < 	�= �?>'@ A ���� @ �
 � ����
� � B ������
� � � ,�7� �

Earliest input arrival time for
gate � .;�D � � � < 	�= �?>'@ A ���� @

 �"!�#�
� � , ��� � Number of latest input arrival
times for gate � .

;�E � � � < 	�= �?>'@ A ���� @
 � ����
� � , ��� � Number of earliest input arrival

times for gate � .

;�F � � � < 	�= �?>'@ A � @ � 3 �
� � B � �
� � � 9 ��� ,��� � Time at which ouput of gate �
stabilizes.

;�G � �� � � <5HJILK ���� 3 H � M ,N (� H � M 9 � H � ������
� � ,'%$ �'&6(������ (, ��� �
Number of inputs that arrive at
time ������
� � for gate � .

;PO � � � < 	�= �?>'@ A � @
, �
� � , ��� � � � , if gate � is triggered, else� ' .

;�Q � � � < 	�= �?>'@ A � @ �
, �
� � B ���
� � � ,�7� � Time at which gate � is trig-

gered.

;�R � � � < 	�= �?>'@ A � @ 3 �
� � , ��� � Number of times output of gate� becomes stable.
; �S	J� � � < 	�= �?>'@ A � @ �

3 �
� � B ���
� � � ,�7� �
Time at which output of
gate � stabilizes is given by; �T	L� � � 9 � � .; �U� � � � < � IWV

, �
� M ,
N (���
� MX� � � ,'%$ �+&)(� (Number of gates triggered at

time � � .
; � C � �� � � , �
� M , N (���
� MY� � � , ��� � ,'%$ �'&6(� (� � , if gate � is triggered at

time � � , else � ' .; � D � � � , � B � � , '*$ �'&)(� (� � � , if at least one gate is
triggered at time � � , else � ' .

; � E < 	�= �?>'@ A5@ � : � B � � � Latest triggering time over all
gates.; � F < 	�= �?>'@ A'@

, � Number of distinct triggering
times in the circuit.

; � G < � IWV < 	�= �T>'@ A � @
, �
� � Number of gates triggered.

; � O < 	�= �?>'@ A'@ : � Number of latest triggering
times.

Objective Function

Objective �[Z -2\U-]�^U_ !�` B
; � E 9 Z � �J�]�^a_ !�` B

; � F 9 Z -0/ �01 B
; � G Objective is to minimize total overhead comprising total amount of delay in the de-

lay chain, number of delay elements, and the number of gates triggered/controlled;Z -2\a-]�^U_ !�` , Z � �J�]�^a_ !�` , and Z -0/ �01 are the associated weights.
Constraints

b � ; D � � �+� � There is only one latest input
arrival time for gate � .

bPC ; �c� � ��d ;�F ��eJ� , e � � ���� ,�7� �
The latest input arrival time for
gate � can be no earlier than
any of its individual input ar-
rival times.

b D �"!�#�
� � $; G � �� � � ,
'%$ �+&)(������ (, ��� �

The latest input arrival time for
gate � has to be one of its input
arrival times.

b E ; E � � �+� � There is only one earliest input
arrival time for gate � .

bPF ; C � � � $;�F ��eJ� , e � � ���� ,��� �
The earliest input arrival time
for gate � can be no later than
any of its input arrival times.

bPG � ����
� � $;�G � �� � � ,
'%$ �'&6(������ (, ��� �

The earliest input arrival time
for gate � has to one of its in-
put arrival times.

b O f B
, -�/ �21� d ; �g� � �ih ; C � � � ,��� � , f is a sufficiently large

number.

Gate � is triggered if its in-
puts are asynchronous (i.e., if
its latest and earliest input ar-
rival times are unequal).

b Q ; O � � � $ � , ��� � Gate � cannot be triggered
more than once.

bPR
;�Q � � ��d ; F ��eJ�jh
f � � h , -0/ �01� � � e � � ���� ,��� �

If gate � is triggered, its trig-
gering time can be no earlier
than any of its individual input
arrival times.

b �T	 ;�R � � �+� � , ��� � Output of gate � can stabilize
exactly once.

b �a� 3 �
� � d , �
� � , '%$ �5&)(� �i(,��� �
If gate � is triggered at time� �
� � , then its ouput stabilizes
at time ���
� �k9 � � .

b � C
; �T	l� � � $; �g� � � 9 f B

; O � � � ,
f is a sufficiently large number,�7� �

If gate � is not triggered (i.e.,
all its inputs are synchronous or
its earliest and latest input ar-
rival times are equal), the time
at which its output stabilizes
cannot be any later than the
sum of its latest input arrival
time and its gate delay.

b � D
; �T	L� � ��d ; C � � �ih f B

; O � � � ,
f is a sufficiently large number,��� �

If gate � is not triggered (i.e.,
all its inputs are synchronous or
its earliest and latest input ar-
rival times are equal), the time
at which its output stabilizes
cannot be earlier than the sum
of its earliest input arrival time
and its gate delay.

b � E , � $; �a�c� � � , '%$ �+&)(� (Triggering time � � is not cho-
sen (i.e.,

, � � ') if no gate is
triggered at time � � .

b � F , � d ; � C � �� � � , ��� � ,'%$ �+&)(� (
Triggering time � � is chosen
(i.e.,

, � � �) if at least one
gate is triggered at time � � .

b � G ; � O $ � The number of latest triggering
times can be no greater than 1.

b � O ; � E d ; � D � � � , '%$ �'&)(� (The latest triggering time can
be no earlier than any of the
gate triggering times.

b � Q : � $, � , '*$ �+&)(� (The latest triggering time can
only be chosen from one of the
gate triggering times.

Table 1: ILP formulation for minimizing delay element, control logic, and wiring overheads when applying the glitch-minimization tech-
nique of Sec. 2 to a combinational logic block so that no glitches occur and the increase in critical-path delay of the block does not exceed
a specified upper bound.

