4200:225 Equilibrium Thermodynamics

Unit I. Earth, Air, Fire, and Water

Chapter 4. Thermodynamics of Processes

By J.R. Elliott, Jr.

I. Energy and Entropy

The Carnot Cycle

$\eta \equiv-W / Q_{H} \quad$ General Formula for the Thermal Efficiency
Entire process is reversible: $\Delta S_{1 \rightarrow 1=0} \Rightarrow \frac{Q_{H}}{T_{H}}+\frac{Q_{L}}{T_{L}}=O \Rightarrow Q_{L}=-\frac{T_{L}}{T_{H}} Q_{H}$
But $-\mathrm{W}=\mathrm{QH}+\mathrm{QL}=\mathrm{QH}\left(1-\mathrm{T}_{\mathrm{L}} / \mathrm{T}_{\mathrm{H}}\right)$
$\eta=\frac{-W}{Q_{H}}=\frac{T_{H}-T_{L}}{T_{H}} \Rightarrow$ Control efficiency by controlling temperature difference.

I. Energy and Entropy

The Basic Rankine Cycle

Advantages:

1. Less wear on turbine and compressor.
2. Compression of liquid is cheap and easy (negligible in most cases).

Disadvantages:

1. Lower thermodynamic efficiency than Carnot or Stirling. This can be somewhat compensated by multiple stages and regeneration.

Example 4.1 Power plant based on the ordinary Rankine cycle

The steam power installation in a chemical plant must satisfy the following requirements:

1) $500^{\circ} \mathrm{C}$ maximum temperature from the boiler.
2) 0.025 MPa saturated vapor from the turbine.
3) 1 MW net power output.

Determine:
a) The operating pressure of the boiler
b) The thermal efficiency
c) The circulation rate

a) Interpolating on the pressure at $500^{\circ} \mathrm{C}$ and $S=7.8314, P=0.869 \mathrm{Mpa}$
b) The enthalpy at state 3 is interpolated at $500^{\circ} \mathrm{C}$ and $0.869 \mathrm{MPa}, H=3480$
$W_{\mathrm{T}}=2618-3480=-862 \mathrm{~J} / \mathrm{g} ; W_{\mathrm{p}}=\int V \mathrm{~d} P=V \Delta P=0.79 \mathrm{~J} / \mathrm{g}$
$W_{\text {net }}=W_{\mathrm{T}}+W_{\mathrm{p}}=-861 \mathrm{~J} / \mathrm{g} ; Q_{\mathrm{L}}=2618-273=2345 ; \eta=861 /(2345+861)=27 \%$

Example 4.3. Power plant based on a Rankine cycle with reheat

7

Consider the same outlet conditions as above, but interject an extra stage for the pressure drop. That is, consider the case depicted above with stream 3 being at $434^{\circ} \mathrm{C}$ and 6 MPa and stream 5 at $500^{\circ} \mathrm{C}$ and 0.8 MPa . Compute the thermal efficiency in this case.
$434^{\circ} \mathrm{C}, 6 \mathrm{MPa} \Rightarrow H_{3}=3262 \mathrm{~J} / \mathrm{g} ; S_{3}=6.6622 \mathrm{~J} / \mathrm{g}-\mathrm{K}$; State 4^{\prime} ' is SatV, $0.8 \mathrm{MPa} \Rightarrow H_{4}=2769$ State 5 is same as previous problem $\Rightarrow H_{5}=3480 \mathrm{~J} / \mathrm{g}, H_{6}=2618 \mathrm{~J} / \mathrm{g}, H_{7}=272$.
The pump work has increased because the pressure has increased $\Rightarrow W_{\mathrm{p}}=6 \mathrm{~J} / \mathrm{g}, H_{8}=278$
$W_{\text {net }}=\left(H_{4}-H_{3}\right)+\left(H_{6}-H_{5}\right)+W_{\mathrm{p}}=(2769-3262)+(2618-3480)+6=-1349$
$Q_{\text {tot }}=\left(H_{3}-H_{8}\right)+\left(H_{5}-H_{4}\right)=(3262-278)+(3480-2769)=3695 \mathrm{~J} / \mathrm{g}$
$\eta=36.7 \%$
This compares to 27% for the cycle without reheat.
Note: The Carnot cycle gives the upper limit of $\eta_{\text {carnot }}=(500-65) / 773=56 \%$

I. Energy and Entropy

Refrigeration

$\mathrm{COP}=Q_{L} / W_{\text {net }} \Rightarrow \quad$ For Carnot: $\mathrm{COP}=\left(Q_{H} / W_{\text {net }}\right) *\left(Q_{L} / Q_{H}\right)=T_{L} /\left(T_{H}-T_{L}\right)$ But the Carnot cycle is not always practical.

Therefore, we apply the

ORDINARY VAPOR COMPRESSION (OVC) CYCLE

COP for ordinary vapor compression cycle
$\mathrm{COP}=Q_{L} / W ; Q_{L}=\left(H_{2}-H_{1}\right)$
Energy balance: $W=\Delta H_{2} \rightarrow 3=\left(H_{3}-H_{2}\right)$
$\Rightarrow \mathrm{COP}=\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right) /\left(\mathrm{H}_{3}-\mathrm{H}_{2}\right)=\left(\mathrm{H}_{2}-\mathrm{H}_{4}\right) /\left(\mathrm{H}_{3}-\mathrm{H}_{2}\right)$

I. Energy and Entropy

Example 4.5 Refrigeration by vapor-compression cycle

A cold storage room is to be maintained at $-15^{\circ} \mathrm{C}$ and the available cooling water exits the evaporator at 298 K . The refrigerant temperature exiting the condenser is to be $30^{\circ} \mathrm{C}$. The refrigeration capacity is to be $120,000 \mathrm{Btu} / \mathrm{hr}(126,500 \mathrm{~kJ} / \mathrm{hr})$. (This is the cooling rate required to freeze ten tons of $32^{\circ} \mathrm{F}$ water to $32^{\circ} \mathrm{F}$ ice in a 24 hr period. It is known in the trade as ten "tons" of refrigeration.) Freon-134a will be used for the vapor compression cycles. Calculate the COP and recirculation rate (except part a for the following cases:
a) Carnot cycle
b) Ordinary vapor compression cycle.
c) Vapor compression cycle with expansion engine $1 \quad 241.5$--- \quad Throttle from 4
d) Ordinary vapor compression cycle 1, 235.0 1.1428 Tur from 4, $q=.29$
for which compressor is 80% efficient. $2 \quad 386.5$ 1.7414 \quad Sat V, 253 K
(a) Carnot $\quad 3 \prime \quad 424 \quad 1.7414 \quad S_{3}=S_{2}$, read chart
$\begin{array}{llllll}T_{L} \\ \left(T_{H} T_{L}\right.\end{array}=\frac{253}{(303}=5.06 \quad 4 \quad 241.5 \quad 1.1428 \quad$ Sat L, 303K
(b) OVC cycle $\Rightarrow C O P=\frac{\left(H_{2}-H_{1}\right)}{\left(H_{3}-H_{2}\right)}=\frac{\left(H_{2}-H_{4}\right)}{\left(H_{3}-H_{2}\right)}=\frac{386.5-241.5}{424-386.5}=3.87$
$\dot{m}=\frac{126,500}{386.5-241.5}=872 \frac{\mathrm{~kg}}{\mathrm{hr}}$
(c) VC cycle with turbine expansion
$q S_{I}{ }^{V}+(1-q) S_{l}{ }^{L}=S_{4}{ }^{L}=1.1428=q(1.7414)+(1-q) 0.8994 \Rightarrow q=0.289 \Rightarrow H_{1}{ }^{\prime}=235$
$\Rightarrow C O P=\frac{\left(H_{2}-H_{1}^{\text {rev }}\right)}{\left(H_{3}-H_{2}\right)+\left(H_{1}^{\prime}-H_{4}\right)}=\frac{386.5-235.0}{(424-386.5)+(235.0-241.5)}=4.89$
$\dot{m}=\frac{126,500}{386.5-235.0}=835 \frac{\mathrm{~kg}}{\mathrm{hr}}$
(d) States (1), (2) \& (4) are the same as in (b)

The only difference is that $W=(424-386.5) / 0.8=46.9$
$\Rightarrow C O P=\frac{H_{2}-H_{4}}{H_{3}-H_{2}}=\frac{386.5-241.5}{46.9}=3.09$ and $m=872 \mathrm{~kg} / \mathrm{hr}$
Note: Choice of refrigerant dictated by
(1) Toxicity (Freon-12, 22 are bad for (4) high heat of vaporization per unit mass ozone and is being phased out) (5) small $C p / C v$
(2) vapor pressure > atmospheric @ $T_{\text {fridge }}$
(3) vapor pressure not too high @ T_{H}
(6) high heat transfer coefficients in vapor and liquid

I. Energy and Entropy

Example 4.6. Liquefaction of methane by the Linde process.

Natural gas, assumed here to be pure methane, is liquefied in a simple Linde process. Compression is to 60 bar and precooling is to 300 K . The separator is maintained at a pressure of 1 bar and unliquefied gas at this pressure leaves the cooler at 295 K .

Solution

a) Bottom half E-Bal: $\mathrm{H}_{3}-\left[q H_{8}+(1-q) H_{6}\right]=0$

$$
\begin{aligned}
\Rightarrow q & =\frac{H_{3}-H_{6}}{H_{8}-H_{6}}=\frac{H(60,300)-H(1, S A T L)}{H(1,295)-H(1, S A T L)} \\
& =\frac{1130-284}{1195-284}=0.9286 \Rightarrow 7.14 \% \text { liquefied }
\end{aligned}
$$

b) E-Bal around HXER: $\mathrm{H}_{4}-\mathrm{H}_{3}=q\left(\mathrm{H}_{8}-\mathrm{H}_{7}\right)$
$=.9286(1195-796.1)=-370.5$
$\Rightarrow H_{4}=780 @ 60 \mathrm{BAR} \Rightarrow$ chart gives 203 K

I. Energy and Entropy

Example 4.8 Thermal Efficiency of the Otto Engine

Determine the thermal efficiency of the air-standard Otto cycle as a function of the specific heat ratio $\gamma(=C p / C v)$ and the compression ratio $r=V 1 / V 2$.
Solution:

$$
Q H=C v(T 3-T 2)
$$

$$
Q L=C v(T 1-T 4)
$$

$$
W=Q H+Q L=C v(T 3-T 2+T 1-T 4)
$$

$$
\eta=C v(T 3-T 2+T 1-T 4) /[C v(T 3-T 2)]+1-(T 3-T 2) /(T 3-T 2)=
$$

$$
1+(T 1-T 4) /(T 3-T 2)
$$

$\Rightarrow \mathrm{T} 4=\mathrm{T} 3 r^{-R / C v} ; \mathrm{T} 1=\mathrm{T} 2 r-R / C v$

$$
\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{R / C_{v}} ; \frac{T_{4}}{T_{3}}=\left(\frac{V_{3}}{V_{4}}\right)^{R / C_{v}}=\left(\frac{V_{2}}{V_{1}}\right)^{R / C_{v}}
$$

$\eta=1-r-R / C v \quad=1-r(1-\gamma)$

I. Energy and Entropy

In a large refrigeration plant it is necessary to compress a fluid which we will assume to be an ideal gas with constant heat capacity, from a low pressure P1 to a much higher pressure P2. If the compression is to be done in two stages, first compressing the gas from P1 to P^{*}, then cooling the gas at constant pressure down to the compressor inlet temperature T 1 , and then compressing the gas to P 2 , what should the value of the intermediate pressure be to accomplish the compression with minimum work?
Solution:
E-Bal: $\Delta H=Q+W=W=C p \Delta T$
S-Bal: $\Delta S=0 \Rightarrow T^{*} / T_{1}=\left(P^{*} / P_{1}\right) \mathrm{R} / \mathrm{Cp} ; T_{2} / T_{1}=\left(\mathrm{P}_{2} / \mathrm{P}^{*}\right) \mathrm{R} / \mathrm{Cp}$
$W_{\text {tot }}=C p\left(T_{2}-T_{1}\right)+C p\left(T^{*}-T_{1}\right)=C p T_{1}\left\{\left[\left(P_{2} / P^{*}\right)^{R / C_{P}}-1\right]+\left[\left(P^{*} / P_{1}\right)^{R / C_{p}}-1\right]\right.$
To maximize function, set derivative to zero.

$$
\begin{aligned}
& \frac{d W}{d P^{*}}=C p T_{1}\left\{\frac{-R / C p}{P^{*}}\left(\frac{P_{2}}{P^{*}}\right)^{R / C_{p}}+\frac{R / C p}{P^{*}}\left(\frac{P^{*}}{P_{1}}\right)^{R / C_{p}}\right\}=0 \\
& \left(\frac{P_{2}}{P^{*}}\right)^{R / C_{p}}=\left(\frac{P^{*}}{P_{1}}\right)^{R / C_{p}} \Rightarrow P^{*}=\sqrt{P_{2} P_{1}}
\end{aligned}
$$

Note: Equal compression ratios per stage is optimal for multistage compressors also.

