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Abstract
In this paper, we consider a “dynamic” node covering
framework for incorporating fault tolerance in SRAM-based
segmented array FPGAs with spare row(s) and/or column(s)
of cells. Two types of designs are considered: one that can
support only node-disjoint (and hence nonintersecting) rec-
tilinear reconfiguration paths, and the other that can sup-
port edge-disjoint (and hence possibly intersecting) rectilin-
ear reconfiguration paths. The advantage of this approach
is that reconfiguration paths are determined dynamically de-
pending upon the actual set of faults and track segments
are used as required, thus resulting in higher reconfigurabil-
ity and lower track overheads compared to previously pro-
posed “static” approaches. We provide optimal network-
flow based reconfiguration algorithms for both of our de-
signs and present and analyze a technique for speeding up
these algorithms, depending upon the fault size, by as much
as
���

times. Finally, we present reconfigurability results for
our FPGA designs that show much better fault tolerance for
them compared to previous approaches—the reconfigurabil-
ity of the edge-disjoint design is 90% or better and 100%
most of the time, which implies near-optimal spare-cell uti-
lization.

1 Introduction
Field programmable gate arrays (FPGAs) consist of a

large array of programmable cell or logic blocks (CLBs) and
interconnects that can be reconfigured to implement a wide
variety of application logic. They are commonly used for
the development of prototype systems and their early intro-
duction to market and also as emulators to verify and test de-
signs. An important criterion in the design of FPGAs is fault
tolerance, which is the ability to retain full or partial func-
tionality in the presence of CLB or interconnect faults that
arise during fabrication or operation. Being able to toler-
ate fabrication faults means higher yield and lower costs for
the manufacturer. Tolerance for operational faults translates
into higher reliability and reduced downtime for the user.
�
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Two different approaches have been used to provide fault
tolerance in FPGAs. The first is to reroute the user’s cir-
cuit to avoid faulty cells and/or interconnects, using spares
or other unused cells instead [5, 8, 9, 10, 11]. Requiring the
layout tools to perform a new routing for every fault places a
heavy burden on the user, who must also keep track of all the
different routings possible on different chips for a given cir-
cuit design. The other approach, adding spare rows and/or
columns of cells, is intended for reconfiguration at the fac-
tory, making the technique transparent to the user. To recon-
figure around a faulty row, fuses are burned at the factory
such that non-faulty rows are remapped to include the spare
row. For the faulty row to be transparent, it is necessary to
maintain the original connectivity between the rows on ei-
ther side of the faulty one. One method of doing this is to
employ longer wiring segments in the vertical channels, but
then extra tracks must be added to these channels to retain
the original routing flexibility [6].

Of the previous work done in this area, the method of in-
terest to this research is the node covering method for cell
fault tolerance [3]. The model of FPGA considered is shown
in Fig. 1 and consists of an ���	�
��� rectangular array of
CLBs. Wiring tracks run along channels between adjacent
rows and columns of CLBs to support routing of nets con-
necting different CLBs. In a single-spare row (1S-R) de-
sign, there is an additional row of spare CLBs at the bottom
of the array—the spare in column  is denoted ������ � , where
“b” stands for “bottom”; a single-spare column (1S-C) de-
sign is defined similarly with the spare column to the right.
A single-spare row-column (1S-RC) design has a spare row
of CLBs at the bottom and a spare column of CLBs to the
right. Finally, a double-spare row-column (2S-RC) design
has spares on all four sides as in Fig. 1. The spare CLBs and
the unused track segments provide the necessary reconfigu-
ration capability for the array.

In the node-covering method, a faulty FPGA is reconfig-
ured by finding for each fault a covering sequence, which
is an ordered sequence of CLBs beginning with the faulty
CLB and ending in a spare CLB such that each CLB re-
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Figure 1: FPGA reconfiguration model showing reconfiguration
paths for faults ��������� , ���	�
��� , and �������� .
places or “covers” the preceding CLB in the sequence by
taking over its functionality as well as connectivity. A CLB� � that covers another CLB � � needs to connect to nets orig-
inally connected to � � , and this is accomplished by using
track segments adjoining intermediate CLBs on a path from� � to � � called the covering path. A reconfiguration path
for a fault � is a path from � to a spare through a super-
set of CLBs in its covering sequence obtained by concate-
nating all covering paths between consecutive CLBs in the
covering sequence. For example, in Fig. 1, the covering se-
quence for fault �
��� ��� is ������� ��� � � �� � � � , while the correspond-
ing reconfiguration path is ������� ��� ��� � � ��� ������� ��� � � �� � �� . Since
in the above model a CLB can cover another CLB only via
the track segments adjoining intervening CLBs, reconfigu-
ration paths always consist of adjacent CLBs and hence are
continuous. Covering sequences, on the other hand, may
be discontinuous—this is the case in the above example in
which CLBs � � � ��� and ����� ��� are skipped in �
��� ��� ’s recon-
figuration path.

In the static node-covering method, reconfiguration paths
for faults are predetermined and are independent of the set
of faults [3]. For instance, in a 1S-C FPGA, reconfiguration
paths go straight to the spare CLB on the right and only one
fault per row can be tolerated—similar to the reconfigura-
tion path for fault � � � ��� in Fig. 1. A cover cell that replaces
a dependent cell must be able to duplicate the functionality
of the latter. In an FPGA, all cells are identical, so configu-
ration data for the dependent cell can simply be transposed
to the cover cell. The cover cell must also be able to du-
plicate the connectivity of the dependent cell with respect
to the rest of the array. This is accomplished by ensuring
that each net connected to a cell through a channel segment
also includes the corresponding channel segment—a cover
segment—bordering the cover cell (see Figs. 2(a) and (b)).
Cover segments are included in a net in one of two ways.
First, segments in the net may already be in positions to act
as covers. In case the above condition does not hold, addi-
tional segments, termed reserved segments (RSs), should be

attached to the net to provide covers. Essentially, segments
are reserved to act as covers at all branch points of the cir-
cuit netlist. Thus this method requires neither the factory nor
the user to generate new routing maps to reconfigure around
faulty cells or wiring, as is required by [5, 8, 9, 10, 11]. In-
stead, the original configuration data can be reused. Also, no
explicit additional tracks are needed in the channels in order
to avoid the loss of connection flexibility seen in [6]. The
additional wiring segments used to support reconfiguration
paths cause a track overhead in the routing—fora number of
benchmark circuits, the track overhead is found to be 34%
[3]. This results in retaining total functionality with reduced
routability or total routability with reduced functionality.

To retain total functionality with as little overhead as
possible, a dynamic node-covering method was proposed
in [13]. In this method, reconfiguration paths are dynam-
ically determined depending upon the fault set and RS in-
sertions are made only along channels where reconfigura-
tion paths pass. This results in higher reconfigurability and
lower overhead. Two types of dynamic designs are con-
sidered: node-disjoint and edge-disjoint FT FPGA designs.
In the first type, only node-disjoint rectilinear reconfigura-
tion paths can be supported. Thus in Fig. 1, reconfiguration
paths for faults � � ��� � and � � � ��� can both be supported—note
that the reconfiguration path for � � ��� � shown in Fig. 1 can
not be supported in the static node-covering method since
it is bent. However, reconfiguration paths for ����� ��� and
� � � ��� and/or � � ��� � can not be supported in the node-disjoint
dynamic-FT method, since the former intersects the latter
two. The second type of FPGA design can support any set
of edge-disjoint rectilinear reconfiguration paths, and hence
can support reconfiguration paths for faults ����� ��� , � � � ��� , and
� � ��� � in Fig. 1 all simultaneously. Thus it provides higher
yield/reliability compared to the first type. We discuss the
dynamic node covering method in the next section.

In order to maximally utilize the spare CLBs, rectilinear
reconfiguration paths from faults to spares need to be opti-
mally determined (i.e., if there exist such paths for all faults,
they need to be found). We present network-flow based re-
configuration algorithms for both node-disjoint and edge-
disjoint FPGA designs that determine such paths in Sec. 3.
In previous work, network-flow based reconfiguration al-
gorithms have been proposed for VLSI/WSI arrays in [12].
Since our dynamic node covering method is meant to be
used online, reconfiguration speed is important. In Sec. 4,
we present an effective technique for speeding up our recon-
figuration algorithms that exploits the regular array struc-
ture of the flow graph and that provides as much as 20 times
speedup. In Sec. 5, we analyze this speedup technique and
verify the analysis empirically. Sec. 6 presents reconfig-
urability results for node- and edge-disjoint and single- and
double-spare FPGA designs. Finally, we conclude in Sec. 7.
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Figure 2: Fault tolerance using the static node covering method in a � S-C FPGA: (a) Cover segments associated with nets in the FPGA. (b)
Reconfiguration around faulty cells A and E using cover segments and (static) straight reconfiguration paths to the right. Reconfiguration
using the dynamic node covering method: (c) Presence of occupying net (O-net) n3 prevents a straightforward insertion of a reserved seg-
ment in the RS channel. Therefore the O-net must be moved to another track, possibly bumping other nets, to make room for the reserved
segment. (d) Overlap graph used to determine transition tree for FPGA circuit in [c].

2 Background: Dynamic Node Covering
The dynamic FT method [13] was developed to re-

duce the track overhead incurred in implementing the static
method. It is similar to the static method except that recon-
figuration paths for tolerating faults are not predetermined,
instead they depend upon the particular set of faults to be re-
configured around. � The fact that reconfiguration paths in
the dynamic method depend upon the fault set means that
the assignment of cover cells to dependent cells is not static.
This also means that RS insertions are required only along
the actual reconfiguration paths used, in contrast to requir-
ing RSs at all branch points for nets along the whole FPGA.
By not statically reserving wire segments, having flexibility
for reconfiguration paths, and requiring RS insertions only
along such paths, a better utilization of the unused wiring
segments and tracks is obtained. This leads to a much lower
track overhead and better fault tolerance for the dynamic FT
method compared to the static one.

The dynamic nature of the method requires the actual po-
sition of the fault to be known to identify the RSs required.
Since the routing for the FPGA has already been completed,
this brings into question the availability of the wire segment
where an RS has to be inserted. This is discussed next.

2.1 Reserved Segments and Occupying and Hole
Nets

For any required RS, if the required wire segment where
the RS is to be inserted is vacant, i.e., no net has been routed
�
Note that for edge-disjoint reconfigurationpaths that skip nodes (i.e., in

which coveringcan take place between non-adjacentcells), RSs of segment
length ��� are required. Specifically, if � covers � and is at a distance of�

from it, then RSs of length up to
�

are required for � to connect to nets
originally connected to � .

through it, the RS insertion is done by including this segment
in the net that is connected to the dependent cell, so that its
connectivity can be taken over by the cover cell. If the re-
quired wire segment is occupied by another net, i.e., some
other net has already been routed through that wire segment,
then the RS insertion cannot be made directly because the re-
quired segment is not available. As shown in Fig. 2(c), the
net requiring the RS extension is termed the RS net and the
net occupying the required wire segment is termed the occu-
pying net (O-net). The existence of O-nets for the required
RSs gives rise to a requirement that there should be at least
as many vacant segments as required RSs in the channel seg-
ment where these RSs have to be inserted. When there is a
vacant segment on a section of the channel requiring the RS
(the RS channel) on a certain track �	� , any net that passes
through the channels adjacent to the RS-channel but does not
pass through the RS-channel on the same track �
� is referred
to as a hole net.

The problem can now be stated as follows. The RS net
and O-net are on the same track. The RS net has to be ex-
tended by one segment (RS-insertion). This requires the O-
net to move out of its current track. Let a transition be de-
fined as the movement of net ��� on a track � � to another track
�	� . This transition may result in the net �
� bumping into one
or more nets on track �
� . These nets will have to move out
of their current track � � , giving rise to a transition for each of
them. This gives rise to a transition sequence which will fi-
nally terminate in “spare” nodes, which are vacant segments
of appropriate lengths to which a bumped net can move in
without bumping any other net. When such a vacant seg-
ment is part of on occupied track then no spare track over-
head is incurred, whereas when it is part of a spare track then



an overhead of an extra track is incurred. Clearly, the set of
transitions takes on a tree structure, termed a transition tree,
with the spares forming the leaf nodes. The RS insertion is
successful if a transition tree rooted at the corresponding O-
net can be found whose leaves are spare nodes, such a tran-
sition tree is termed a converging transition tree. We next
briefly discuss a model that can be used for efficiently deter-
mining a converging transition tree.

2.2 The Overlap Graph
The overlap graph ( ��� ) is a graph representation of the

circuit routing on the FPGA. This graph is an undirected
graph with the circuit nets represented by the nodes of the
graph. In the overlap graph ��� ��� ��� �

, the set of nets �
	� � � � � � �����
� ����� in the circuit routing is represented by a
set of nodes/vertices ��	 � � � � � � ������ ����� . We use ������ to
denote a net � � on track � � . There exists an edge between ���
and � � in the OG iff nets �	� and � � share a channel � in the
FPGA. Figs. 2(c) and (d) show nets � � and ����� having an
edge between them because they are routed through a com-
mon channel on the left of the faulty cell. Also, the net � ���� is
routed through the adjacent channel in the area of the faulty
cell but not in the channel where the RS is required. The wire
segment on track ��� in the RS channel is vacant. So � � is
termed the hole net.

The overlap graph can be used as an effective model
in the evaluation of the required transition tree. Since
��� ��� � � �

represents the circuit routing on the FPGA, the
movement of nets involved in a transition tree can be seen as
a tree in the graph. Obviously, a converging transition tree
should end with the final transitions of nets into tracks where
they do not bump into any other nets, i.e., they end in spare
segments, which correspond to the spare (leaf) nodes in the
transition tree.

For a given circuit routing and a specific cell fault, it is
possible to identify the RS net, the O-net, and the H-net in
the OG. The O-net has to be moved out of its current track
to accommodate the RS. Since the transition �!� ��" ��#� of net
� � from track � � to another track ��� may result in the net
bumping into one or more of its children on that track, we as-
sociate a heuristic cost with each net transition. The heuris-
tic attempts to measure the cost of bumpings—bumping into
a large net is more expensive than bumping into a small net
or a number of small nets with total length (in terms of num-
ber of track segments) the same as or smaller than the length
of the large net. The heuristic is used as a guide in creat-
ing the transition tree by choosing those net transitions that
are less costly. This reduces the branching factor of the tree
path and hence the amount of perturbationof nets, thus mak-
ing it more likely for the transitions to converge with a mini-
mal overhead of spare tracks. Three different transition cost

$
A channel is the set of all track segments between two adjacent switch-

boxes of the FPGA.

heuristics have been evaluated in [13]. For the best heuris-
tic, the track overhead for tolerating one fault per row (the
same fault pattern as in the static method), and for a total of
four faults, for a number of benchmark circuits, is only 16%
and 4.5%, respectively. This establishes the superiority of
the dynamic FT approach over the static one.

To tolerate arbitrary fault patterns, however, straight re-
configuration paths will no longer be sufficient. Reconfigu-
ration paths with possibly multiple bends will be needed and
they may also intersect each other at nodes (edge-disjoint
paths). Intersection of two paths at a node has the effect of
one of the paths “skipping” the intersecting node. Optimal
or near-optimal techniques for finding such reconfiguration
paths in a faulty FPGA are desirable for maximal fault tol-
erance. Once these paths are determined, reconfiguration
will be achieved by inserting RSs as required along these
paths using the techniques of [13] for determining converg-
ing transition trees. In the rest of this paper, we develop fast
optimal algorithms for determining reconfiguration paths in
a faulty FPGA.

As mentioned earlier, there are two types of reconfigu-
ration paths, node-disjoint and edge-disjoint. In the next
section, we present network-flow based algorithms to deter-
mine reconfiguration paths of these two types.

3 Reconfiguration Algorithm
First, define a FPGA flow graph for a FT FPGA as fol-

lows.

Definition 1 A FPGA flow graph for a faulty FT FPGA has
a vertex corresponding to each primary cell in the FPGA
and has two unidirectional, unit-capacity edges directed in
opposite directions between vertex pairs which have corre-
sponding cell pairs that are either east-west or north-south
neighbors in the FPGA. Vertices in the flow graph corre-
sponding to faulty primary cells in the FPGA are sources.
The flow graph has an additionalvertex which is a sink (rep-
resenting nonfaulty spares in the FPGA) which has edges
incident on it from vertices corresponding to neighbors of
nonfaulty spare cells in the FPGA. Vertices that are neither
sources nor sink have unbounded capacities for an edge-
disjoint FPGA design and unit capacities for a node-disjoint
FPGA design.

Assuming the % �'& array of primary cells inside rectangle
ABCD in Fig. 3(a) represents an FPGA and that it is a

�
S-

RC design (i.e., it is surrounded by spares on all sides), the
corresponding FPGA flow graph would be as in Fig. 3(b).
Note that there is no edge in Fig. 3(b) corresponding to the
faulty spare on the right in row 9 of Fig. 3(a). We are now
ready to demonstrate the equivalence between the FPGA re-
configuration and maximal flow problems.

Theorem 1 The problem of determining a maximal set of
reconfiguration paths to reconfigure faults in the node- and



edge-disjoint FT FPGA designs is equivalent to the problem
of determining a maximal flow in the corresponding FPGA
flow graph.

Proof: It is clear from the definition of FPGA flow graph
(Def. 1) that a flow in the flow graph corresponds to a recti-
linear reconfiguration path from a fault to a spare in the ac-
tual FPGA hardware. The fact that all edges in the FPGA
flow graph have unit capacities implies that reconfiguration
paths must be edge disjoint. Vertices that are neither sources
nor sink have unbounded capacities in the flow graph for an
edge-disjoint FPGA design to allow edge-disjoint reconfig-
uration paths that may not be node disjoint, i.e., that may
be intersecting. However, these vertices have unit capacities
for a node-disjoint FPGA design to allow only node-disjoint
reconfiguration paths. Thus by solving the maxflow prob-
lem for this flow graph, a set of reconfiguration paths to tol-
erate the maximum number of faults possible can be found.�

Figs. 3(a) and (b) show the correspondence between re-
configurationpaths in the FPGA and flows in the FPGA flow
graph.

Theorem 2 A maximal set of reconfiguration paths to toler-
ate as many faults as possible in the node- and edge-disjoint
FT FPGA designs can be found by applying the lift-to-front
preflow-push algorithm of [2] to the corresponding FPGA
flow graph.

Proof: This follows from Theorem 1 and the fact that the
lift-to-front preflow-push algorithm finds a maximal flow in
the flow graph to which it is applied [2].

�
In our simulations, we used the � � � � � � �

lift-to-front
preflow-push algorithm of [2], which runs in � � � � �

time
since there are � � � �

vertices in the flow graph. Since the
flow graph under consideration is planar, we can use a more
efficient, although not as simple to code, maxflow algorithm
meant especially for planar graphs given in [7] that runs in
� � � ��� ���
	�� � �

time.
Reconfiguration paths obtained using the above approach

may either be supportable with the unused or spare tracks
and track segments or extra tracks may be needed, which
cause a track overhead. Clearly, it would be desirable to ju-
diciously utilize the spare tracks and track segments and to
minimize the track overhead. This is accomplished by asso-
ciating with each edge from a vertex � to a vertex � in the
flow graph discussed above a cost that estimates the track-
overhead cost of inserting RSs in order for � to cover � . This
cost can be determined as follows. Let �� � � �
� � be the set of
RSs that need to be inserted for � to cover � , and let � � � ��� �
be the set of corresponding occupying nets. Then the cost of
arc ��� � � � in the flow graph will be the sum of the minimum

or best transition costs of the nets in � � � ��� � , and is given by

�
���������
� � �������
�

�! #" �%$�� � ��� " � #�
� �
� �'&	 � � �

where
 (" �)$�� � is a heuristic cost function. Then a set of recon-

figuration paths that results in the maximum possible num-
ber of faults being reconfigured and at the same time also
incurs minimum track overhead can be found by solving the
mincost flow problem on this modified flow graph [1].

4 Speeding Up Reconfiguration
In this section, we present an effective technique to sig-

nificantly speed up the reconfiguration algorithm. Fast re-
configuration is needed especially in long-life mission criti-
cal systems possibly operating in hazardous and/or unmain-
tained environments (e.g., spacecrafts, satellites, remote-
sensing stations) where multiple faults can accumulate over
the life of the mission. The speedup technique discussed
applies to both node- and edge-disjoint FPGA designs, the
only difference being that vertices that are neither sources
nor sinks in the flow graph have unit capacities in the for-
mer case and unbounded capacities in the latter case.
4.1 The Technique for Double-Spare Designs

For simplicity of exposition, we first consider the recon-
figuration algorithm for the double-spare case in which there
are spares on all four sides of the FPGA. Figure 3(a) shows
a �(* �,+ array of primary cells with a � � -fault pattern includ-
ing a faulty spare in the rightmost column in row - ; assume
for the moment that it is a double-spare design, although the
figure actually depicts a single-spare design with a spare col-
umn on the right and a spare row at the bottom. Define the
circumscribing rectangle corresponding to a fault pattern as
the set of primary cells in the rectangle circumscribing all
primary-cell faults and all primary cells adjacent to spare
faults. This is rectangle �/. �%0 �%1 �%2 �

in Fig. 3(a).
The reconfiguration problem in the double-spare case is

essentially equivalent to finding reconfiguration paths for all
faults to unique boundary cells of the circumscribing rect-
angle, since from there the paths can be extended straight
outward from the rectangle to spares in the same row (for
boundary cells on the left and right sides) or column (for
boundary cells on the top and bottom sides). For example,
for the fault �3-��4* � in Figure 3(a), we first find a path to the
boundary cell �
�����4* � , and from there extend it straight out-
ward to the spare in the bottom row and the same column.
Although not shown in Figure 3(a), paths formed till bound-
ary cells on the left and top sides of the circumscribing rect-
angle are extended outward to the spares on the left and top
sides of the array, respectively. Thus, the reconfiguration
problem in the double-spare case is equivalent to solving the
maxflow problem in the subgraph of the original graph dis-
cussed in Sec. 3 consisting of vertices and edges confined
to the circumscribing rectangle and in which boundary-cell
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Figure 3: (a) An example fault reconfiguration showing the basis of the fast reconfiguration algorithm with the circumscribing rectangle
identified with dotted lines. (b) The flow graph for the fast reconfiguration algorithm in the double-spare row-column case. (c) The flow
graph for the fast reconfiguration algorithm in the single-spare row-column case. (d) The flow graph in the single-spare column case. (e)
Reconfigurability of edge- and node-disjoint FT FPGA designs for arrays of ����� , ����� , and ������� cells for the single-spare row-column case.

vertices are connected to the sink. The maxflow graph for
the above fault pattern is shown in Figure 3(b). Note that,
as before, a faulty spare (e.g., the spare fault in row - )
means that there is no corresponding edge in the maxflow
graph. By reducing the number of vertices in the equivalent
maxflow problem, we can speed up the reconfiguration al-
gorithm. We will analyze the expected amount of speedup
and give empirical speedup results in Sec. 5.

4.2 The Technique for Single-Spare Row-Column
Designs

Next, consider the case of � S-RC FPGA designs. The ad-
ditional constraint here is that there are no spares on the left
and top sides of the array, and hence paths formed till bound-
ary cells on these sides of the circumscribing rectangle will
need to bend to access spares on the right and bottom sides
of the array. This is depicted in Figure 3(a) for the example
fault pattern considered above. In general, let the circum-
scribing rectangle be of dimensions � � � and let it located
a distance of �

�
from the left and � � from the top bound-

ary of the array; � 	 % , � 	 & , �
� 	 � and � � 	 & in

Fig. 3(a). From our observation above, flow graphs for the
double- and single-spare cases, depicted in Figs. 3(b) and
(c), respectively, should be the same, except that the latter
should incorporate the additional constraint on routing re-
configuration paths from the left and top boundary points
of the circumscribing rectangle to spares on the right and
bottom. How this additional constraint is incorporated in
Fig. 3(c) by edges E � – E � , all of capacity �

�
, and edges E 	

– E � , all of capacity � � , is explained next.
Of all reconfiguration paths exiting the left side of the

circumscribing rectangle, a maximum of �
�

paths may go
to the bottom spares (since there are only �

�
cell columns

to the left of the circumscribing rectangle to route these
paths)—this restriction is modeled by edge E � , and a max-
imum of �

�
paths may bend and access the spares on the

right—this is modeled by edge E � . Similarly, of the paths
exiting the top side, a maximum of � � paths each may ac-
cess spares on the right and bottom sides of the array—these
restrictions are modeled by edges E 	 and E � , respectively.
Furthermore, since there are only �

�
bottom spares to the

left of the circumscribing rectangle, no more than �
�

paths



exiting the left and top sides can access these spares—this
is modeled by edge E � . Edge E � models a similar restric-
tion for spares on the right. The numbers in parenthesis
next to the above flow edges in Fig. 3(c) represent the actual
flow amount in them for the example fault pattern consid-
ered in Fig. 3(a). Thus solving maxflow on the above graph
is equivalent to solving the reconfiguration algorithm in the
� S-RC case.
4.3 The Technique for Single-Spare Row/Column

Designs
Finally, consider the case of single-spare row or col-

umn FPGA designs (see Fig. 3(d)). Here we show how our
technique is applied for � S-C FPGA (one in which there is
a spare column on the right); application for � S-R FPGA
is similar. Assume that the circumscribing rectangle of
Fig. 3(a) is located a distance of � � from the bottom bound-
ary of the array. Reconfiguration paths exiting the rectangle
on the top, left, and bottom sides must bend and access the � �
and � � spares on the right to the top and bottom, respectively,
of the array. By arguments similar to that made for Fig. 3(c),
it is clear why the pairs of edges � � � ��� � � , � � 	�� � � � , and
� ���	����� � in Fig. 3(d) should have capacities �

�
, � � , and � � ,

respectively. Of the reconfiguration paths exiting the bottom
and left sides of the rectangle, only a maximum of �

�
can

access the top spares—this is modeled by edge ��� ; and of
these and the reconfiguration paths exiting the top side of
the rectangle, only a maximum of � � can access the top � �
spares—this is modeled by edge � � . By symmetry, it is easy
to see how edges � � and � � � model the remaining flow con-
straints. It should be noted in Fig. 3(d) that since only two
spares can be accessed at the bottom of the array (because� � 	 �

), the reconfiguration path for fault � +�� & � in Fig. 3(a)
has been diverted upwards and to the right in Fig. 3(d), and
that for fault �3-�� * � has been diverted to spare ��� � � � � .
5 Speedup Analysis

We now estimate the expected speedup from using the
above technique over the original algorithm of Sec. 3 for a	

� �
	

� array assuming that faults are distributed ran-
domly across the array. Recall that the time complexity of
the reconfiguration algorithm is determined by the number
of vertices in the circumscribing rectangle of the fault pat-
tern. In the following, we determine, for a given fault size,
the probabilities for circumscribing rectangles of different
sizes. Consider an 
 �  rectangular subset of the array span-
ning rows 
 � through 
 ��� 
� � and columns  � through
 ��� � � . Given a fixed-size random fault pattern � , the
probabilityof the event � ��� ����
 ��� 
 ��� 
� ���  ���  ��� � ���
of � lying within this rectangle is

� � � � 	�� � � � � 	

 �"! �� � � #
 %$� � � # 	 �&
�'  �)( � �* � � � �)(

� ( �+
�' , � � � �)( �

- 	/. 
10 � � 20 � � � � �43 
5' ��76 ��8	 � � 	/9�:<;).�= �?> ; � (1)

Note that we do not use 
 � and  � to index the probability � � � �
since it is independent of the location of the circumscribing
rectangle. Let � ��� ����
 ��� 
 �/� 
< � �  ���  �@� � ��� , � ���
����
 ��� � � 
 ��� 
A ���  �B�  ��� � ��� , � � ������
 ��� 
 ��� 
A ���  �C�
 �D� , � � , and � 	 � ����
 ��� 
 �/� 
E ���  �/� � �  �/� , ��� .
Then, the probability that the fault pattern is circumscribed
by the above rectangle, i.e., the probability that all

� � �
faults

are confined to the above rectangle and at least one fault lies
on each boundary of the rectangle, isF � � � 	G� � � � � H� � � ��I � �CI � � I � 	

� � (2)

The second probability on the right hand side of Eq. 2 is
given by the inclusion-exclusion formula [14]

� � � � I � � I � � I � 	
� 	 � �  � � � � �  � 	 � (3)

where ��� is the sum of the probabilities of any � events
among the � � ’s, � 3 
 3 * , occuring simultaneously. For
example,

� � 	J� � � ��K � � � � � � � �LK � � � � � � � �LK � 	
� �

� � � �CK � � � � � � � �CK � 	
� � � � � � K � 	

� � (4)

Note that the probabilitiesof intersecting events can be com-
puted from Eq. 1. For example,

� � � � K � � � 	 � � �M� 
 � � 
 � � 
5 � �  � �  � � N �O� K
����
 � � � � 
 � � 
L ���  � �  � � N �O� �

	 � � �M� 
 � � � � 
 � � 
� � �  � �  � � � ��� �
	 � �"P � � � � (5)

Thus we can compute F � � � in Eq. 2 using Eqs. 1 and 3.
Let the function Q � � � � �

denote the average complexity of
the maxflow reconfiguration algorithm on a

� � �
-vertex flow

graph. Then, since there are � 	 �RS
 � � � '�� 	 �R  � � �
different possible locations for a 
 �  circumscribing rect-
angle in a

	
� �

	
� array, the average complexity of the

fast reconfiguration algorithm for a given fault size
� � �

is

� � � � � � � � 	TVU $
� � �XW � � 	 �YH
 � � � '	� 	 �*  � � � ' F � � � '�Q �&
L'  � � (6)

and the speedup obtained is

� � � � � � � � 	 Q � � �
� � � � � � � � � (7)

We collected speedup results, averaged over ten runs, for
the � � � � �

reconfiguration algorithm of Sec. 3 for edge-
disjoint FPGA designs. Table 1 depicts empirical speedups
obtained for a � ��� * -cell node-disjoint FPGA array for five



different fault sizes, viz.,
� � � 	 � � * �%+���������� � . It also gives

corresponding analytical speedups obtained from Eq. 7 as-
suming the average complexity of the reconfiguration algo-
rithm is Q � � � 	 � � � �%� � � . Assuming this average com-
plexity gives us the best fit for the analytical speedup with
the empirical one for

� � � 	 �
among � � � � �

, ��� , � � � �%� � � ,� � � �%� � � , � � � �%� � � , etc. As can be seen, the empirical and
analytical speedups are in good agreement over the entire
range of

� � �
values. Note that by using the fast reconfig-

uration algorithm, we are able to solve the reconfiguration
problem in a fraction of the time taken by the regular algo-
rithm. Clearly, as is evident from Table 1 also, speedups will
be higher for smaller than larger fault sizes, since the circum-
scribing rectangles will be smaller in the former compared
to the latter case. For the same reason, it is clear that, for
a given fault size, speedups will be higher for larger arrays
than smaller ones. Moreover, since defects on an FPGA are
likely to be localized to small regions, faults are more likely
to be clustered than uniformly distributed across the array,
so that the circumscribing rectangles will be smaller. Hence,
speedups obtained will be more than that predicted by the
above analysis.

Fault Size Empirical Speedup Analytical Speedup
2 23.05 22.43
4 3.34 4.55
8 2.13 2.07
16 1.25 1.38
32 1.10 1.13

Table 1: Empirical and analytical speedups obtained for a � ����� -
cell edge-disjoint FT FPGA array for five different fault sizes as-
suming in the analysis that the average complexity of the reconfig-
uration algorithm is � ��� ��� � � .
6 Reconfigurabilityof Edge- and Node-Disjoint

FT FPGA Designs
Here we present reconfigurability results for the edge-

and node-disjoint FPGA designs obtained by using the
maxflow-based reconfiguration algorithm of Sec. 3 and
Monte Carlo simulations averaged over � � � - � ��� � samples.
In Fig. 3(e) we plot the percentage of successful reconfigura-
tions for various fault sizes for the single-spare row-column
and double-spare (not shown) row-column cases, respec-
tively, of the above designs. We denote the number of pri-
mary cells by � and the number of spares by � . Note that
the reconfigurability of the edge-disjoint design is � ���	� for
all fault sizes except those of size �� � or greater—of course
it is possible to tolerate only faults of sizes � or less. Even
for these large-sized faults, the reconfigurability is - �	� or
better and in most cases close to � � �
� . Furthermore, this is
much better than the reconfigurability of the node-disjoint
design for large fault sizes. These results also demonstrate
that the spare-cell utilization in the edge-disjoint design is
close-to-optimal.

7 Conclusions
We presented dynamic node covering based FT FPGA

designs for increasing yield and for use in mission-critical
systems. Two types of designs were considered: one sup-
porting rectilinear node-disjoint and the other supporting
rectilinear edge-disjoint reconfiguration paths. By having
reconfiguration paths depend upon actual faults and insert-
ing RSs only along actual reconfiguration paths, the dy-
namic method incurs much less overhead for the same re-
liability compared to the static method. To facilitate fast on-
line reconfiguration, a speedup technique that speeds up re-
configuration time by as much as 20 times, depending upon
the fault set, was presented. The amount of speedup obtain-
able on average using the technique was analyzed and veri-
fied empirically. Finally, we presented reconfigurability re-
sults for both the node- and edge-disjoint FT FPGA designs.
These show that the reliability achievable via the dynamic
node covering approach is indeed high and very close to the
best possible with a given number of spares. Future work
will explore minimization of track overhead for several real
FPGA circuits by incorporating transition costs in the flow
graph and solving the resulting mincost flow problem.
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