Welcome!

• VLSI Design Workshop
• Andrew Mason
 • Background
 • Associate Professor, Michigan St Univ, East Lansing, Michigan
 • Ph.D., Univ of Michigan, Ann Arbor
 • B.E.E., Georgia Tech, Atlanta Georgia
 • Teaching: 9 years
 • Microelectronics, VLSI & Analog Design
 • Biomedical Instrumentation & Microsystems
 • Research
 • Mixed-signal circuits for sensor readout/interface
 • Bioelectrochemical sensor arrays
 • Neural signal processing hardware (DSP, microcontrollers
 • Low power, hardware efficient, adaptive, “smart” microsystem
Indo-US Collaboration for Engineering Education
Bringing Two Countries Together

*: Where I have lived

Where are you from?
Getting To Know You

• VLSI Teaching Experience
 • none: _6___
 • 1-3 years: _15___
 • 4-6 years: _11___
 • 7-9 years: _____
 • 10+ years: _____

• Education Level
 • BS: _1___
 • MS: ___20___
 • PhD: ___11___

• Current Job
 • Instructor: ___12___
 • Professor: ___20___ (teaching & research)
 • Administrator: _____
Getting to Know You

• Does your VLSI course include homework?
 • Yes ___45%___
 • No _____

• Does your course include lab assignments?
 • Yes ___85%___
 • No _____

• Does your course include a major design project?
 • Yes ___30%___
 • No _____

• What software tools do you use?
 • Cadence ___5___
 • Mentor Graphics _6___
 • Tanner ___8___
 • Synopsys __3__
 • Xilinx _28___
Day 1 Assignment

• Questionnaire (handout)
 • Questions about your interests & goals for workshop
 • Help me focus activities this week
 • Complete tonight & return tomorrow morning
Workshop Objectives

• Present VLSI Design in typical USA university
 • curriculum
 • course components
 • course content
• Discuss issues in teaching VLSI Design in India
 • work toward solutions
• Present & discuss effective teaching practices
• Exercise & evaluate your teaching skills
• Discuss role of research in education and present “new technology” topics
Workshop Approach

- Interactive lectures
 - notes & additional resources posted on a website
- Discussion sessions (DIS)
 - challenges & solutions
- Break-out group (BOG) work
 - effective teaching practices
- Evening homework
 - preparation for in-class lectures
- Flexible schedule: adjust to your needs
- Workshop Website: http://www.egr.msu.edu/~mason/iucee.html
 - materials for this workshop
 - update with discussion notes throughout workshop
Workshop Schedule

- **Tentative daily schedule:** may adjust to suit participant interests

<table>
<thead>
<tr>
<th>Time</th>
<th>DAY 1</th>
<th>DAY 2</th>
<th>DAY 3</th>
<th>DAY 4</th>
<th>DAY 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>common session</td>
<td>common session</td>
<td>common session</td>
<td>common session</td>
<td>common session</td>
</tr>
<tr>
<td>9:30</td>
<td>Introduction; VLSI Curriculum; Course</td>
<td>Course content: CMOS logic, layout,</td>
<td>Teaching skills; effective lectures</td>
<td>DIS: Research in Education</td>
<td>Research: MEMS & Sensors</td>
</tr>
<tr>
<td>10:00</td>
<td>Content Overview</td>
<td>sequential logic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>DIS: Research in Education</td>
<td></td>
<td></td>
<td>New tech. resources</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Components of VLSI Course</td>
<td>Course content: CMOS logic, layout,</td>
<td>Teaching resources; effective homework,</td>
<td>Trends in VLSI</td>
<td>Research: Analog/Mixed-Signal</td>
</tr>
<tr>
<td>11:30</td>
<td></td>
<td>sequential logic</td>
<td>exams, labs</td>
<td></td>
<td>Research: Bioelectrochemical System on Chip</td>
</tr>
<tr>
<td>12:00</td>
<td>lunch</td>
<td>lunch</td>
<td>lunch</td>
<td>lunch</td>
<td>lunch</td>
</tr>
<tr>
<td>12:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:30</td>
<td>common session</td>
<td>common session</td>
<td>common session</td>
<td>common session</td>
<td>common session</td>
</tr>
<tr>
<td>2:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td>DIS: Challenges to Teaching VLSI</td>
<td>Advanced/grad topics & courses</td>
<td>BOG: Example Problems</td>
<td>BOG: New Technology Lectures</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td></td>
<td></td>
<td>BOG: VLSI Course Content Lectures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td></td>
<td>BOG: Lecture Topics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td>DIS: VLSI Lab Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:30</td>
<td>Free Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td>Questionnaire</td>
<td>Course Lecture</td>
<td>Course Lecture</td>
<td>New Tech Lecture</td>
<td></td>
</tr>
</tbody>
</table>
Undergrad VLSI Curriculum

- **Year 1**
 - Math & Science

- **Year 2**
 - Digital Logic Fundamentals
 - number systems, Boolean logic, digital functions, HDL basics

- **Year 3**
 - Microelectronic Circuits
 - semiconductor device models/circuits, small signal analysis, amps
 - Microprocessors
 - microprocessor structure, Assembly language, peripheral functions

- **Year 4**
 - **VLSI Design** (focus: physics, models, layout, CMOS logic)
 - HDL/FPGAs, Operating Systems, Comp. Arch., Networks

Degree and Sample Programs for EE and CpE at Mich St. Univ available on workshop website
Discuss Curriculum

• How does this compare/differ to programs in India?
 •
 •
 •

• Is curriculum appropriate for India (or US!)?
 • Does curriculum meet student needs?
 • early motivation
 •
 • Does curriculum meet industry needs?
 •
 •
 • Is it suitable for existing educational programs?
 •
 •
VLSI-Related Course Content

- VLSI Design
- Computer Architecture
- Embedded Systems
- Operating Systems
- HDL/ FPGAs
- Networks
- System/ Software

Science

Device/ Hardware

Applied
Chip Development Cycle

Design Methodologies

- **Top Down Design**
 - coded circuit functionality for rapid design
 - digital only
 - covered in *HDL/FPGA*

- **Bottom Up Design**
 - transistor-level design with focus on circuit performance
 - digital & mixed signal
 - covered in *VLSI Design*
VLSI Design Textbooks

 • probably the most common VLSI text in USA; a bit advanced for some programs

 • easy to teach and learn from; great coverage of layout; Verilog chapter

• ASI C, Smith
Course Topics I

- **CMOS Logic**
 - MOSFET switch, Boolean logic in CMOS

- **CMOS Technology**
 - layers, process flow, parasitics, fabrication techniques
 - critical to understanding performance issues

- **CMOS Layout**
 - design rules, layout principles, stick diagram, cell hierarchy
 - essential for analog/mixed-signal and microsystems

- **MOSFET Physics & Models**
 - semiconductor physics, diode & MOSFET models, CMOS capacitances
 - content varies based on student background

Detailed topic schedule for my VLSI Design course is on the workshop website
Course Topics II

• Digital Gate Analysis
 • transient & DC timing analysis of INV
 • transient & DC analysis of NAND/NOR & beyond
 • static and dynamic power analysis
 • design for performance: transistor sizing
 • critical for cell library design & performance optimization

• Cell Layout & Chip Floorplanning
 • standard cell layout structure, multi-cell layout, power & signal routing, use of metal layers, floorplanning
Course Topics III

• Structure & Operation of Digital Functions
 • Basic Gates (Mux, En/Decoder, FF, Shifters, Registers, etc.)
 • Arithmetic Circuits, mainly adders (Manchester in CMOS)
 • Memory (SRAM, DRAM, ROMs, PROMs, PLA, FPGA)

• Design Project
 • Microprocessor datapath with ALU, SRAM, and shifter

• Advanced Logic Structures
 • dynamic, differential, pass-gate

• Submicron Issues
 • MOSFET submicron models, design considerations/limits, submicron technology (physical structures)
Why These Topics?

Most VLSI-related jobs will be HDL-level design (particularly in India?), sales, or testing. Why not focus on HDL design instead of cell-level design?

• Fundamental science of integrated circuits essential to university-level degree
• Provides understanding of the real/physical operation of electronics; helps students to adapt to evolving technologies
• Critical knowledge for advanced topics
 • low power submicron design
 • analog mixed-signal design
 • MEMS, sensors, microsystems
Discuss Content

• How does this compare/differ to content in India?
 •
 •
 •

• Is content appropriate for India (or US!)?
 • Does it meet student needs?
 •
 •
 • Does it meet industry needs?
 •
 •
• Is it suitable for existing educational programs?
 •
 •
Course Components

- Lectures
- Homework
- Exams
- Lab Assignments & Design Project
- Professional Skills development

Discuss Course Components

- How do these compare to your VLSI course?
 -
 -
- Which components are most challenging?
 -
 -
Course Components: Lectures

• Objective of Lecture Component
 • motivate students
 • enthusiastic, interactive presentation
 • real world (career) relevance
 • “show & tell”
 • teach basic principles
 • equations: clear and as simple as possible
 • figures: illustrate all possible concepts
 A picture is worth 1000 words
 • work example problems
 • extraction of information from problem statement
 • use of equations
 • managing units!

• Discuss Lecture Notes
 • writing on board vs. pre-prepared notes
 • distribute notes or have students write in class
Course Components: Homework

• Objective of Homework
 • motivation to study
 • memorization through experience
 • practice working with new parameters and quantities
 • learning to manage units
 • develop practical feel for realistic values/quantities

• Homework should be a complement to lectures, not an extension into new concepts/material
 • homework content
 • focus on most important course topics
 • expand on examples; integrate concepts into more complex problems
 • time required?
Course Components: Exams

• Objective of Exams
 • motivation to study
 • highlight most important principles
 • provide comparative analysis for grading

• Elements of Exam
 • broad assessment of course knowledge (definitions, terms, etc.)
 • lesser assessment of understanding
 • problems vs. concept assessment?
 • exam reviews?
 • time required?
Course Components: Labs & Projects

• Objective of Lab/Project
 • practical experience with lecture concepts
 • skill with CAD tools; job training
 • motivation factor: thrill of seeing things work

• Elements of Lab/Project
 • topic of Open Discussion session later today
Course Components: Professional Skills

• What are Professional Skills?
 • communication
 • technical writing
 • oral presentations
 • interview skills (confidence)
 • use of engineering software, instruments, etc.
 • knowing where to look for needed information

• All undergraduate courses should contribute to development of Professional Skills
 • choose elements that fit your course & interests
 • better to provide good experience with few elements than bad/weak coverage of all
Open Discussion:
Lab Component

Agenda

• Survey lab components in your courses
 • What do you currently do for lab assignments?

• Outline an example lab sequence

• Discuss alternatives & improvements

NOTE: This session was not covered in the actual workshop
Lab Component: Survey

• Does your current VLSI Design course include
 • schematic entry ______
 • analog simulation ______
 • layout ______
 • DRC, LVS checking ______

• Describe typical lab assignments for your course
 •
 •
 •
 •
 •

• Would you like to (or plan to) expand your lab assignments?
 • What are your challenges doing this?.
Lab Component: Example Lab Sequence

- Prof. Mason’s labs for ECE410: VLSI Design
 - all lab assignments, tutorials, guide documents available at www.egr.msu.edu/classes/ece410/mason/
- Individual Labs (all 1 week labs, ~4-8 hours each, with written report)
 - **Lab 1**: Schematic entry & functional simulation of CMOS INV, NAND & NOR gate
 - focus on learning schematic entry and simulation tools
 - **Lab 2**: Layout, DRC & LVS of INV, NAND & NOR gates
 - focus on learning layout and checking tools
 - **Lab 3**: Schematic, layout, DRC & LVS of MUX(2:1) and XOR
 - focus on layout optimization; design to meet size requirements
 - **Lab 4**: Timing analysis of INV, NAND & NOR gates
 - focus on learning analog simulation tools and DC/transient analysis of logic gates
 - **Lab 5**: Advance simulation: Parametric analysis
 - focus on learning how tools can help design for performance goals; transistor sizing
- Group Labs (done in groups of 3 students)
 - **Lab 6**: Flip-flops, shift registers and counters (schematic, layout, simulation)
 - focus on simulation of complex digital circuits & multi-cell layout
 - **Lab 7**: Introduction to place & route tools
 - Labs 8-10: Related to major team design project
Lab Component: Example Design Project

• Prof. Mason’s design project for ECE410: VLSI Design
 • full description & guide documents available at www.egr.msu.edu/classes/ece410/mason/

• Assignment
 • Design an 8-bit microprocessor datapath
 • Components
 • 8x8 SRAM
 • 8-bit ALU (8-16 functions)
 • barrel shifter
 • Goals
 • proper function and focus on 1 performance parameter (size, speed, power)
 • competitive grading: can expand functionality
 • Tools used
 • schematic entry & functional simulation
 • layout, DRC, LVS
 • detailed timing simulations

• Grading
 • Labs 8-10: Weekly TA check-off of progress
 • Demonstration: in-lab demo to instructor
 • Reports: detailed design report graded by instructor
Lab Component: Alternatives

• What aspects of example lab suit your course?
 •
 •
 •
 •
 •

• How can you improve your labs?
 •
 •
 •
 •
 •