• **Today’s Topic: Effective Teaching**

<table>
<thead>
<tr>
<th>DAY 1</th>
<th>DAY 2</th>
<th>DAY 3</th>
<th>DAY 4</th>
<th>DAY 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>common session</td>
<td>common session</td>
<td>common session</td>
<td>common session</td>
</tr>
<tr>
<td>9:30</td>
<td>Introduction: VLSI Curriculum; Course Content Overview</td>
<td>Course content: technology & device models</td>
<td>Teaching skills; effective lectures</td>
<td>DIS: Research in Education</td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
<td>DIS: Engaging in Research</td>
<td>DIS: Engaging in Research</td>
</tr>
<tr>
<td>10:30</td>
<td></td>
<td></td>
<td></td>
<td>DIS: New tech. resources</td>
</tr>
<tr>
<td>11:00</td>
<td>Components of VLSI Course</td>
<td>Course content: CMOS logic, layout, sequential logic</td>
<td>Teaching resources; effective homework, exams, labs</td>
<td>Trends in VLSI</td>
</tr>
<tr>
<td>11:30</td>
<td></td>
<td></td>
<td></td>
<td>VLSI Implementations of DSP</td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
<td>Research: Bio-medical Electronics</td>
</tr>
<tr>
<td>12:30</td>
<td>lunch</td>
<td>lunch</td>
<td>lunch</td>
<td>lunch</td>
</tr>
<tr>
<td>1:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:30</td>
<td>common session</td>
<td>common session</td>
<td>common session</td>
<td>common session</td>
</tr>
<tr>
<td>2:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td>Components of VLSI Course</td>
<td>Advanced/grad topics & courses</td>
<td>BOG: VLSI Course Content Lectures</td>
<td>BOG: New Technology Lectures</td>
</tr>
<tr>
<td>3:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>DIS: Challenges to Teaching VLSI</td>
<td></td>
<td>BOG: Session A</td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td>DIS: What BOGs do you want?</td>
<td></td>
<td></td>
<td>DIS: BOG</td>
</tr>
<tr>
<td>4:30</td>
<td>DIS: Break Out Groups & Lectures</td>
<td></td>
<td>BOG: Session B</td>
<td>DIS: Summary & Action Items</td>
</tr>
<tr>
<td>5:00</td>
<td>Questionnaire</td>
<td>Course Lecture</td>
<td>Course Lecture</td>
<td>New Tech Lecture</td>
</tr>
</tbody>
</table>
Day 3 Agenda

Morning
• Reminder: Prepare lectures for tomorrow
• Questions from Day 2?
• Presentation skills
• Effective lectures
• Effective homework, exams, and labs

Afternoon
• Break-out Group: Session A
• Break-out Group: Session B
• Industry perspective (Dr. M.P. Ravindra, Infosys)

Overnight Assignment
• Prepare lecture presentation: topic selected yesterday
Presentation Skills

Effective class lectures require presentation skills that can be learned

• Outline
 • Video on “How to Speak”
 • Discuss video
 • My own lecturing tips
 • Practice in break-out groups tomorrow

• Make our own list of lecturing tips
 • Before watching video
 • After watching video
 • Record list to post on workshop website
Our Lecture Tips (Before Video)

Describe some of your lecturing tips

• set objective(s) for each lecture with relevance to students
• plan and practice
• motivate student
 • interactive with students - get to know your students
 • ask questions/summary
 • case studies, demonstration
 • props, teaching aids
• review past lectures, repeat important ideas
• provide reference/resource material
• introduce upcoming lectures/topics

•
•
Video: How to Speak

• Professor Patrick Winston, Massachusetts Institute of Technology, “How to Speak” (1997)
 • Derek Bok Center for Teaching and Learning (Harvard)
 • http://isites.harvard.edu/fs/html/icb.topic58703/winston1.html

• Take notes on key points you consider useful & those you disagree with

• Watch videos
Our Lecture Tips (After Video)

Describe video points you agree (or disagree) with
• ok to be eccentric
• salute audience
• eye contact, read audience reactions
• humorous stories
• hand gestures and body language
• blackboard use/management
•

What other element could you use in your “Big 4”?
• hand gestures and body language
•
Video: Some Take-Home Points I Noticed

• Questions should be answerable
• Wait for answer to questions (5 second rule)
• Pace set by using blackboard vs. using slides
• Speaker used real world examples (“stories”) to support most of his points
 • e.g., cannon ball, skier, instructor’s tie
• Pose a question to get questions started
• Use of known techniques can add confidence to speaker
• Relate lecture to things audience already knows
“How To Speak” Outline

• How to Start
 • (don’t Joke)
 • Promise
 • Menu
• The Big Four
 • Cycle (repeat)
 • Verbal punctuation
 • Near miss
 • Ask question
• Time & Place
 • 10 or 11am
 • Well lit
 • Full
• The Blackboard
 • Draw
 • List
 • Target
• Overheads

• Props
• Style
 • (don’t Copy)
 • Adapt
 • Eccentric
 • Story
• How to End
 • (don’t Thank)
 • Joke
 • Deliver (remind of promise)
 • Ask for Questions
 • Salute
• Questions
 • Ask a question
 • Non-verbal communication
 • Conversation vs. lecture
 • Use of slides
 • Being nervous
My Lecturing Tips I

• Attitude
 • you must show you are interested in the material

• Delivery
 • Tone
 • don’t be monotone; alter pace and inflection
 • Engagement
 • critical for effective lectures to students; keep students involved
 • ask answerable questions; wait for answers
 • use stories and examples to alter pace
 • have students come to blackboard to solve example problems
 • do not overly complicate issues; teach what they need to know
 • Repeat important concepts; in different ways if possible

• Examples & Story
 • create examples to demonstrate how principles can be applied or equations can be used
 • develop stories (real live analogy) to relate some concepts each lecture
 • example: describe diffusion
My Lecturing Tips II

- Aids
 - Slides
 - teaching VLSI requires complex diagrams and schematics
 - slides very helpful
 - if all lecture material on slides, provide slides to class
 - if providing slides, add details beyond bullets so students can study from slides
 - consider leaving some information off handout slides so students can fill in the blanks as you speak
 - works especially well for examples
 - slides provide a lot of information quickly; take care not to go too fast
 - Props
 - materials and tools of the trade will be new to students
 - creates interest and feeling of value in real life
 - examples
 - silicon wafers, photomasks, chips under microscope, chip layout plots
 - industry contacts useful to supply good props
My Lecturing Tips III

• Answering questions
 • be concise; encourage more participation in limited time
 • don’t be afraid to say ‘I don’t know’
 • try to come back the next day with answer
 • encourage student to find answer and report back; builds confidence
 • avoid asking students if they can answer another student’s question

• Managing time
 • cover only the material you can cover thoroughly
 • poorly explained concepts will not stick with students beyond class
 • allow time for and encourage questions
 • but do not let questions delay your schedule; answer concisely
 • postpone complex answers until after class - but do answer them
 • never complain about being behind; it’s your job not theirs
Tips on Homework

• ensure assignment length matches expected time out of class
 • account for lab also
• focus on important concepts
 • do not create “busy work”
 • reinforce the importance of homework concepts in class
 • helps students feel their time on homework is valuable
• start with 1-2 easy to solve problems
 • find right equation; insert parameters; calculate
 • helps students build confidence before tackling harder problems
 • break problems into easy to understand steps; walk them through the problem
• advance toward more complex problems
 • integrate multiple concepts into one problem
 • add ‘given’ parameters that are not needed to solve problem
• homework is good for developing a feeling for expected magnitude of parameters
 • ensure your problems/answers have proper magnitudes
• unit conversion/matching often challenge students
 • require proper units for answers
 • teach how to do unit conversions (e.g., cm³ → um³) and know metric units
Tips on Exams

- much of VLSI Design is concepts rather than problems
- my exam format
 - 50% split of concept questions (T/F, multiple choice)
 - 50% calculation problems
 - based on homework, but not copied from
 - example exam posted on workshop website
- simplify grading
 - T/F & multiple choice easy to grade
 - but not effective for entire exam
 - do not allow mistakes to carry forward
 - break problems into steps
 - provide new parameter values: “assuming that Y = 3 in part (a)…”
 - provide lines/boxes for answers & require specific units
- minimizing cheating
 - different exams; or print in different colors to appear different
 - honor pledge
 - monitor exam
- editing: thoroughly proofread exam to eliminate mistakes
 - gives impression you have not put as much effort in as students have studying
Do you still have questions on any of these issues?

- how to establish an open environment where students can ask questions
- how to break the ice in the classroom so that there is participation by the class
- how to answer questions
- how to be concise yet to the point
- how to make powerpoint slides
- how to let the audience know what part of the slide you are talking about
- how to explain "difficult" material
- how to use the laser pointer
- how to use figures
Learning Resources

- My website for writing and presenting
 - http://www.egr.msu.edu/~mason/writing.htm
 - tips from me and links to many others, including IUCEE presenters
- Others that you know of?
 -
 -
 -
- Interest in forming a teleconferencing meeting group for workshop participants?
Workshop Assessment

• Importance of assessment in your class

• Are you enjoying and learning from the workshop?
• If not, why?
 •
 •

• What would you like to see added to or removed from the workshop schedule?
 •
 •
 •
 •
Day 3 afternoon Break Out Groups

• Break into groups based on topic interest
 • Session A (pick one)
 • Preparing homework
 • Developing final year projects
 • Establishing relations with industry
 • Getting chips fabricated/tested
 • Session B (pick one)
 • Setting up VLSI lab assignments
 • Developing PG projects
 • Engaging in research
 • Evolving/expanding curriculum

• Form break-out groups now
• Questions?
Example BOG: Homework Problems

• Discuss challenges to incorporating homework in your course
• Prepare a homework problem: 20-30 min
 • include figures, schematics, etc.
• Present your problem to your BOG: 5 min each
• Receive positive feedback and criticism: 5 min each
Industry Perspective

How can Indian instructors engage with industry?

• How to seek potential student employers to discuss curriculum and course content from industry perspective?
 •

• How to seek faculty/industry exchange opportunities?
 •

• How to establish relationships leading to research?
 •

• Others?
 •
Day 3 Wrap-Up

• Reminder: brief lecture presentations tomorrow
 • Overnight assignment: prepare presentations; consider what you have learned today

• My homework; make sure we have rooms for BOGs tomorrow afternoon