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What is Bilevel Optimization?

* Two levels of optimization tasks
*  Upper level: (x,,x)
* Lower level: (x), x, is fixed

¢ An upper level feasible solution must be an optimal lower
level solution: (x,, X*(x4))

Min is default, can be
max in any of the levels

Minx, x,) F(xu,x1),
: f(xuaxl)
st x; € argmin x ) { g(xuyxl) >0, h(Xu,Xl) =@ )
G(xy,%;) > 0,H(x,,x;) =0,
(xu)min <xy < (xu)maz; (xl)min <x; < (xl)maz
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An lllustration

» Lower level solution x; can be a singleton or multi-valued

« Bilevel optimal solution corresponds to the best combination of lower
level optimum and upper level values
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Properties of Bilevel Problems Multi-level Optimization

« Bilevel problems are typically non-convex, . o
* Multi-level (L levels) optimization

disconnected and strongly NP-hard «  Two or more levels of optimization

« Solving an optimization problem produces one or * Nested structure

more feasible solutions
Min F(X1,X2,...X|_)

« Multiple global solutions at lower level can induce s.t

additional challenges

« Two levels can be cooperating or conflicting

History

Origin of Bilevel Programming an

350

300
An Extension of Mathematical Programming
250 [

« All optimization problems are special cases of bilevel

programming aor

No of Articles

—Bracken and McGill (1973) 150}

Stackelberg Games “r
50

* Bilevel programs commonly appear in game theory
When there IS a |eader and fO||Ower FSSD IBIEII 19‘70 ls'sn JISSU 2000 2010 2020

—Stackelberg (1952) Time
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Fig. 2: Topic: Optimality conditions.
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Fig. 3: Topic: Classical game theory.
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Fig. 4: Topic: Network design.
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Fig. 5: Topic: Supply chain applications.
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Fig. 6: Topic: Optimal design applications.
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Fig. 7: Topic: Electricity transmission applications.
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Fig. 8: Topic: Telecommunication applications.
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Fig. 10: Topic: Computer architecture and circuit design.

Around 5% share
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Fig. 11: Topic: Hierarchical decision making applications.
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Fig. 12: Topic: Environment applications.
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Fig. 14: Topic: Vehicle Routing applications.

Less than 5% share
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Fig. 15: Topic: Machine learning applications.
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Fig. 16: Topic: Defense applications.
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An Example

Bilevel optimization problem with lower level constraints!

Min(x’y) 3y + X

Such that

y € argmax 2y
Such that
Xx+y=<8, x+4y=8,
X+2y<13,1<x<6

A Bilevel Linear Optimization Problem

Solution to Bilevel Linear Optimization Problem

Min(”) 3y +x

Example (Cont.)  swnm
y € argmax,, |2y
y Such that
X+y=<8, x+4y=8,
X+2ys13,1sxs6

L

Bold Line - Induced Set

(6,2) - Bilevel Solution

X1 X2 ‘

Bilevel vs. Multi-objective

Bilevel linear optimization problem is now modified as follows:

Pareto-optimal Set

/ Min(x’y) 3y B X\ Yy (Decision Space)

Min ., -2y

Bilevel Optimum
Such that

xX+y=<8
X+4y=8

X+2y=<13 —

K l<sx<6 /
‘ X

Note that two-objective and bilevel problems are different in principle

Some Applications




Bilevel Problems in Practice

* Often appears from functional feasibility
* Stability, equilibrium, solution to a set of PDEs
* l|deally, lower level task must implement above
* Dual problem solving in theoretical optimization
* Lower level is bypassed by approximation or by using
direct simplified solution principles
* Due to lack of suitable BO techniques
* Stackelberg games: Leader-follower
* Leader must be restricted to follower’ s decisions

* Follower must respect leader’ s decisions

17

Stackelberg Competition

Competition between a leader and a
follower firm (Duopoly) —

Leader solves the following optimization 0 <

problem to maximize its profit v
Jul

max I, = P(g,qs)a — C(a)
a9y

i ;=P =@ )
° o Emgqrfn”{ SR Sl If the leader and follower have

a+4qr2Q, similar functions, leader always
a,495,Q >0, makes a higher profit.
where Q is the quantity demanded, P(q:,qy) is the price - First mover’s advantage
of the goods sold, and C(-) is the cost of production of
the respective firm. The variables in this model are the Can be extended to mump'e

production levels of each firm g;, ¢y and demand Q. leaders and multlple followers

ICHIGAN STATE

Toll Setting Problem
*  Authority's (Upper level) problem:
 Authority responsible for highway system
wants to maximize its revenues earned from
toll

+ The authority has to solve the highway users
optimization problem for all possible tolls

« Highway users' (Lower level) problem:
+ For any toll chosen by the authority, highway
users try to minimize their own travel costs

» A high toll will deter users to take the
highway, lowering the revenues

Does it make sense to choose or not to
choose a toll high-way before knowing the toll
amount?

‘Brotcorne et al. (2001)

Structural Optimization

- Upper level: Topology
- Lower level: Sizes and coordinates
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Taxation Strategy _ g
» Recently, there was a controversy

for gold mining in the Kuusamo I I I I
region in Finland g Ty

+ The region is a famous tourist resort Leader: Government Maximize
endowed with immense natural revenue from taxes, Minimize

government (UL), the mining
company (LL) optimizes its own
profits

beauty Pollution I
» For any taxation strategy by the )
»

Can the government know the outcome for any tax  Fojiower: Miniﬁg Company
policy chosen by them? Maximize Profit

Sinha, et al. (2013)

21

Defense Applications

Robust Design
Hub-and SpOKe Networks Defender-Attacker-Defender
Interdiction Problem Protection Problem Three levels
Attacker-Defender Defender-Attacker
Defender
Two levels Two levels Take interdiction problem into
account during design phase
Attacker Defender
Maximize operating costs Minimize the maximum Attacker )
post attack damage by fortification Maximize operating costs
post attack
Defender Attacker
Minimize operating cost Maximize damage Defender

Minimize operating cost

Nine key substations out of 55,000 substations can
result in a coast to coast blackout in US

Agri-business Management

{gger Level

Regulator

Objective 1: Minimize Pollution (Fertilizer)
Objective 2: Maximize Revenues

Lower Level
Multiple Farms

\Oi'ective: Maximize Individual Profit

[ Decision Variables: Taxation, inputs, outputs

Contains multiple lower level
optimization problems

Whittaker et al. (2016)

Parameter Tuning
Upper Level: Find optimal

parameters that maximize
algorithm performance over Upper Level Optimization

a number of initial e

conditions
P F(p)
Lower Level: Run the

optimization algorithm to

. .. . L Level Optimizatic
find optimized solution ower eve EpumATon

(Problem variables, x)

Does it make sense to conclude an X ﬁ f(x)
algorithm’s performance without spelling
out algorithm parameters?

Researchers commonly rely on
grid search or random search

Bennett et al. (2008), Sinha et al. (2014)



http://www.wsj.com/articles/SB10001424052702304020104579433670284061220

Inverse Optimal Control Solution Methodologies

. . . @ » Single-level reduction using KKT

+ While performing actions humans o - Bialas and Karwan (1984), Bard and Falk (1982), Bard
optimize  certain  unknown  cost j - and Moore (1990)
function iy v » Descent methods

46 Ak 1 - Savard and Gauvin (1994), Vicente et al. (1994)

» It might be interesting to have an idea ‘ + Penalty function methods ) _ _
of the cost function that might help in : '1"; - Aiyoshi anq Shimizu (19813 1984), Ishijuka and Aiyoshi
designing efficient humanoids “) - (1992), White and Anandalingam (1993)

Trust region methods
* Given the data corresponding to the B .COISon etal (200.5) .
. . » Using lower level optimal value function
motion identifying the reward or cost - Mitsos (2010)
function becomes an inverse problem
Mombaur et al. (2010), Suryan et al. (2016)

Special Cases Why Use Evolutionary Algorithms?
First, no implementable mathematical optimality conditions exist
« Linear bilevel problems (Dempe, Dutta, Mordokhovich, 2007)

« Reducible to a mixed integer linear program *  LL problem is replaced with KKT conditions and constraint

qualification (CQ) conditions of LL
« Bilevel problems with combinatorial variables at

upper level and linear program at lower level « UL problemA r.equi.res KKT of LL-KKT con.di.tions, but handling
« Reducible to a mixed integer linear program LL-CQ conditions in UL-KKT becomes difficult

* Involves second-order differentials
« Bilevel problems with combinatorial variables at both

levels Moreover, classical numerical optimization methods require
« Very hard to solve various simplifying assumptions like continuity, differentiability
and convexity
« Bilevel problems with similar objectives at both levels *  Most real-world applications do not follow these assumptions

« Reduces to minmax or minmin (min) problems

i i EA’s flexible operators, direct use of objectives, and population
« Ideas of duality can be utilized

approach should help solve BO problems better




Niche of Evolutionary Methods (cont.)

At times, LL solutions are multi-modal

Many BO problems are multi-objective

* Both level might require to find and maintain multiple
optimal solutions

* EAs are known to be good for these scenarios
Computationally faster methods possible through meta-
modeling etc.

Other complexities (robustness, parallel implementation,
fixed budget) can be handled efficiently

EAs for Bilevel Optimization

* Most of the EAs for bilevel optimization have been nested in

nature

- Using one algorithm for upper level and solving the
lower level optimization problem for every upper level
point

- Not very interesting!

- Expensive even for small instances!

- Non-scalable!

Bilevel Optimization using EAs

EA at upper level and exact method at lower level

* Mathieu et al. (1994): LP for lower level and GA for upper level

* Yin (2000): Frank-Wolfe Algorithm for lower level and EA for
upper level

EA at both upper and lower level

» Lietal (2006): Particle Swarm Optimization at both levels
* Angelo et al. (2013): Differential Evolution at both levels

» Sinha et al. (2014): Genetic Algorithm at both levels

EA used after single-level reduction

« EAresearchers have also tried replacing the lower level problems
using KKT (Hejazi et al. (2002), Wang et al. (2008), Li et al.
(2007))

Bilevel Optimization using EAs

Approximating lower level level rational response
Sinha, Malo, Deb. (2013, 2014, 2017): Iteratively approximates lower
level optimal response with upper level decision vector (Discussed later)

Approximating lower level optimal value function
Sinha, Malo, Deb. (2016): Iteratively approximates lower level optimal
function value with upper level decision vector (Discussed later)

Trust region method and Approximate KKT
* Sinha, Soun and Deb (2017)

Kriging based methods
* Sinha et al (2018), Islam et al. (2018)




Can EAs be really useful for bilevel
optimization?

Can EAs be really useful for bilevel
optimization?

» Nested approaches are certainly not the way forward

Can EAs be really useful for bilevel
optimization?

+ ltis noteworthy that at each iteration an EA has a
population of points
» Can these population of points be put to use to
approximate certain mappings in bilevel?
» Exploiting the structure and properties of the
problem is essential!

Approach 1
(Lower Level Reaction Set Mapping)

() =argmin{f(zu, 1) : gj(zu, z) < 0,5 =1,...,J}
z

min  F(zy,z;)
Zu,Tl

s.t.
x; € U(zy)
Gk(l'u,:l:l) S O,k‘: 1,...,K

Step 0: Solve the lower level problem completely for the initial population
Step 1: Use the population members to approximate the W-mapping locally

Step 2: Solve the reduced single level problem for a few iterations
Step 3: Update the local W-mappings and continue

Step 4: If termination criteria not met, go to Step 2




Actual W-mapping

Approximate W-mapping
Xy

Using approximate W-mapping
Xy

Approximation Choice

Tried different strategies for localized approximation, like,

» Linear Approximation

» Piecewise linear approximation

* Quadratic approximation
Results were favorable and similar with piecewise-linear as
well as quadratic approximation
Decided to use quadratic approximation because of its
simplicity
More complex techniques like neural networks are an
obvious extension but require large number of points




Set-valued W becomes problematic

XU Upper-level decision space
b
d
Cc
| i\ O\
X b v

W(e)

w(b)

Lower-level decision space

Approach 2
(Optimal Value Function Mapping)

min{f(zu, @) : 71 € Hzu)}

o(zu)

Dual challenge: 1. Finding the set and 2. Approximating the set

min  F(z,,z;)

T, T
s.t.

f(xuyxl) < ‘P(xu)

gj(fl'u,fﬂl) SO)] . 1""7J
Gk(x‘luxl) <0,k=1,....,K

Step 0: Solve the lower level problem completely for the initial population
Step 1: Use the population members to approximate the ¢-mapping locally

Step 2: Solve the reduced single level problem for a few iterations

Step 3: Update the local ¢-mappings and continue
Step 4: If termination criteria not met, go to Step 2

Issues

p(xy) = n;iln{f(muyml) s ap € Qzw)}

min  F(zy,%;)
Loy Ty

s.t.
f(zuyxl) < 4,0(1‘“)

95 (Tu,2) <0,5=1,...,J
Gi(Tu, 1) <0,k=1,..., K

« The approximate @-mapping makes the region highly constrained

infeasible

Infeasible Region
’ /" .
/
H

\ [N

' B
f0) ~ B0 - 3xSl6()] =
fixy) - E60I <0

Approximation of ®-mapping through

Kriging

v s e T o s | Kriging  provides
“ % \ Y both mean and

o standard deviation

s)- o1 =0
F(@u, @) < p(zu) +

/ ; /| Addition of the standard
S /| deviation term ensures
feasibility of the auxiliary

! problem

\ A ~
\ N .
\ \ N
\ N ’
\\\ \\ ,* Feasible Region
N N ) L o /' .
. R -~ -- o 2*" Upperlevel objective Sinha et al. (2018)
e -7 function contour Best paper award at
WCCI 2018

3xStd[¢p(x)]

« With errors in estimation of ¢-mapping the reduced problem might become




Using Approximate KKT Conditions

» KKT conditions are hard to satisfy because of strict equality
conditions

» |tis possible to relax the KKT conditions using approximate
KKT conditions (Dutta 2013)

« Bilvel problems can be replaced with approximate KKT

conditions
min €
Y
min  f(y) subject to
v .
i(y) <0,5=1,..., J,
subject to ) 9i(y) < 0,5 -
[IVyL(y, V" < e,

J
> Ngiy) > —e
j=1

A >05=1,...,J,

where  L(y, ) = £(3) + 3" Aigi(®)

=1

Next Part by K. Deb
https://www.coin-lab.org
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Test Problems

Given that a convergence proof is difficult, we
can only use test problems to justify whether an
an algorithm works or not!

First, we begin with some simple test problems




8-Problem Test Suite (TP1-TP8)

Problem Formulation Best Known Sol.
TP1

2-var UL Migimize F(z,y) = (21— 30)° + (22 — 20)* ~ 20y: + 20m2,

2-var LL e

n=2m=2

w] [@y) = (@ —v)?+ (22— y2)?
ye"‘%;;"“{ 0<y <10, i=12 :

1+ 22 2 30,21 + 22 < 25,22 < 15

n=2m=2

F =220
f=100.0
P2
2-var UL Mi(x;i:x)ize F(z,y) = 2z1 + 222 — 3y1 — 3y2 — 60,
2-var LL L
f(@,9) = (41 — 21 +20)% + (y2 — 22 +20)2
n=2m=2 y €argmin{ @1 —2y; > 10,z — 2y, > 10 .
&) -10>y; >20, i=1,2
1 + 2 +y1 — 2y < 40,
’ s F =00
0<2; <50, i=12 £ 21000
Problem Formulation Best Known Sol.
TPS
Misimize F(z,y) = rt()z — 3y, = 4y2 + 0.5(y)y,
z,Y,
2-var UL w*
f(=,y) = 05t(y)hy — t(b(z))y
2-var LL ~0.333y1 +y2—2<0

yeamgming = 0333y, -2<0 )
0<w, i=1,2

n=1m=2

where
13 -1 2
h={3 10 )@= 35 )z,r=o.1
t(-) denotes transpose of a vector
TP6
Minimize F(z,y) = (1 = 1)2 +2y; — 221,
@y,
1-var UL st
2-var LL f(z,9) = (21 — 49+

(292 = 1)* + 2131
4zy +5y1 +4y2 < 12
y € argmin{ dys —dz; —5y; < —4 3,
[ dzy — 4y +5y2 <4
4y — 4z +5y2 <4
0<w, i=12

0<a

MICHIGAN STATE

Test Problems

n=2m=2

f(@,y) = 2(21)? + (11)? - 5y2
(21)? = 221 + (22)? — 2y1 + 2 > -3
2 +3y1 — 4y > 4

y € argmin
®W | o<y, i=12

Problem Formulation Best Known Sol.
TP3
Minimize F(z,y) = —(1)? = 3(z2)* — 491 + (1),
2-var UL oam)
2-var LL -

(z1)? + 222 < 4, F = —18.6787
0<z;, i=12 f=-1.0156
TP4
Minimize F(z,y) = —8z; — 4z + 4y1 — 40y2 — 4ys,
2-var UL ) (z,) 1 2 Y1 Y2 Y3
st
3-var LL £(2,9) = 21 + 222 + Y1 + y2 + 23
n=2m=3 y2+ys—y1 <1
y € argmin 221 —y1 +2y2 — 0.5y3 <1
) 22y + 21 — Y2 — 0.5y3 < 1
ol 0<y;, i=1,23 F=-292
0<az;, i=12 f=32
Problem Formulation Best Known Sol.
TP7
s — _ @ity (zatyz
2varUL  MEREFEY =T
L.
2varll .
i Z,Y) = 1. =
= = € T+ 4, +
i a’%ﬁ’"{OSyiSz‘, TR }
(21)? + (22)* < 100
z1—22<0 F=-196
0<z;, i=12 f=196
TP8
Minimize F(z,y) =261 + 222 = 3y1 = 3y = 60,
Z,Y,
2-var UL i
2-var LL f(@,y) = (1 — 21 +20)2+
o m=2 (y2 — @2 + 20)*
RSl y € argmin{ 2y; —z7 +10< 0 N
) 2yp — 22 +10< 0
-10<y; <20, i=1,2 F=00
@1 + 2 +y1 — 2y2 < 40 S
0<z; <50, i=1,2 f=1000




Results on TPs

UL Func. Evals. LL Func. Evals.
p-Appx W-Appx No-Appx ¢-Appx W-Appx No-Appx

Med Med Med Med Med Med
TP1 134 150 - 1438 2061 -
TP2 148 193 436 1498 2852 5686
TP3 187 137 633 2478 1422 6867
TP4 299 426 1755 3288 6256 19764
TP5 175 270 576 2591 2880 6558
TP6 110 94 144 1489 1155 1984
TP7 166 133 193 2171 1481 2870
TP8 212 343 403 2366 5035 7996

Sinha et al. (2016)

Results on TPs (Cont.)

Approach 1: ¥- Mapping (Approach 1)
Approach 2: ¢ —~Mapping (Approach 2)

UL Func. Evals. LL Func. Evals.
p-Appx W-Appx No-Appx ¢-Appx W-Appx No-Appx

Med Med Med Med Med Med
TP1 134 150 - 1438 2061 -
TP2 148 193 436 1498 2852 5686
TP3 187 137 633 2478 1422 6867
TP4 299 426 1755 3288 6256 19764
TP5 175 270 576 2591 2880 6558
TP6 110 94 144 1489 1155 1984
TP7 166 133 193 2171 1481 2870
TP8 212 343 403 2366 5035 7996

In general, p-Mapping approach is better

Sinha et al. (2016)

Comparison with other approaches

Approach 1: W- Mapping (Approach 1)
Approach 2: ¢ -Mapping (Approach 2) 21 runs

Mean Func. Evals. (UL+LL)

¢p-appx.  W-appx.  No-appx. WIL WLD

TP1 1595 2381 35896 85499 86067
TP2 1716 3284 5832 256227 171346
TP3 2902 1489 7469 92526 95851
TP4 3773 6806 21745 291817 211937
TP5 2941 3451 7559 77302 69471
TP6 1689 1162 1485 163701 65942
TP7 2126 1597 2389 1074742 944105
TP8 2699 4892 5215 213522 182121

In general, p-Mapping approach is better
WJL — Wang et al. (2005), WLD — Wang et al. (2011)

Modified Test Problems
(m-TP1 to m-TP8)

General Structure (x and y are vectors):

Fr¥(z,y) = F(z,y) + ¥2 + 2

(@, y) = f(2,9) + (vp — ¥g)?
Up, Yq € [_17 1] ¥p and y are LL variables, in addition to y

» Modification leads to multiple lower level optimal
solutions for each upper level decision vector
* May cause W-Mapping to be difficult
* Multiple y, and y, variables to be mapped to




Results (Modified Test Problems)

Optimal f is modeled Optimal y is modeled

21 runs
Upper Level Function Lower Level Function .
Evaluations Evaluations Both Methods Fail
©-Appx. -Appx. W-Appx. No-Appx.

Min Med Max Min  Med Max Min/Med/Max  Min/Med/Max

m-TP1 130 172 338 2096 2680 8629
m-TP2 116 217 - 2574 4360 -
m-TP3 129 233 787 1394 3280 13031
m-TP4 198 564 2831 1978 5792 28687
m-TP5 160 218 953 3206 4360 17407
m-TP6 167 174 529 2617 3520 8698
m-TP7 114 214 473 1514 5590 11811
m-TP8 150 466 2459 [2521 6240 35993

Only ¢-Mapping works!
Asingle y* is enough

Bilevel Test Problem Construction:
A Systematic Approach

» Test problems with controllable difficulties are often
required to evaluate evolutionary algorithms

» Controllable and segregated difficulties help to
identify what aspects of the problem, the algorithm is
unable to handle

Requirements

« Controllable difficulty in convergence at upper and lower levels
« Controllable difficulty caused by interaction of two levels

» Multiple global solutions at the lower level for any given set of upper
level variables

« Clear identification of relationships between lower level optimal
solutions and upper level variables

» Scalability to any number of decision variables at upper and lower
levels

» Constraints (preferably scalable) at upper and lower levels
» Possibility to have conflict or cooperation at the two levels
» The optimal solution of bilevel test problem can be easily obtained

Test Problem Framework

The objectives and variables on both levels are
decomposed as follows:

F(xu, %) = F1(xu1) + F2(x11) + F3(Xu2, X12)
F(Xu, x1) = f1(xu1, Xu2) + fo(x11) + f3(Xu2, Xi12)
where

Xy = (Xu1,Xy2) and X = (xp1,%9) - vectors

(Sinha, Malo and Deb, 2014)




Roles of Variables

Panel A: Decompo;ition of decision variables

Upper-level variables Lower-level variables

\

[ Vector [ Purpose | Vector [ Purpose

|

Xul Complexity on upper-level X1
Xu2 Interaction with lower-level X2

Complexity on lower-level
Interaction with upper-level

Panel B: Decomposition of objective functions

[ Upper-level objective function [ Lower-level objective function

| Component | Purpose | Component | Purpose |
F1(xu1) Difficulty in convergence 1 (Xut1, Xu2) Functional dependence
Fy(xi1) Conflict / co-operation fa(xi1) Difficulty in convergence
F3(xu2,X2) Difficulty in interaction f3(Xu2,%12) Difficulty in interaction

Controlling Difficulty in Interactions

» Interaction between variables x,2 and x;2 can be chosen
» Dedicated components: F; and f3
» Example:

F(xy,x) =+ Fy(x1) + F3( /u2,xl2)

T

D(@ia) + Y (@) ~ tanaly) 2

Py %) = f1(%ut, %2) o oxi) - Fo KB )

(@) ~ tanahy)?

i=1

Controlling Difficulty for Convergence

» Convergence difficulties at each level
» Dedicated components: Fq (Upper) and f, (Lower)
» Example:

F(xy,%;) =F1(Xp1) + Fo(x11) + F3(Xu2,X12)

Quadratic

F(xu,X1) = f1(Xu1, Xu2) + () + f3(Xu2, Xi2)

Constant in LL -
Multi-modal

Difficulty due to Conflict/Co-operation

> Dedicated components: F, and f, or F; and f; may be
used to induce conflict or cooperation

» Examples:
= Cooperative interaction = Improvement in lower-level improves upper-
level (e.g. F,=1,)
= Conflicting interaction = Improvement in lower-level worsens upper-level
(e.g. F,=-f,)
= Mixed interaction is also possible




Controlled Multimodality

> Obtain multiple lower-level optima for every upper level
solution:
= Component used: f,
» Example: Multimodality at lower-level
112 142 12 o o Scales LL
F1(xu1, xu2) = (2y1)* + (T01)” + (Ty2)” + (222)° values

_f ) flf——;”’lr%duces2 rr%ultiple solutions:
= (Tuz — Tp)* + (252 — 212) X1 = %2
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Interaction: Cooperative
Problem 1 Lower level: Convex (w.r.t. lower-level variables)
( SMD 1) Upper level: Convex (induced space)
Upper and Lower Function Contours
15
|
b= ],,):1(9621)2 ::5 y
Fy= 27{:1(4’;1)2_ . L 05 14
Fy =30 (2h)* + 20, (wp — tanajy)? Xl s
fr=>" (k) ;
fo= L (eh)® 2 Lo Simlentmmemer | S o
fi = Lica (i — tanaiy) S N P
ool ,“,)\//ﬁ / 7o wmeaiovios s
vl €[=5,10), ¥V i€ {1,2,....p} =g/ 1
al, € [=5,10, V i€ {L2,... 1} e N )’0 e
zh €[-5,10], Vi€ {1,2,...,q} SV oeEn
Ty € (F,5), Vie{l,2,...,r} =t o C :\r; 1° B »
a0 s SO
Ay X )= (202) at optimal lower level variables A X )= (272)

Difficulty due to Constraints

Constraints are included at both levels with one or more of the
following properties:

» Constraints exist, but are inactive at the optimum

» A subset of constraints active at the optimum

» Upper level constraints are functions of only upper level variables,
and lower level constraints are functions of only lower level variables

» Upper level constraints are functions of upper as well as lower level
variables, and lower level constraints are also functions of upper as
well as lower level variables

» Lower level constraints lead to multiple global solutions at the lower
level

» Constraints are scalable at both levels

» Any other complexities

Interaction: Conflicting
Problem 2 Lower level: Convex (w.r.t. lower-level variables)
(SMD 2) Upper level: Convex (induced space)

Upper and Lower Function Contours

X
2

X

X1

: Lower level function contours
with respect to lower level vari

b jables -
X1 N“u]'ﬂz““””} / X
T: Lower level function contours R: Lower level function contours

) T~
; . withrespect 0 lower level vaiables |7~ With respect o lower level variables
xly €[=5,10], Vi€ {1,2,...,p} iemmocn ' S =0
u ) 2 Y 2
i — F ” o / TN o
Ty € [=5,1], Vie{l2,....r} /¢
; s Vie{l2qh .
X 1) .
LA T
\_/4 2 0 2
Xul
Us Lower level P: Upper level Q: Lower level
with sespect o lower level vaiables it respeet o upper level variables  with respec o lower leve variables
005y % ) = (-22) at optimal lower level varigbles g2y =22




Interaction: Cooperative

PrObIem 3 Lower level: Multimodality using Rastrigin’s function
(SMD 3) Upper level: Convex (induced space)
, Upper and Lower Function Contours
Fyr=570 (@) s
Fp=31 (af))
Fy=3 0 (052)7 + 21, (#,2)* — tanzjy)?
fr=()?

2
P A,
fs =11 ((2l,)* — tanzjy)?

vl € [=5,10], ¥V i€ {1,2,...,p}
2y € [=5,10], ¥ i€ {1,2,....r}
xp € [=5,10], V i€ {1,2,...,q}

]
m), ¥ie{l,2,...,r}

Interaction: Conflicting
Lower level: Multimodality using Rastrigin’s function
Upper level: Convex (induced Space)

Problem 4
(SMD 4)

Upper and Lower Function Contours

Fr=30,(x0)?
ISR

1
3= 2= 2)% = 2 (2| — log(1 + 27,))?
h= S )2
fr=a+ 5, ((@h)* - cos2mafy)
Fa= X0 (lalal — log(1 + afy))?

2l € [=5,10), V i€ {L,2,...,p}
zi, e [-1,1], Vie{l,2,...,r}
iy € [=5,10], ¥ i€ {1,2,...,q}
zj, €[0,e], ¥V ie{l,2,..., r}

P: Upper level function contours
variables  with respect to upper level variables
at optimal lower level variables

X|*
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Results Using BLEAQ
+ Following are the results for 10 variable instances of the test problems
(Sinha et al., 2014) using BLEAQ (¥-Mapping)

+ Comparison performed against nested evolutionary approach

Number of Runs: 21

Savings: Ratio of FE required by nested approach against BLEAQ
Pr. No. | Best Func. Evals. Median Func. Evals. Worst Func. Evals.

LL UL LL UL LL UL
(Savings) (Savings)
SMD1 99315 610 110716 (14.71) | 740 (3.34) | 170808 1490
SMD2 | 70032 376 91023 (16.49) | 614 (3.65) | 125851 1182
SMD3 | 110701 620 125546 (11.25) | 900 (2.48) | 137128 1094
SMD4 | 61326 410 81434 (13.59) | 720 (2.27) | 101438 1050
SMD5 | 102868 330 126371 (15.41) | 632 (4.55) | 168401 1050
SMD6 | 95687 734 118456 (14.12) | 952 (3.25) | 150124 1410
For other problems as well, the improvement is more than an order of magnitude

-0.5

True Relation
° Gen.1

+ Gen 150

* Gen. 450

+ Gen. 550

« Gen. 610

SMD1 Quadratic Relationship

Convergence

-15 -05 0 05 1 15 2
Xu

Quadratic approximation at optima (0,0) improves with
increasing generations
K




Convergence Plots on SMD1

10° b
w Upper Level
102 Function Value

4
0 50 100 150 200 250 300 350 400 450 500 550

;
10° F
)
o Lower Level
Function Value

10

I . . , . , . , . , .
0 50 100 150 200 250 300 350 400 450 500 550
Upper Level Generations

Progress path for the elite member

Convergence Plot for SMD1

BLEAQ vs BLEAQ2

BLEAQ (W-mapping) works well on problems

with single optimal solution at the lower level,

but fails in the presence of multiple solutions.

BLEAQ relies only on the approximation of the
w-mapping

BLEAQ2 (combined (W-¢ Mappings) relies on
the approximation of both w and ¢-mappings
and is able to handle multiple lower level
optimal solutions as well.

Advanced Topics of EBO

Multi-objective EBO

At least one level has multiple objectives

MEBO with decision-making
Robust EBO

Uncertainty in at least one level

EBO applications

Parameter tuning of algorithms
Practical applications

Advanced EBO Ideas (cont.)

Highly constrained EBO
Mixed-integer EBO
EBO with a fixed budget at LL and UL

Error propagation from lower level to upper
level
* Theoretical convergence studies

Evolutionary Multi-Level Optimization (EMLO)




Multi-objective EBO

+ Bilevel problems may involve optimization of multiple objectives at one
or both levels

» Dempe et al. (2006) developed KKT conditions

« Little work has been done in the direction of multi-objective bilevel
algorithms (Eichfelder (2007), Deb and Sinha (2010))

» Ageneral multi-objective bilevel problem may be formulated as
follows:

Min F(xuvxl) :(Fl(zuv xl)’ 000y Fp(xuaxl))

T Ty

subject to
z; € argmin{f(zy, 71) = (fi(Tu, T1), - - - » fo(Tu, T1))
4]

9i(Tu, 1) > 0,5 € I}
Gj(zuaxl) 20,7 EJk

Optimistic Pareto Front

* Two levels of decision making Leader

* Multiple objectives involved at
both the levels

Leader
Objectives: Max Objective 1 o

Max Objective 2

Followers

Objectives: Max objective 1

&
obj 2

Max objective 2

obj 1

Follower
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A - A
Pessimistic Pareto Front
Two levels of decision making Leader Follower
Multiple objectives involved at
both the levels
Leader

Objectives: Max Objective 1 &

Max Objective 2

Followers

Objectives: Max objective 1

Max objective 2

Preference Structure Known

Two levels of decision making Leader

Multiple objectives involved at
both the levels

Leader

Objectives: Max Objective 1

0obj 2

Max Objective 2

Followers

Objectives: Max objective 1

Max objective 2

Lower level problem becomes single objective

Follower




Uncertainty from Unknown
Preference Structure Challenges

Fotlower « Such problems can be very difficult to handle

« Two levels of decision making Leader
Multiple objectives involved at L ) . A
both the levels + Optimistic formulation makes little sense in these
problems

» Considering a known preference structure (and
accounting for uncertainties) might be a realistic and
viable approach

Leader
Objectives: Max Objective 1

Obj 2

Max Objective 2

Followers

Objectives: Max objective 1
Max objective 2

There is uncertainty around the frontier

(Sinha et al., 2015)

Population structure

»
BLEMO » Lower and upper level

. NSGA-II
(Deb and Sinha, ECJ 2010) o
Archiving
X=(xu,Xx) xu=(x) X=(y) i .
. » Both levels use NSGA-II iteratively
Minimize F(x)=( %),
( & ) Lower level
Subject to (1, ¥2) eargminw,,y,){f(w: ( Z; ) g;(x)zzhz/?w%zO}, NSGA-II
i %z e N
Cxu ND
x1 1 | eee| 3

* Lower level Pareto front depends on x
Upper level Lower level

* Upper level Pareto-optimal front lies on o2k P Rl |
constraint G, oo o5 omn o us | eoe| ND

*  Maximum two solutions from each x 02}
« Not all x in upper Pareto-optimal front 04 : - H
+ Solutions possible even below the upper 06 . . .
level Pareto-optimal front, but they are s ND ]
infeasible S i8o1614-12 -1 0806 oo
Archive — Archiye

Upper level NSGA-II

(Eichfelder, 2007)
= T=1




No of Subpopulations: 15

No. of 5 alatices: 15

Subpogulatioa:|

st lter=2

N N N " | " "
43 -6 -4 12 -1 08 s 2 a8 s -4

Boundary
| of objective space/

-2 -18 -16 -14 -12
Fl

-1
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Finland

Kuusamo has natural beauty and a famous tourist resort
o Contains large amounts of gold deposits
Dragon Mining is interested in mining in the region
Pros:
o Generate a large number of jobs
o Monetary gains
Cons:
Run-off water from mining will pollute Kitkajoki river
Ore contains Uranium, mining may blemish reputation

Open pit mines located next to Ruka slopes will be a turn-off for
skiing and hiking enthusiasts

o Permanent damage to the nature

Mine Taxation Strategy Problem from

ST

T MICHIGAN STATE

A Business DM Problem
CEO: Leader and Dept Head: follower

maximize F(x,y)=

(1,9)(y1,32)T +(10,1,3) (x1,x2,x3)T
9,2 4) ’

(9,2)(v1.32)T + (2,7,4)(x1,32,33)T

Gl=(3,9)(1.3»)7 (9 5.3)(x.x.03)T < 10:
G2 =(—4,-1)(.3)" +(3.-3.2)(a )
X1,X2.91,32,3 2 0.

» Weighted sum

solution (Zhang et =

al, 2007) is an
extreme solution

subject to(x) € ar:
(4,6)(y1.32) A(" 4.8)(n.22, )T

((( 4. h 2

9)(y1, \’ +(= 9 —4,0)(x

V1
‘*’)(\1 »2)

(Zhang et al, 2007)

argming \ )

7,4)(x1,x2.x3)T
,X2,X3) 61,
2)T + (10, —1,—2) (%1, \;)T< 24,
+(0,1,5)(x1,x2,x3)T <420

1900 T T T T T T

. BLEMO o
1850 ‘*k Branch&Bound % |

R,
1800 o 1
@,
1750 2% 1
%o
1700 - ° 1
LY

o °®,

1650 - Feasible Regi % 1
-gion 2
w,

1600 - =
1550 L—t L L L L

Environmental

Damage

-100 - ~ B

—200 |- a=1 Preferred |

300 | N / Region |

| B
-800 - \ 1

a denotes %
-900 - technologies a=4\‘\ b
-1000

Objective 2

S |

FOR- Y

3 83 8 8

S 3 & 3
T

S T W ST V1
0 500 1000 1500 2000 2500 3000 3500 4000
Objective 1

Leader’s profit

Tax per unit of metal

a=2

2650.0 <= R <=2776.8
362.3<=D<=3998

3
Time Period

Taxation strategies in preferred
region.

Preferred strategy: ~75% profit to the government,
~25% to company: Upper level has more decision-making

power




EMBO Test Problem Some
Construction Principle Problems
2
» Difficulties F2 Lower | [Step 4: Fom lower °
identified . ;
- rorm Q
» Bottom-up SM)3:sz(L1,L21 mmm"&"é.? el T R
to (f1* £2%) fl /-(ul,nZ)and(Ll,LZ) 8 " 0 02 0: 0.61:!:3 1712 1.
approach ® 4]
. oy L z =
» Five-step ° 3
procedure € “%
» Conflict between % § 2
lower and upper e PR
levels ) g
©
- 3 8
\ FV. Fl1
F1
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Importance of LL Decision-Maker
EMBO with Decision-Making + LL Decision-maker can make a decision on her/his own
. M-BLEAQ e (Sinha, Malo, Deb, ECJ 2014)

@

\“'\
‘

* Preference in LL Pareto

front may not lead to UL i: ‘ = Y
Pareto solutions A A‘L .
+ Converse is not true g 08 | : |
0.6 Two Difference Problems: "

* Unequal importance
among UL and LL DMs 04
* Raises interesting
hierarchy among UL and
LL decision-makers

1 I I L
0 02040608 171214
F1

Q02 S LN N T E 1 Frontachieved

3 by m-BLEAQ
0.5 [,
< Without

Imporba

O without LL ~57%~~ =~
-0.8  Importance

1 MY P
-2 -18-1.6-14-12 -1 -0.8-0.6
F1




Variation in Expectation
(Sinha, Malo and
* Optimistic PO front: No power on LL DM Deb, 2016)

* Pessimistic PO front: Complete power on LL DM
¢ Leader optimizes worst outcome from LL
* The difference between
optimistic and pessimistic fronts
provide DM ideas at UL

O Optimistic front
Lower level Pareto front
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Robust Bilevel Optimization
(Lu, Deb and Sinha, 2018)
* Both upper and lower-level variables are uncertain within

their neighborhoods: Type-l Robustness:

Minxy, Ff(x,y),
st. yé€ a.rgmin(y) {feff(x,y)|gj (x+ Ax,y + Ay) <0,
V Ax € Bsx, Ay € B‘sy, ji= 1,...,JL},

Gj(x+ Ax,y + Ay) <0, V Ax € Bsx, Ay € Bsy,

i=1,...,Ju.

o B .
[(Bsx, Bsy)| Jze(x,y)+(Bsx,Bsy)

il

|(Bsx: Bsy)| Jze(x,y)+(Bsx.Bsy)

7 x,y) f(2)dz,

Fef(x,y) F(z)dz.

Note that even if Ay = 0, LL is uncertain due to Ax perturbation,
stays as parameter uncertainties at LL

ST

HIGAN STATE

Bilevel Optimization with Uncertainties

» Uncertainty is, in most cases, inevitable in practical applications.
> Sources of uncertainties:
» Imperfect implementation, changing environment, etc.
> Inthe context of bilevel optimization problems
» Uncertainty in design variables and parameters
> Uncertainty in objective and constraint function computations (Noise)
> Uncertainty in decision making information
» Uncertainty in control of decision-making preferences between two levels

> Uncertainties in the context of bilevel optimization have NOT been formally
studied

> Clear mathematical definitions and formulations of robust/reliable bilevel
solutions do NOT exist

Bilevel Optimization with
Uncertainties: Big Picture

Upper Level Problem

Lower Level Problem

F(x,y)




Robust Bi-Level Optimization

Lower-level variables are uncertain

Global & Sensitive Lower Level
A
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Type-ll Robustness
Min(xy) F(x,y), .
o (x,y)-f(x,)
R e, y)| LGS EEY < gy,
sty =argming) | g;(x + Ax,y +Ay) <0,
V Ax € Bsx, Ay € Bsy, j=1,...,JL
FXY)-FXY)| «
[Fy)] =
Gj(x+ Ax,y + Ay) <0, ¥ Ax € Bsx, Ay € Bsy,
i=12...,Jy. R
1 Infeasible region Infeasible region
1
0.8 08
0.6 06 i@
X X
0.4 0.4
0.2 0.2
0 0
0 0.5 1 15 2 0 05 1 15 2

Robustness-based (Cont.)

Lower—level
solutions

= 0.8
F 04
0 Feasible Region
14
0.
X 6
2 Bl.5
0o 05 1
(b) Robust bilevel solutions for UnCaseB.
2-Variable ULFV | LLFV | ULVS [ LLVS
Grid 0.0474 | 1.2169 | 0.60 118
O | Best 0.0473 | 1.1906 | 0.5992 | T.I819
S | Median | 0.0459 | 1.1848 | 0.5923 | 1.1908
= | Worst | 00439 | 11826 | 0542 | 1.2116
IOWA Raccoon Watershed

max F(t,x) = (T(, xn), B(xn))
st (xF,y%) € argmax {7 (75, &K, yF) : (2, &K, vF) € QF}
&, gt
Vke{l,...,K},
*>0vke{l...,K},ne{l,...,N},

v >0,Vke{l,...,K},me{l,...,M},
©*>1,vYke{L,...,K},

N-1
"N wmax (P 0, ) = Y - ) waxd — thowaly
7 k! n=1

st yF < PR,




Constrained Bilevel Optimization

(Lu, Deb and Sinha, 2018)

IOWA Raccoon Watershed Results
(GECCO-2017)

> Constraints exist in almost every
practical engineering design x2
problem, and play a critical role in
deciding the optimal solution.

Feasible
region

> The deterministic optimum usually
lies on a constraint surface or at the
intersection of constraint surfaces.

0 Yoo a0 1000 1200 oo fem 1800 2000 200 . . - :
1500 > Fail to remain feasible in many occasions.

L s fox Ntrogen loading in the basin
Nitrogen loading n the ba

Reliable
solution

Deterministic

T > Many studies aim to handle this e o e e optimum
g — Bi issue in single level optimization, o A
- H none yet in the domain of bilevel in x1 and x2 \f\ :
5 T - optimization. : v X

N6

Nirogen loading in the basin

Reliability in Bilevel Problem A Scenario

> Constraint functions at both levels

- N Lower Level
. . . N Maximize x, F(x,y) = 2, XN
> Reliable bilevel solution definition: i Gov) =2 Fx,¥) = y2, » \‘\\\\\,
subjectto y € argmaxy,) 9i(y) >0, §=1,23 } i
inimi Gji(x,y) 20, j=1,23 .
Minimizex,yy  F(x,¥), e 731(g zl) <10, 100 < 22 < 200, :
subjectto y € argminy) {f(x, NIPA;E 95(x,y) <0)) > r} : —4 < y1 <10,-100 < y2 < 200. :
Ju : Gi(x,y) = (% + ) (@1 - 2)? — a2, o
(P(A;E,Gj(x,y) <0)) > R. Caloy) — o2 — 12518 + g)gzle,% ‘ “
G3(x,y) = 5(z1 +4 - (% + )@ +8— (4 +3)) — a2, %
» P{() signify the joint probability of the solution (x, y) being feasible for all 91(y) = (T + ) -2 — v,
: 92(x,y) = y2 — 12.5(F + ) (w1 - 5),
constraints. 93(%,y) =5 +4— (B + )@ +8— (& + 1) —v2.
» The effect of uncertainties in lower, upper or both levels are different
: 4-Variable | ULFV | LLFV | ULVS | LLVS
because of the unequal importance of each level. R 17600 ] 7000 | 730 [7000] 700" [ 7070

O/ | Best 69.64 | 6464 | 7.00 |69.64| 7.00 | 6464
S | Median| 69.61 | 69.68 | 6.9988 | 69.61 | 7.0011 | 69.68
2 | Worst | 6950 | 69.63 | 6.9952 | 69.50 | 7.0001 | 69.63
[ 032 | 032 [ —0.80 [ 030 | —0.80 | 0.30
O/ [ Best | 0.3022 | 03022 [—0.7917]0.3022[ —0.79170.3022
5 | Median| 02745 | 02862 |—0.7859|0.2745| —0.7903 | 0.2862
2 | Worst | 02354 | 03009 |—0.7859|0.2354| —0.7914|0.3009

» Test problems proposed for the purpose of concept demonstration, NOT for
algorithm performance assessment.

-

| Reliable || Determ.
(9]
=
2l

MICHIGAN STATE

=
o
B




Tri-Level Optimization

* Three levels of optimization problems interlinked by two
consecutive levels
* Min F(x,y,z)
* Min F(y,z), given x
* Minf(z), givenxandy

* Constraints are expected at every level

* To make an application realistic, we need to replace lowest
level heuristic/rule based

* Not much work available, but all issues discussed before

are applicable here too
* BLEAQ can be extended
e Currently pursuing

A Case Study: Supply Chain Management

Yearly Strategic Level
Strategic Level Planning Min. F(xy) =Y} fua(xy), Transport Cost
AT sty €agmin{fma(xy) = ¥ f;(x,3)) |,
/ Ay > . =
L \VASL [/Jﬂ]{ Operational Level '
T lﬂ,, / Tt EL‘ Transport Cost Y wi-y; <Cj, i=1,...,d(estinations),
LR o o i=1
\ AF c
AN Zyi, =Dy, j=1,...,c(arriers),
Operational Level Planning —————> l J - d
Weekly & fioy) = max(i; DDi(x) -y, CG, )},
- g 1 ) RO p(lants), n=1,2,..., 52 weeks.
Trucks | Cost | Service | Min. Charge * UL: Plant to destination
Carrierl | 7 $1.93 [ 0.90 $4050 layput
Carrier2 | 8 $1.82 | 0.82 $4370 + LL: At each plant, carrier
Carrier3 | 6 $1.88 | 0.86 $3380 companies are pre-
Carrier4 | 9 $1.97 | 0.93 $5320 determined
Carties 1 Lot 1091 $2910 + Allocation of goods to carrier
Carrier6* | NA. | $2.39 | 0.88 NA. is LL task

State-Level and Zip-Level Results

44,000 ZIP Codes

Advantage of Using Bilevel Optimization Over
Single-Level Optimization:

Model | Single-level Bilevel
Transportation Cost | $16.2M $15.5M (4.3%)
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Uncertainty in Demand
» Seasonal demand of goods assumed with uncertainty
» Robust bi-level optimization performed

» Robust solution is able to handle uncertainties better than
the deterministic solution

Hinois (seasonat " [ I Determ.
' 175 | EEERobust

= £l G

=005 =010 =015

Transportation Cost ($ Million)
&
&




Bi-Objective at Operational Level

» Operational level at each plant considers two objectives:
» Transport cost
» Service quality obtained carrier companies: FAxy) = 2 yi; - CSj.
» Produces a PO front at each plant e
» Strategic level chooses the best overall Transport Cost

091
®
o
09
o
Trade-off:
0.89
£ o Model | Single-objective  Bi-objective
g 0.88 Transportation Cost | $15.5M $15.9M
E S Service Quality* | 0.86 0.89
0.87
Average service quality over all plants
ose At one of the plants
o
AT 3 3.02 304 306 308 31 312
; Transportation Cost 104
109

Bilevel Application in Al/ML

Neural Architecture Search (NAS):

minimize F(a) = (fi(a;w*(@)),. .., fu(a; w* (@), fesr (@), .., (@),
subject to  w" (o) € argmin L(w; ),  Esy {
o € QQ, w e Qw:

CIFAR-10

NSGANet-Ad
Shake-Shake 26 2x96d + SE
& A3 _ B gproxyiess
- ‘AmoebaNet
a2 -

o NASNet-A ~@LEMONADE-L4
Ay e

- \moebaNet-/ LA
7 Amossatet-Ae. -9 ;
A 5

= @PNAS
pac

- . L @Restet
NSGANet-AD | LEMONADE-LL

Top 1 accuracy (%)

AE-CNN+E2EPP

)
Large-scale Evo.

.
cap-chiN

(d) NSGANet-A4

1 B g 10

Number of Parameters (Millions, log-scale) (b) NSGANet-Al (c) NSGANet-A2

Tri-Level Consideration

Min. F(xy,z) =Y fi(xy,2), (Strategic level) Yearly, Plant to
. destination layout

where y, z solve:
Min. fi(xy,2) =) fun(xy,2), (Tactical level) Quarterly, Choice of
" Carriers

where z solves:

Min.  fuu(xy,z) = ifj'(x, y, zf), (Operational level) Da"y’ Allocation of
= goods to trucks

d
s.t { Zw, -zjj < C,(y), =155 d(estinations),
i=1
c
Zzil =D;, j=1,...,c(arriers),
i=

B d
£oy.) = max( 1, D) - 25 CG(y), 9}

52 weeks
terms

Advantage of Using Tri-level Optimization: |/Finer optimization

k=1,2,... terms), m=12,..., p(lants), n=1,2,...,

Model | Single-level  Bilevel Tri-level
e 1TaNsportation Cost ‘ $16.2M $15.5M (4.3%) $15.3M (5.5%)
" Most benefit

Conclusions

» Bilevel problems are plenty in practice, but are avoided
due to lack of efficient methods

» Bilevel optimization received lukewarm interest by EA
researchers so far

» Population approach of EA makes tremendous potential

» Nested nature of the problem makes the task
computationally expensive

» Meta-modeling based EBO and its extensions show
promise

» Extension to Tri-Level optimization is needed
» Application to industry would be beneficial
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