Nonlinear Control

Lecture # 8
Time Varying
and
Perturbed Systems
Time-varying Systems

\[\dot{x} = f(t, x) \]

\(f(t, x) \) is piecewise continuous in \(t \) and locally Lipschitz in \(x \) for all \(t \geq 0 \) and all \(x \in D, (0 \in D) \). The origin is an equilibrium point at \(t = 0 \) if

\[f(t, 0) = 0, \; \forall t \geq 0 \]

While the solution of the time-invariant system

\[\dot{x} = f(x), \quad x(t_0) = x_0 \]

depends only on \((t - t_0) \), the solution of

\[\dot{x} = f(t, x), \quad x(t_0) = x_0 \]

may depend on both \(t \) and \(t_0 \)
Comparison Functions

- A scalar continuous function $\alpha(r)$, defined for $r \in [0, a)$, belongs to class \mathcal{K} if it is strictly increasing and $\alpha(0) = 0$. It belongs to class \mathcal{K}_∞ if it is defined for all $r \geq 0$ and $\alpha(r) \to \infty$ as $r \to \infty$.

- A scalar continuous function $\beta(r, s)$, defined for $r \in [0, a)$ and $s \in [0, \infty)$, belongs to class \mathcal{KL} if, for each fixed s, the mapping $\beta(r, s)$ belongs to class \mathcal{K} with respect to r and, for each fixed r, the mapping $\beta(r, s)$ is decreasing with respect to s and $\beta(r, s) \to 0$ as $s \to \infty$.

Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems
Example 4.1

- $\alpha(r) = \tan^{-1}(r)$ is strictly increasing since $\alpha'(r) = 1/(1 + r^2) > 0$. It belongs to class K, but not to class K_∞ since $\lim_{r \to \infty} \alpha(r) = \pi/2 < \infty$.

- $\alpha(r) = r^c$, $c > 0$, is strictly increasing since $\alpha'(r) = cr^{c-1} > 0$. Moreover, $\lim_{r \to \infty} \alpha(r) = \infty$; thus, it belongs to class K_∞.

- $\alpha(r) = \min\{r, r^2\}$ is continuous, strictly increasing, and $\lim_{r \to \infty} \alpha(r) = \infty$. Hence, it belongs to class K_∞. It is not continuously differentiable at $r = 1$. Continuous differentiability is not required for a class K function.
\(\beta(r, s) = r / (ksr + 1) \), for any positive constant \(k \), is strictly increasing in \(r \) since
\[
\frac{\partial \beta}{\partial r} = \frac{1}{(ksr + 1)^2} > 0
\]
and strictly decreasing in \(s \) since
\[
\frac{\partial \beta}{\partial s} = -\frac{kr^2}{(ksr + 1)^2} < 0
\]
\(\beta(r, s) \to 0 \) as \(s \to \infty \). It belongs to class \(\mathcal{KL} \)

\[\beta(r, s) = r^c e^{-as} \], with positive constants \(a \) and \(c \), belongs to class \(\mathcal{KL} \)
Lemma 4.1

Let α_1 and α_2 be class \mathcal{K} functions on $[0, a_1)$ and $[0, a_2)$, respectively, with $a_1 \geq \lim_{r \to a_2} \alpha_2(r)$, and β be a class \mathcal{KL} function defined on $[0, \lim_{r \to a_2} \alpha_2(r)) \times [0, \infty)$ with $a_1 \geq \lim_{r \to a_2} \beta(\alpha_2(r), 0)$. Let α_3 and α_4 be class \mathcal{K}_∞ functions. Denote the inverse of α_i by α_i^{-1}. Then,

- α_1^{-1} is defined on $[0, \lim_{r \to a_1} \alpha_1(r))$ and belongs to class \mathcal{K}
- α_3^{-1} is defined on $[0, \infty)$ and belongs to class \mathcal{K}_∞
- $\alpha_1 \circ \alpha_2$ is defined on $[0, a_2)$ and belongs to class \mathcal{K}
- $\alpha_3 \circ \alpha_4$ is defined on $[0, \infty)$ and belongs to class \mathcal{K}_∞
- $\sigma(r, s) = \alpha_1(\beta(\alpha_2(r), s))$ is defined on $[0, a_2) \times [0, \infty)$ and belongs to class \mathcal{KL}
Lemma 4.2

Let $V : D \to \mathbb{R}$ be a continuous positive definite function defined on a domain $D \subset \mathbb{R}^n$ that contains the origin. Let $B_r \subset D$ for some $r > 0$. Then, there exist class \mathcal{K} functions α_1 and α_2, defined on $[0, r]$, such that

$$\alpha_1(\|x\|) \leq V(x) \leq \alpha_2(\|x\|)$$

for all $x \in B_r$. If $D = \mathbb{R}^n$ and $V(x)$ is radially unbounded, then there exist class \mathcal{K}_∞ functions α_1 and α_2 such that the foregoing inequality holds for all $x \in \mathbb{R}^n$.
Definition 4.2

The equilibrium point $x = 0$ of $\dot{x} = f(t, x)$ is

- uniformly stable if there exist a class \mathcal{K} function α and a positive constant c, independent of t_0, such that

$$\|x(t)\| \leq \alpha(\|x(t_0)\|), \ \forall \ t \geq t_0 \geq 0, \ \forall \ \|x(t_0)\| < c$$

- uniformly asymptotically stable if there exist a class \mathcal{KL} function β and a positive constant c, independent of t_0, such that

$$\|x(t)\| \leq \beta(\|x(t_0)\|, t - t_0), \ \forall \ t \geq t_0 \geq 0, \ \forall \ \|x(t_0)\| < c$$

- globally uniformly asymptotically stable if the foregoing inequality is satisfied for any initial state $x(t_0)$
- exponentially stable if there exist positive constants c, k, and λ such that
 \[
 \|x(t)\| \leq k\|x(t_0)\|e^{-\lambda(t-t_0)}, \quad \forall \|x(t_0)\| < c
 \]
- globally exponentially stable if the foregoing inequality is satisfied for any initial state $x(t_0)$
Theorem 4.1

Let the origin $x = 0$ be an equilibrium point of $\dot{x} = f(t, x)$ and $D \subset \mathbb{R}^n$ be a domain containing $x = 0$. Suppose $f(t, x)$ is piecewise continuous in t and locally Lipschitz in x for all $t \geq 0$ and $x \in D$. Let $V(t, x)$ be a continuously differentiable function such that

\[W_1(x) \leq V(t, x) \leq W_2(x) \]

\[\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \leq 0 \]

for all $t \geq 0$ and $x \in D$, where $W_1(x)$ and $W_2(x)$ are continuous positive definite functions on D. Then, the origin is uniformly stable.
Theorem 4.2

Suppose the assumptions of the previous theorem are satisfied with

\[
\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \leq -W_3(x)
\]

for all \(t \geq 0 \) and \(x \in D \), where \(W_3(x) \) is a continuous positive definite function on \(D \). Then, the origin is uniformly asymptotically stable. Moreover, if \(r \) and \(c \) are chosen such that \(B_r = \{\|x\| \leq r\} \subset D \) and \(c < \min_{\|x\|=r} W_1(x) \), then every trajectory starting in \(\{W_2(x) \leq c\} \) satisfies

\[
\|x(t)\| \leq \beta(\|x(t_0)\|, t - t_0), \quad \forall \ t \geq t_0 \geq 0
\]

for some class \(\mathcal{KL} \) function \(\beta \). Finally, if \(D = \mathbb{R}^n \) and \(W_1(x) \) is radially unbounded, then the origin is globally uniformly asymptotically stable.
Theorem 4.3

Suppose the assumptions of the previous theorem are satisfied with

\[k_1 \|x\|^a \leq V(t, x) \leq k_2 \|x\|^a \]

\[\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \leq -k_3 \|x\|^a \]

for all \(t \geq 0 \) and \(x \in D \), where \(k_1, k_2, k_3 \), and \(a \) are positive constants. Then, the origin is exponentially stable. If the assumptions hold globally, the origin will be globally exponentially stable.
Terminology: A function $V(t, x)$ is said to be

- **positive semidefinite** if $V(t, x) \geq 0$
- **positive definite** if $V(t, x) \geq W_1(x)$ for some positive definite function $W_1(x)$
- **radially unbounded** if $V(t, x) \geq W_1(x)$ and $W_1(x)$ is radially unbounded
- **decrescent** if $V(t, x) \leq W_2(x)$
- **negative definite (semidefinite)** if $-V(t, x)$ is positive definite (semidefinite)
Example 4.2

\[\dot{x} = -[1 + g(t)]x^3, \quad g(t) \geq 0, \quad \forall \ t \geq 0 \]

\[V(x) = \frac{1}{2}x^2 \]

\[\dot{V}(t, x) = -[1 + g(t)]x^4 \leq -x^4, \quad \forall \ x \in \mathbb{R}, \quad \forall \ t \geq 0 \]

The origin is globally uniformly asymptotically stable

Example 4.3

\[\dot{x}_1 = -x_1 - g(t)x_2, \quad \dot{x}_2 = x_1 - x_2 \]

\[0 \leq g(t) \leq k \quad \text{and} \quad \dot{g}(t) \leq g(t), \quad \forall \ t \geq 0 \]

\[V(t, x) = x_1^2 + [1 + g(t)]x_2^2 \]

\[x_1^2 + x_2^2 \leq V(t, x) \leq x_1^2 + (1 + k)x_2^2, \quad \forall \ x \in \mathbb{R}^2 \]

\[\dot{V}(t, x) = -2x_1^2 + 2x_1x_2 - [2 + 2g(t) - \dot{g}(t)]x_2^2 \]

\[2 + 2g(t) - \dot{g}(t) \geq 2 + 2g(t) - g(t) \geq 2 \]

\[\dot{V}(t, x) \leq -2x_1^2 + 2x_1x_2 - 2x_2^2 = -x^T \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} x \]

The origin is globally exponentially stable
Perturbed Systems

Nominal System:
\[\dot{x} = f(x), \quad f(0) = 0 \]

Perturbed System:
\[\dot{x} = f(x) + g(t, x), \quad g(t, 0) = 0 \]

Case 1: The origin of the nominal system is exponentially stable

\[c_1 \|x\|^2 \leq V(x) \leq c_2 \|x\|^2 \]
\[\frac{\partial V}{\partial x} f(x) \leq -c_3 \|x\|^2 \]
\[\left\| \frac{\partial V}{\partial x} \right\| \leq c_4 \|x\| \]
Use $V(x)$ as a Lyapunov function candidate for the perturbed system
\[
\dot{V}(t, x) = \frac{\partial V}{\partial x} f(x) + \frac{\partial V}{\partial x} g(t, x)
\]
Assume that
\[
\|g(t, x)\| \leq \gamma \|x\|, \quad \gamma \geq 0
\]
\[
\dot{V}(t, x) \leq -c_3 \|x\|^2 + \left\| \frac{\partial V}{\partial x} \right\| \|g(t, x)\|
\leq -c_3 \|x\|^2 + c_4 \gamma \|x\|^2
\]
\[
\gamma < \frac{c_3}{c_4}
\]

\[
\dot{V}(t, x) \leq -(c_3 - \gamma c_4)\|x\|^2
\]

The origin is an exponentially stable equilibrium point of the perturbed system.
Example 4.4

\[\dot{x} = Ax + g(t, x); \quad A \text{ is Hurwitz; } \quad \|g(t, x)\| \leq \gamma \|x\| \]

\[Q = Q^T > 0; \quad PA + A^T P = -Q; \quad V(x) = x^T P x \]

\[\lambda_{\min}(P)\|x\|^2 \leq V(x) \leq \lambda_{\max}(P)\|x\|^2 \]

\[\frac{\partial V}{\partial x} Ax = -x^T Q x \leq -\lambda_{\min}(Q)\|x\|^2 \]

\[\left\| \frac{\partial V}{\partial x} g \right\| = \|2x^T P g\| \leq 2\|P\|\|x\|\|g\| \leq 2\|P\|\gamma\|x\|^2 \]

\[\dot{V}(t, x) \leq -\lambda_{\min}(Q)\|x\|^2 + 2\lambda_{\max}(P)\gamma\|x\|^2 \]

The origin is globally exponentially stable if \(\gamma < \frac{\lambda_{\min}(Q)}{2\lambda_{\max}(P)} \)
Example 4.5

\[
\begin{align*}
\dot{x}_1 & = x_2 \\
\dot{x}_2 & = -4x_1 - 2x_2 + \beta x_2^3, \quad \beta \geq 0
\end{align*}
\]

\[
\dot{x} = Ax + g(x)
\]

\[
A = \begin{bmatrix} 0 & 1 \\ -4 & -2 \end{bmatrix}, \quad g(x) = \begin{bmatrix} 0 \\ \beta x_2^3 \end{bmatrix}
\]

The eigenvalues of \(A \) are \(-1 \pm j\sqrt{3}\)

\[
P A + A^T P = -I \quad \Rightarrow \quad P = \begin{bmatrix} \frac{3}{2} & \frac{1}{8} \\ \frac{1}{8} & \frac{5}{16} \end{bmatrix}
\]
\[V(x) = x^T P x, \quad \frac{\partial V}{\partial x} Ax = -x^T x \]

\[c_3 = 1, \quad c_4 = 2 \quad \|P\| = 2\lambda_{\text{max}}(P) = 2 \times 1.513 = 3.026 \]

\[\|g(x)\| = \beta |x_2|^3 \]

\(g(x) \) satisfies the bound \(\|g(x)\| \leq \gamma \|x\| \) over compact sets of \(x \). Consider the compact set

\[\Omega_c = \{ V(x) \leq c \} = \{ x^T P x \leq c \}, \quad c > 0 \]

\[k_2 = \max_{x^T P x \leq c} |x_2| = \max_{x^T P x \leq c} \left| \begin{bmatrix} 0 & 1 \end{bmatrix} x \right| \]

\[= \sqrt{c} \left\| \begin{bmatrix} 0 & 1 \end{bmatrix} P^{-1/2} \right\| = 1.8194 \sqrt{c} \]
\[k_2 = \max_{x^T P x \leq c} |[0 \ 1]x| = 1.8194\sqrt{c} \]

\[\|g(x)\| \leq \beta \ c \ (1.8194)^2 \|x\|, \quad \forall \ x \in \Omega_c \]

\[\|g(x)\| \leq \gamma \|x\|, \quad \forall \ x \in \Omega_c, \quad \gamma = \beta \ c \ (1.8194)^2 \]

\[\gamma < \frac{c_3}{c_4} \iff \beta < \frac{1}{3.026 \times (1.8194)^2 c} \approx \frac{0.1}{c} \]

\[\beta < 0.1/c \iff \dot{V}(x) \leq -(1 - 10\beta c)\|x\|^2 \]

Hence, the origin is exponentially stable and \(\Omega_c \) is an estimate of the region of attraction.
Alternative Bound on β:

$$\dot{V}(x) = -\|x\|^2 + 2x^TPg(x) \leq -\|x\|^2 + \frac{1}{8}\beta x_2^3 ([2 \ 5]x)$$

$$\leq -\|x\|^2 + \sqrt{29} \beta x_2^2 \|x\|^2$$

Over Ω_c, $x_2^2 \leq (1.8194)^2 c$

$$\dot{V}(x) \leq - \left(1 - \frac{\sqrt{29}}{8} \beta (1.8194)^2 c \right) \|x\|^2$$

$$= - \left(1 - \frac{\beta c}{0.448} \right) \|x\|^2$$

If $\beta < 0.448/c$, the origin will be exponentially stable and Ω_c will be an estimate of the region of attraction.
Remark

The inequality $\beta < 0.448/c$ shows a tradeoff between the estimate of the region of attraction and the estimate of the upper bound on β.
Case 2: The origin of the nominal system is asymptotically stable

\[\dot{V}(t, x) = \frac{\partial V}{\partial x} f(x) + \frac{\partial V}{\partial x} g(t, x) \leq -W_3(x) + \left\| \frac{\partial V}{\partial x} g(t, x) \right\| \]

Under what condition will the following inequality hold?

\[\left\| \frac{\partial V}{\partial x} g(t, x) \right\| < W_3(x) \]

Special Case: Quadratic-Type Lyapunov function

\[\frac{\partial V}{\partial x} f(x) \leq -c_3 \phi^2(x), \quad \left\| \frac{\partial V}{\partial x} \right\| \leq c_4 \phi(x) \]
\[\dot{V}(t, x) \leq -c_3 \phi^2(x) + c_4 \phi(x) \|g(t, x)\| \]

If \[\|g(t, x)\| \leq \gamma \phi(x), \quad \text{with} \quad \gamma < \frac{c_3}{c_4} \]

\[\dot{V}(t, x) \leq -(c_3 - c_4 \gamma)\phi^2(x) \]
Example 4.6

\[\dot{x} = -x^3 + g(t, x) \]

\[V(x) = x^4 \] is a quadratic-type Lyapunov function for \(\dot{x} = -x^3 \)

\[\frac{\partial V}{\partial x}(-x^3) = -4x^6, \quad \left| \frac{\partial V}{\partial x} \right| = 4|x|^3 \]

\[\phi(x) = |x|^3, \quad c_3 = 4, \quad c_4 = 4 \]

Suppose \(|g(t, x)| \leq \gamma |x|^3, \ \forall \ x, \ \text{with} \ \gamma < 1 \)

\[\dot{V}(t, x) \leq -4(1 - \gamma)\phi^2(x) \]

Hence, the origin is a globally uniformly asymptotically stable
Remark

A nominal system with asymptotically, but not exponentially, stable origin is not robust to smooth perturbations with arbitrarily small linear growth bounds

Example 4.7

\[
\dot{x} = -x^3 + \gamma x
\]

The origin is unstable for any \(\gamma > 0 \)