Nonlinear Control

Lecture # 5

Stability of Equilibrium Points
Lyapunov’s Method

Let $V(x)$ be a continuously differentiable function defined in a domain $D \subset \mathbb{R}^n$; $0 \in D$. The derivative of V along the trajectories of $\dot{x} = f(x)$ is

$$\dot{V}(x) = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} \dot{x}_i = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} f_i(x)$$

$$= \left[\frac{\partial V}{\partial x_1}, \frac{\partial V}{\partial x_2}, \ldots, \frac{\partial V}{\partial x_n} \right] \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{bmatrix} = \frac{\partial V}{\partial x} f(x)$$
If $\phi(t; x)$ is the solution of $\dot{x} = f(x)$ that starts at initial state x at time $t = 0$, then

$$\dot{V}(x) = \frac{d}{dt} V(\phi(t; x)) \bigg|_{t=0}$$

If $\dot{V}(x)$ is negative, V will decrease along the solution of $\dot{x} = f(x)$

If $\dot{V}(x)$ is positive, V will increase along the solution of $\dot{x} = f(x)$
Lyapunov’s Theorem (3.3)

- If there is $V(x)$ such that

 \[V(0) = 0 \quad \text{and} \quad V(x) > 0, \quad \forall \, x \in D \text{ with } x \neq 0 \]

 \[\dot{V}(x) \leq 0, \quad \forall \, x \in D \]

 then the origin is a stable

- Moreover, if

 \[\dot{V}(x) < 0, \quad \forall \, x \in D \text{ with } x \neq 0 \]

 then the origin is asymptotically stable
Furthermore, if $V(x) > 0$, $\forall \ x \neq 0$,

$$ \|x\| \to \infty \Rightarrow V(x) \to \infty $$

and $\dot{V}(x) < 0$, $\forall \ x \neq 0$, then the origin is globally asymptotically stable.
Proof

\[0 < r \leq \varepsilon, \quad B_r = \{ \|x\| \leq r \} \]

\[\alpha = \min_{\|x\|=r} V(x) > 0 \]

\[0 < \beta < \alpha \]

\[\Omega_\beta = \{ x \in B_r \mid V(x) \leq \beta \} \]

\[\|x\| \leq \delta \Rightarrow V(x) < \beta \]
Solutions starting in Ω_β stay in Ω_β because $\dot{V}(x) \leq 0$ in Ω_β

$$x(0) \in B_\delta \Rightarrow x(0) \in \Omega_\beta \Rightarrow x(t) \in \Omega_\beta \Rightarrow x(t) \in B_r$$

$$\|x(0)\| < \delta \Rightarrow \|x(t)\| < r \leq \varepsilon, \ \forall \ t \geq 0$$

\Rightarrow The origin is stable

Now suppose $\dot{V}(x) < 0 \ \forall \ x \in D, \ x \neq 0$. $V(x(t))$ is monotonically decreasing and $V(x(t)) \geq 0$

$$\lim_{t \to \infty} V(x(t)) = c \geq 0 \quad \text{Show that } c = 0$$

Suppose $c > 0$. By continuity of $V(x)$, there is $d > 0$ such that $B_d \subset \Omega_c$. Then, $x(t)$ lies outside B_d for all $t \geq 0$
\[\gamma = -\max_{d \leq \|x\| \leq r} \dot{V}(x) \]

\[V(x(t)) = V(x(0)) + \int_0^t \dot{V}(x(\tau)) \, d\tau \leq V(x(0)) - \gamma t \]

This inequality contradicts the assumption \(c > 0 \)

\[\Rightarrow \text{The origin is asymptotically stable} \]

The condition \(\|x\| \to \infty \Rightarrow V(x) \to \infty \) implies that the set \(\Omega_c = \{x \in \mathbb{R}^n \mid V(x) \leq c\} \) is compact for every \(c > 0 \). This is so because for any \(c > 0 \), there is \(r > 0 \) such that \(V(x) > c \) whenever \(\|x\| > r \). Thus, \(\Omega_c \subset B_r \). All solutions starting \(\Omega_c \) will converge to the origin. For any point \(p \in \mathbb{R}^n \), choosing \(c = V(p) \) ensures that \(p \in \Omega_c \)

\[\Rightarrow \text{The origin is globally asymptotically stable} \]
Terminology

<table>
<thead>
<tr>
<th>Condition</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V(0) = 0, \ V(x) \geq 0 \ \text{for} \ x \neq 0)</td>
<td>Positive semidefinite</td>
</tr>
<tr>
<td>(V(0) = 0, \ V(x) > 0 \ \text{for} \ x \neq 0)</td>
<td>Positive definite</td>
</tr>
<tr>
<td>(V(0) = 0, \ V(x) \leq 0 \ \text{for} \ x \neq 0)</td>
<td>Negative semidefinite</td>
</tr>
<tr>
<td>(V(0) = 0, \ V(x) < 0 \ \text{for} \ x \neq 0)</td>
<td>Negative definite</td>
</tr>
<tr>
<td>(|x| \to \infty \ \Rightarrow \ V(x) \to \infty)</td>
<td>Radially unbounded</td>
</tr>
</tbody>
</table>

Lyapunov’ Theorem

The origin is stable if there is a continuously differentiable positive definite function \(V(x) \) so that \(\dot{V}(x) \) is negative semidefinite, and it is asymptotically stable if \(\dot{V}(x) \) is negative definite. It is globally asymptotically stable if the conditions for asymptotic stability hold globally and \(V(x) \) is radially unbounded.
A continuously differentiable function $V(x)$ satisfying the conditions for stability is called a Lyapunov function. The surface $V(x) = c$, for some $c > 0$, is called a Lyapunov surface or a level surface.
Why do we need the radial unboundedness condition to show global asymptotic stability?

It ensures that $\Omega_c = \{V(x) \leq c\}$ is bounded for every $c > 0$. Without it Ω_c might not bounded for large c.

Example

$$V(x) = \frac{x_1^2}{1 + x_1^2} + x_2^2$$
Example: Pendulum equation without friction

\[\dot{x}_1 = x_2, \quad \dot{x}_2 = -a \sin x_1 \]

\[V(x) = a(1 - \cos x_1) + \frac{1}{2}x_2^2 \]

\[V(0) = 0 \] and \(V(x) \) is positive definite over the domain \(-2\pi < x_1 < 2\pi\)

\[\dot{V}(x) = a\dot{x}_1 \sin x_1 + x_2\dot{x}_2 = a\dot{x}_2 \sin x_1 - a\dot{x}_2 \sin x_1 = 0 \]

The origin is stable

Since \(\dot{V}(x) \equiv 0 \), the origin is not asymptotically stable
Example: Pendulum equation with friction

\[\dot{x}_1 = x_2, \quad \dot{x}_2 = -a \sin x_1 - bx_2 \]

\[V(x) = a(1 - \cos x_1) + \frac{1}{2}x_2^2 \]

\[\dot{V}(x) = a\dot{x}_1 \sin x_1 + x_2\dot{x}_2 = -bx_2^2 \]

The origin is stable

\(\dot{V}(x) \) is not negative definite because \(\dot{V}(x) = 0 \) for \(x_2 = 0 \) irrespective of the value of \(x_1 \)
The conditions of Lyapunov’s theorem are only sufficient. Failure of a Lyapunov function candidate to satisfy the conditions for stability or asymptotic stability does not mean that the equilibrium point is not stable or asymptotically stable. It only means that such stability property cannot be established by using this Lyapunov function candidate.

Try

\[V(x) = \frac{1}{2} x^T P x + a(1 - \cos x_1) \]

\[= \frac{1}{2} \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + a(1 - \cos x_1) \]

\[p_{11} > 0, \quad p_{11}p_{22} - p_{12}^2 > 0 \]
\[\dot{V}(x) = (p_{11}x_1 + p_{12}x_2 + a \sin x_1) \, x_2 \]
\[+ (p_{12}x_1 + p_{22}x_2) (-a \sin x_1 - bx_2) \]
\[= a(1 - p_{22})x_2 \sin x_1 - ap_{12}x_1 \sin x_1 \]
\[+ (p_{11} - p_{12}b) \, x_1 \, x_2 + (p_{12} - p_{22}b) \, x_2^2 \]

\[p_{22} = 1, \quad p_{11} = bp_{12} \Rightarrow 0 < p_{12} < b, \quad \text{Take} \quad p_{12} = b/2 \]

\[\dot{V}(x) = - \frac{1}{2} abx_1 \sin x_1 - \frac{1}{2} bx_2^2 \]

\[D = \{|x_1| < \pi\} \]

\(V(x) \) is positive definite and \(\dot{V}(x) \) is negative definite over \(D \).

The origin is asymptotically stable.
Variable Gradient Method

\[\dot{V}(x) = \frac{\partial V}{\partial x} f(x) = g^T(x) f(x) \]

\[g(x) = \nabla V = (\frac{\partial V}{\partial x})^T \]

Choose \(g(x) \) as the gradient of a positive definite function \(V(x) \) that would make \(\dot{V}(x) \) negative definite

\(g(x) \) is the gradient of a scalar function if and only if

\[\frac{\partial g_i}{\partial x_j} = \frac{\partial g_j}{\partial x_i}, \quad \forall \ i, j = 1, \ldots, n \]

Choose \(g(x) \) such that \(g^T(x) f(x) \) is negative definite
Compute the integral

\[V(x) = \int_0^x g^T(y) \, dy = \int_0^x \sum_{i=1}^n g_i(y) \, dy_i \]

over any path joining the origin to \(x \); for example

\[V(x) = \int_0^{x_1} g_1(y_1, 0, \ldots, 0) \, dy_1 + \int_0^{x_2} g_2(x_1, y_2, 0, \ldots, 0) \, dy_2 \\
+ \cdots + \int_0^{x_n} g_n(x_1, x_2, \ldots, x_{n-1}, y_n) \, dy_n \]

Leave some parameters of \(g(x) \) undetermined and choose them to make \(V(x) \) positive definite
Example 3.7

\[
\begin{align*}
\dot{x}_1 &= x_2, \\
\dot{x}_2 &= -h(x_1) - ax_2
\end{align*}
\]

\(a > 0, \ h(\cdot) \) is locally Lipschitz,

\[
\begin{align*}
h(0) &= 0; \quad yh(y) > 0 \ \forall \ y \neq 0, \ y \in (-b, c), \quad b > 0, \ c > 0
\end{align*}
\]

\[
\frac{\partial g_1}{\partial x_2} = \frac{\partial g_2}{\partial x_1}
\]

\[
\dot{V}(x) = g_1(x)x_2 - g_2(x)[h(x_1) + ax_2] < 0, \quad \text{for } x \neq 0
\]

\[
V(x) = \int_0^x g^T(y) \, dy > 0, \quad \text{for } x \neq 0
\]
Try \(g(x) = \begin{bmatrix} \phi_1(x_1) + \psi_1(x_2) \\ \phi_2(x_1) + \psi_2(x_2) \end{bmatrix} \)

To satisfy the symmetry requirement, we must have

\[
\frac{\partial \psi_1}{\partial x_2} = \frac{\partial \phi_2}{\partial x_1}
\]

\(\psi_1(x_2) = \gamma x_2 \) and \(\phi_2(x_1) = \gamma x_1 \)

\[
\dot{V}(x) = -\gamma x_1 h(x_1) - ax_2 \psi_2(x_2) + \gamma x_2^2 + x_2 \phi_1(x_1) - a \gamma x_1 x_2 - \psi_2(x_2) h(x_1)
\]
To cancel the cross-product terms, take
\[
\psi_2(x_2) = \delta x_2 \quad \text{and} \quad \phi_1(x_1) = a\gamma x_1 + \delta h(x_1)
\]
\[
g(x) = \begin{bmatrix} a\gamma x_1 + \delta h(x_1) + \gamma x_2 \\ \gamma x_1 + \delta x_2 \end{bmatrix}
\]
\[
V(x) = \int_0^{x_1} [a\gamma y_1 + \delta h(y_1)] \, dy_1 + \int_0^{x_2} (\gamma x_1 + \delta y_2) \, dy_2
\]
\[
= \frac{1}{2} a\gamma x_1^2 + \delta \int_0^{x_1} h(y) \, dy + \gamma x_1 x_2 + \frac{1}{2} \delta x_2^2
\]
\[
= \frac{1}{2} x^T P x + \delta \int_0^{x_1} h(y) \, dy, \quad P = \begin{bmatrix} a\gamma & \gamma \\ \gamma & \delta \end{bmatrix}
\]
\[V(x) = \frac{1}{2} x^T P x + \delta \int_0^{x_1} h(y) \, dy, \quad P = \begin{bmatrix} a\gamma & \gamma \\ \gamma & \delta \end{bmatrix} \]

\[\dot{V}(x) = -\gamma x_1 h(x_1) - (a\delta - \gamma) x_2^2 \]

Choose \(\delta > 0 \) and \(0 < \gamma < a\delta \)

If \(y h(y) > 0 \) holds for all \(y \neq 0 \), the conditions of Lyapunov’s theorem hold globally and \(V(x) \) is radially unbounded