

1

What is Bilevel Optimization?

- Two levels of optimization tasks
- Upper level: $\left(\mathrm{x}_{\omega}, \mathrm{x}_{\mathrm{i}}\right)$
- Lower level: ((x), x_{u} is fixed
- An upper level feasible solution must be an optimal lower level solution: $\left(\mathrm{x}_{\mathrm{u}}, \mathrm{x}_{1}{ }^{*}\left(\mathrm{x}_{\mathrm{u}}\right)\right.$)

Outline

, Bilevel Optimization: An Introduction
, Genesis
, Solution Methodologies
, Test Problem Construction
, Results
, Multi-objective Bilevel Optimization
, Applications

2

An Illustration

- Lower level solution x_{1} can be a singleton or multi-valued
- Bilevel optimal solution corresponds to the best combination of lower level optimum and upper level values

Properties of Bilevel Problems

- Bilevel problems are typically non-convex, disconnected and strongly NP-hard
- Solving an optimization problem produces one or more feasible solutions
- Multiple global solutions at lower level can induce additional challenges
- Two levels can be cooperating or conflicting

5

7

Multi-level Optimization

- Multi-level (L levels) optimization
- Two or more levels of optimization
- Nested structure

6

8

9

11

10

12

13

15

14

16

Bilevel Problems in Practice

- Often appears from functional feasibility
- Stability, equilibrium, solution to a set of PDEs
- Ideally, lower level task must implement above
- Dual problem solving in theoretical optimization
- Lower level is bypassed by approximation or by using direct simplified solution principles
- Due to lack of suitable BO techniques
- Stackelberg games: Leader-follower
- Leader must be restricted to follower's decisions
- Follower must respect leader's decisions

17

Stackelberg Competition

Competition between a leader and a follower firm (Duopoly)

Leader solves the following optimization problem to maximize its profit

$\begin{aligned} \max _{q_{1}, q_{f}} & \Pi_{l}=P\left(q_{l}, q_{f}\right) q_{l}-C\left(q_{l}\right) \\ \text { s.t. } & q_{f} \in \underset{q_{f}}{\arg \max }\left\{\Pi_{f}=P(Q) q_{f}-C\left(q_{f}\right)\right\}, \\ & q_{l}+q_{f} \geq Q, \\ & q_{l}, q_{f}, Q \geq 0, \end{aligned}$ where Q is the quantity demanded, $P\left(q_{l}, q_{f}\right)$ is the price of the goods sold, and $C(\cdot)$ is the cost of production of the respective firm. The variables in this model are the production levels of each firm q_{l}, q_{f} and demand Q.

If the leader and follower have similar functions, leader always makes a higher profit.

- First mover's advantage

Can be extended to multiple leaders and multiple followers

Toll Setting Problem

- Authority's (Upper level) problem:
- Authority responsible for highway system wants to maximize its revenues earned from toll
- The authority has to solve the highway users optimization problem for all possible tolls

- Highway users' (Lower level) problem
- For any toll chosen by the authority, highway users try to minimize their own travel costs
- A high toll will deter users to take the highway, lowering the revenues

Does it make sense to choose or not to choose a toll high-way before knowing the toll amount?

18

19

Taxation Strategy

- Recently, there was a controversy for gold mining in the Kuusamo region in Finland
- The region is a famous tourist resort endowed with immense natural beauty
- For any taxation strategy by the government (UL), the mining company (LL) optimizes its own profits

Can the government know the outcome for any tax policy chosen by them?
 Leader. Government Maximize revenue from taxes, Minimize

Follower: Mining Company Maximize Profit
Sinha, et al. (2013)

21

Agri-business Management

Whittaker et al. (2016)

Defense Applications

22

Parameter Tuning

Upper Level: Find optimal parameters that maximize algorithm performance over a number of initial conditions

Lower Level: Run the optimization algorithm to find optimized solution

Does it make sense to conclude an algorithm's performance without spelling out algorithm parameters?

24

Inverse Optimal Control

- While performing actions humans optimize certain unknown cost function

- It might be interesting to have an idea of the cost function that might help in designing efficient humanoids
- Given the data corresponding to the motion identifying the reward or cost function becomes an inverse problem

Mombaur et al. (2010), Suryan et al. (2016)

25

Special Cases

- Linear bilevel problems
- Reducible to a mixed integer linear program
- Bilevel problems with combinatorial variables at upper level and linear program at lower level - Reducible to a mixed integer linear program
- Bilevel problems with combinatorial variables at both levels
- Very hard to solve
- Bilevel problems with similar objectives at both levels - Reduces to minmax or minmin (min) problems - Ideas of duality can be utilized

Solution Methodologies

- Single-level reduction using KKT
- Bialas and Karwan (1984), Bard and Falk (1982), Bard and Moore (1990)
- Descent methods
- Savard and Gauvin (1994), Vicente et al. (1994)
- Penalty function methods
- Aiyoshi and Shimizu (1981, 1984), Ishijuka and Aiyoshi (1992), White and Anandalingam (1993)
- Trust region methods
- Colson et al. (2005)
- Using lower level optimal value function
- Mitsos (2010)

26

Why Use Evolutionary Algorithms?

First, no implementable mathematical optimality conditions exist (Dempe, Dutta, Mordokhovich, 2007)

- LL problem is replaced with KKT conditions and constraint qualification (CQ) conditions of LL
- UL problem requires KKT of LL-KKT conditions, but handling LL-CQ conditions in UL-KKT becomes difficult
- Involves second-order differentials

Moreover, classical numerical optimization methods require various simplifying assumptions like continuity, differentiability and convexity

- Most real-world applications do not follow these assumptions

EA's flexible operators, direct use of objectives, and population approach should help solve BO problems better

28

Niche of Evolutionary Methods (cont.)

- At times, LL solutions are multi-modal
- Many BO problems are multi-objective
- Both level might require to find and maintain multiple optimal solutions
- EAs are known to be good for these scenarios
- Computationally faster methods possible through metamodeling etc.
- Other complexities (robustness, parallel implementation, fixed budget) can be handled efficiently

(1)

29

Bilevel Optimization using EAs

EA at upper level and exact method at lower level

- Mathieu et al. (1994): LP for lower level and GA for upper leve
- Yin (2000): Frank-Wolfe Algorithm for lower level and EA for upper level

EA at both upper and lower level

- Li et al. (2006): Particle Swarm Optimization at both levels
- Angelo et al. (2013): Differential Evolution at both levels
- Sinha et al. (2014): Genetic Algorithm at both levels

EA used after single-level reduction

- EA researchers have also tried replacing the lower level problems using KKT (Hejazi et al. (2002), Wang et al. (2008), Li et al. (2007))

EAs for Bilevel Optimization

- Most of the EAs for bilevel optimization have been nested in nature
- Using one algorithm for upper level and solving the lower level optimization problem for every upper leve point
- Not very interesting!
- Expensive even for small instances!
- Non-scalable

30

Bilevel Optimization using EAs

Approximating lower level level rational response Sinha, Malo, Deb. (2013, 2014, 2017): Iteratively approximates lower level optimal response with upper level decision vector (Discussed later)

Approximating lower level optimal value function Sinha, Malo, Deb. (2016): Iteratively approximates lower level optimal function value with upper level decision vector (Discussed later)
Trust region method and Approximate KKT

- Sinha, Soun and Deb (2017)

Kriging based methods

- Sinha et al (2018), Islam et al. (2018)

33

Can EAs be really useful for bilevel optimization?

- It is noteworthy that at each iteration an EA has a population of points
- Can these population of points be put to use to approximate certain mappings in bilevel?
- Exploiting the structure and properties of the problem is essential!

35

Can EAs be really useful for bilevel optimization?

- Nested approaches are certainly not the way forward

34

Approach 1

(Lower Level Reaction Set Mapping)

```
\(\Psi\left(x_{u}\right)=\underset{x_{l}}{\operatorname{argmin}}\left\{f\left(x_{u}, x_{l}\right): g_{j}\left(x_{u}, x_{l}\right) \leq 0, j=1, \ldots, J\right\}\)
\({\underset{x_{u}, x_{l}}{ }}^{x_{l}} F\left(x_{u}, x_{l}\right)\)
s.t.
\(x_{l} \in \Psi\left(x_{u}\right)\)
\(G_{k}\left(x_{u}, x_{l}\right) \leq 0, k=1, \ldots, K\)
```

Step 0: Solve the lower level problem completely for the initial population Step 1: Use the population members to approximate the Ψ-mapping locally Step 2: Solve the reduced single level problem for a few iterations
Step 3: Update the local Ψ-mappings and continue
Step 4: If termination criteria not met, go to Step 2

36

37

39

38

Approximation Choice

- Tried different strategies for localized approximation, like,
- Linear Approximation
- Piecewise linear approximation
- Quadratic approximation
- Results were favorable and similar with piecewise-linear as well as quadratic approximation
- Decided to use quadratic approximation because of its simplicity
- More complex techniques like neural networks are an obvious extension but require large number of points

40

41

43

Approach 2

(Optimal Value Function Mapping)

$$
\begin{aligned}
& \varphi\left(x_{u}\right)=\min _{x_{l}}\left\{f\left(x_{u}, x_{l}\right): x_{l} \in \Omega\left(x_{u}\right)\right\} \\
& \min _{x_{u}, x_{l}} F\left(x_{u}, x_{l}\right) \\
& \text { s.t. } \\
& \quad f\left(x_{u}, x_{l}\right) \leq \varphi\left(x_{u}\right) \\
& \quad g_{j}\left(x_{u}, x_{l}\right) \leq 0, j=1, \ldots, J \\
& \quad G_{k}\left(x_{u}, x_{l}\right) \leq 0, k=1, \ldots, K
\end{aligned}
$$

Step 0: Solve the lower level problem completely for the initial population Step 1: Use the population members to approximate the φ-mapping locally Step 2: Solve the reduced single level problem for a few iterations Sep 2: Solve the reduced single level problem for
Step 3: Update the local φ-mappings and continue Step 4: If termination criteria not met, go to Step 2

42

44

45

Outline

, Bilevel Optimization: An Introduction
, Genesis
, Solution Methodologies (Ψ and Φ mappings)

- Test Problem Construction
, Results
, Multi-objective Bilevel Optimization
, Applications

f

47

46

Test Problems

- Given that a convergence proof is difficult, we can only use test problems to justify whether an an algorithm works or not!
- First, we begin with some simple test problems

48

49

51

50

52

Results on TPs

	UL Func. Evals.			LL Func. Evals.		
	φ-Appx Med	Ψ-Appx Med	No-Appx Med	φ-Appx Med	Ψ-Appx Med	No-Appx Med
TP1	134	150	-	1438	2061	-
TP2	148	193	436	1498	2852	5686
TP3	187	137	633	2478	1422	6867
TP4	299	426	1755	3288	6256	19764
TP5	175	270	576	2591	2880	6558
TP6	110	94	144	1489	1155	1984
TP7	166	133	193	2171	1481	2870
TP8	212	343	403	2366	5035	7996

53

55

Results on TPs (Cont.)

Approach 1: Y- Mapping (Approach 1)

Approach 2: φ-Mapping (Apppach

	UL Func. Evals.			LL Func. Evals.		
	φ-Appx Med	Ψ-Appx Med	No-Appx Med	φ-Appx Med	Ψ-Appx Med	No-Appx Med
TP1	134	150	-	1438	2061	-
TP2	148	193	436	1498	2852	5686
TP3	187	137	633	2478	1422	6867
TP4	299	426	1755	3288	6256	19764
TP5	175	270	576	2591	2880	6558
TP6	110	94	144	1489	1155	1984
TP7	166	133	193	2171	1481	2870
TP8	212	343	403	2366	5035	7996

In general, φ-Mapping approach is better
Sinha et al. (2016)

54

Modified Test Problems (m-TP1 to m-TP8)

General Structure (x and y are vectors):

$$
\begin{aligned}
F^{n e w}(x, y) & =F(x, y)+y_{p}^{2}+y_{q}^{2} \\
f^{n e w}(x, y) & =f(x, y)+\left(y_{p}-y_{q}\right)^{2}
\end{aligned}
$$

$$
y_{p}, y_{q} \in[-1,1] \quad y_{p} \text { and } y_{q} \text { are LL variables, in addition to } y
$$

- Modification leads to multiple lower level optimal solutions for each upper level decision vector
- May cause Ψ-Mapping to be difficult
- Multiple y_{p} and y_{q} variables to be mapped to

雨

56

Results (Modified Test Problems)								
Optimal f is modeled Upper Level Function Evaluations				Optimal y is modeled				21 runs
					$\begin{aligned} & \text { er Level } F \\ & \text { Evaluatio } \end{aligned}$		Both Methods Fail	
φ-Арpx.				φ-Appx.			Ψ-Appx.	No-Appx.
	Min	Med	Max	Min	Med	Max	Min/Med/Max	Min/Med/Max
m-TP1	130	172	338	2096	2680	8629	-	-
m-TP2	116	217	-	2574	4360	-	-	-
m-TP3	129	233	787	1394	3280	13031	-	-
m-TP4	198	564	2831	1978	5792	28687	-	-
m-TP5	160	218	953	3206	4360	17407	-	-
m-TP6	167	174	529	2617	3520	8698	-	-
m-TP7	114	214	473	1514	5590	11811	-	-
m-TP8	150	466	2459	2521	6240	35993	-	-
Only φ-Mapping works! A single y^{*} is enough								

57

Requirements

- Controllable difficulty in convergence at upper and lower levels
- Controllable difficulty caused by interaction of two levels
- Multiple global solutions at the lower level for any given set of upper level variables
- Clear identification of relationships between lower level optima solutions and upper level variables
- Scalability to any number of decision variables at upper and lowe levels
- Constraints (preferably scalable) at upper and lower levels
- Possibility to have conflict or cooperation at the two levels
- The optimal solution of bilevel test problem can be easily obtained

Bilevel Test Problem Construction: A Systematic Approach

- Test problems with controllable difficulties are often required to evaluate evolutionary algorithms
- Controllable and segregated difficulties help to identify what aspects of the problem, the algorithm is unable to handle

58

Test Problem Framework

The objectives and variables on both levels are decomposed as follows:
$F\left(\mathbf{x}_{u}, \mathbf{x}_{l}\right)=F_{1}\left(\mathbf{x}_{u 1}\right)+F_{2}\left(\mathbf{x}_{l 1}\right)+F_{3}\left(\mathbf{x}_{u 2}, \mathbf{x}_{l 2}\right)$
$f\left(\mathbf{x}_{u}, \mathbf{x}_{l}\right)=f_{1}\left(\mathbf{x}_{u 1}, \mathbf{x}_{u 2}\right)+f_{2}\left(\mathbf{x}_{l 1}\right)+f_{3}\left(\mathbf{x}_{u 2}, \mathbf{x}_{l 2}\right)$
where

$$
\mathbf{x}_{u}=\left(\mathbf{x}_{u 1}, \mathbf{x}_{u 2}\right) \quad \text { and } \quad \mathbf{x}_{l}=\left(\mathbf{x}_{l 1}, \mathbf{x}_{l 2}\right) \quad-\text { vectors }
$$

(Sinha, Malo and Deb, 2014)

60

61

Controlling Difficulty in Interactions

- Interaction between variables $\mathrm{x}_{\mathrm{u} 2}$ and x_{12} can be chosen \rangle Dedicated components: F_{3} and f_{3}
- Example:

$$
\begin{gathered}
F\left(\mathbf{x}_{u}, \mathbf{x}_{l}\right)=\overbrace{1}\left(\mathbf{x}_{u 1}\right)+F_{2}\left(\mathbf{x}_{l 1}\right)+F_{3}\left(\mathbf{x}_{u 2}, \mathbf{x}_{l 2}\right) \\
\sum_{i=1}^{r}\left(x_{u 2}^{i}\right)^{2}+\sum_{i=1}^{r}\left(\left(x_{u 2}^{i}\right)^{2}-\tan x_{l 2}^{i}\right)^{2} \\
f\left(\mathbf{x}_{u}, \mathbf{x}_{l}\right) \stackrel{c}{=} f_{1}\left(\mathbf{x}_{u 1}, \mathbf{x}_{u 2}\right)+f_{2}\left(\mathbf{x}_{l 1}\right)+f_{3}\left(\mathbf{x}_{u 2}, \mathbf{x}_{l 2}\right) \\
\sum_{i=1}^{r}\left(\left(x_{u 2}^{i}\right)^{2}-\tan x_{l 2}^{i}\right)^{2}
\end{gathered}
$$

(1)

63

Controlling Difficulty for Convergence

Convergence difficulties at each level

- Dedicated components: F_{1} (Upper) and f_{2} (Lower)
"Example:

62

Difficulty due to Conflict/Co-operation

> Dedicated components: F_{2} and f_{2} or F_{3} and f_{3} may be used to induce conflict or cooperation
> Examples:

- Cooperative interaction = Improvement in lower-level improves upperlevel (e.g. $F_{2}=f_{2}$)
- Conflicting interaction = Improvement in lower-level worsens upper-level (e.g. $\mathrm{F}_{2}=-\mathrm{f}_{2}$)
- Mixed interaction is also possible

Controlled Multimodality

> Obtain multiple lower-level optima for every upper level solution:

- Component used: f_{2}
, Example: Multimodality at lower-level
$f_{1}\left(\mathbf{x}_{u 1}, \mathbf{x}_{u 2}\right)=\left(x_{u 1}^{1}\right)^{2}+\left(x_{u 1}^{1}\right)^{2}+\left(x_{u 2}^{1}\right)^{2}+\left(x_{u 2}^{2}\right)^{2} \begin{aligned} & \text { Scales } \text { values }\end{aligned}$
c $f_{2}\left(\mathbf{x}_{l 1}\right)=\left(x_{l 1}^{1}-x_{l 1}^{2}\right)^{2} \quad$ induces multiple solutions:
$1\left(f_{3}\left(\mathbf{x}_{u 2}, \mathbf{x}_{l 2}\right)=\left(x_{u 2}^{1}-x_{l 2}^{1}\right)^{2}+\left(x_{u 2}^{2}-x_{l 2}^{2}\right)^{2} \quad \mathbf{x}^{1}{ }_{l 1}=\mathrm{x}^{2}{ }_{l 1}\right.$
$F_{1}\left(\mathbf{x}_{u 1}\right)=\left(x_{u 1}^{1}\right)^{2}+\left(x_{u_{1} 1}^{1}\right)^{2}$
$F_{2}\left(\mathbf{x}_{l 1}\right)=\left(x_{l 1}^{1}\right)^{2}+\left(x_{11}^{2}\right)^{2} \quad$ Gives best UL solution:

$$
F_{3}\left(\mathbf{x}_{u 2}, \mathbf{x}_{l 2}\right)=\left(x_{u 2}^{1}-x_{l 2}^{2}\right)^{2}+\left(x_{u 2}^{2}-x_{l 2}^{2}\right)^{2} \quad x^{1}{ }_{l 11}=x^{2}{ }_{l 1}=0
$$

65

Interaction: Cooperative
Problem 1 Lower level: Convex (w.r.t. lower-level variables) (SMD 1) Upper level: Convex (induced space)

Upper and Lower Function Contours

$F_{1}=\sum_{i=1}^{p}\left(x_{u n}^{i}\right)^{2}$
$F_{2}=\sum_{i=1}^{i=1}\left(x_{1}^{i}\right)^{2}$

$f_{3}=\sum_{i=1}^{i=1}\left(x_{u 2}^{1}-\tan x_{l 2}^{i}\right)^{2}$
$x_{u_{1}}^{i} \in[-5,10], \quad \forall i \in\{1,2, \ldots, p\}$
$x_{i} \in[-5,10$
$x_{u 2}^{u} \in[-5,10], \forall i \in\{1,2$,
$\left.\begin{array}{ll}x_{i_{1}}^{i} \in[-5,10], & \forall i \in\{1,2, \ldots, \\ x_{i 2} \in(-\pi, \pi \\ \pi\end{array}\right), \forall i \in\{1, \ldots$,
$x_{l 2}^{i} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right), \forall i \in\{1,2, \ldots, r\}$

67

Difficulty due to Constraints

Constraints are included at both levels with one or more of the following properties:
. Constraints exist, but are inactive at the optimum
A subset of constraints active at the optimum
Upper level constraints are functions of only upper level variables, and lower level constraints are functions of only lower level variables
Upper level constraints are functions of upper as well as lower level
variables, and lower level constraints are also functions of upper as well as lower level variables
Lower level constraints lead to multiple global solutions at the lower level
Constraints are scalable at both levels
Any other complexities

66

68

69

Results Using BLEAQ

- Following are the results for 10 variable instances of the test problems (Sinha et al., 2014) using BLEAQ (Ψ-Mapping)
Comparison performed against nested evolutionary approach

Number of Runs: 21

Savings: Ratio of FE required by nested approach against BLEAQ

71

70

Results on SMD1

x_{u}
Quadratic approximation at optima (0,0) improves with increasing generations

72

73

Advanced Topics of EBO

- Multi-objective EBO
- At least one level has multiple objectives
- MEBO with decision-making
- Robust EBO
- Uncertainty in at least one level
- EBO applications
- Parameter tuning of algorithms
- Practical applications

75

BLEAQ vs BLEAQ2

- BLEAQ (世-mapping) works well on problems with single optimal solution at the lower level, but fails in the presence of multiple solutions.
- BLEAQ relies only on the approximation of the Ψ-mapping
- BLEAQ2 (combined ($\Psi-\varphi$ Mappings) relies on the approximation of both ψ and φ-mappings and is able to handle multiple lower level optimal solutions as well.

(4)

74

Advanced EBO Ideas (cont.)

- Highly constrained EBO
- Mixed-integer EBO
- EBO with a fixed budget at LL and UL
- Error propagation from lower level to upper level
- Theoretical convergence studies
- Evolutionary Multi-Level Optimization (EMLO)

(1)

76

Multi-objective EBO

- Bilevel problems may involve optimization of multiple objectives at one or both levels
- Dempe et al. (2006) developed KKT conditions
- Little work has been done in the direction of multi-objective bileve algorithms (Eichfelder (2007), Deb and Sinha (2010))
- A general multi-objective bilevel problem may be formulated as follows:

$$
\begin{aligned}
& \operatorname{Min}_{x_{u}, x_{l}} F\left(x_{u}, x_{l}\right)=\left(F_{1}\left(x_{u}, x_{l}\right), \ldots, F_{p}\left(x_{u}, x_{l}\right)\right) \\
& \quad \text { subject to } \\
& \quad x_{l} \in \underset{x_{l}}{\operatorname{argmin}}\left\{f\left(x_{u}, x_{l}\right)=\left(f_{1}\left(x_{u}, x_{l}\right), \ldots, f_{q}\left(x_{u}, x_{l}\right)\right)\right. \\
& \left.\quad g_{i}\left(x_{u}, x_{l}\right) \geq 0, i \in I\right\} \\
& \quad G_{j}\left(x_{u}, x_{l}\right) \geq 0, j \in J .
\end{aligned}
$$

5 (ax

77

79

78

Preference Structure Known

80

81

83

Challenges

- Such problems can be very difficult to handle
- Optimistic formulation makes little sense in these problems
- Considering a known preference structure (and accounting for uncertainties) might be a realistic and viable approach

82

84

85

Mine Taxation Strategy Problem from

Finland

Kuusamo has natural beauty and a famous tourist resort

- Contains large amounts of gold deposits Dragon Mining is interested in mining in the region Pros
- Generate a large number of jobs
- Monetary gains

Cons:

- Run-off water from mining will pollute Kitkajoki river

Ore contains Uranium, mining may blemish reputation
Open pit mines located next to Ruka slopes will be a turn-off for skiing and hiking enthusiasts

- Permanent damage to the nature

(1)

87

A Business DM Problem CEO: Leader and Dept Head: follower

86

88

89

EMBO with Decision-Making

- Preference in LL Pareto front may not lead to UL Pareto solutions
- Converse is not true
- Unequal importance among UL and LL DMs
- Raises interesting hierarchy among UL and LL decision-makers

91

90

Importance of LL Decision-Maker

- LL Decision-maker can make a decision on her/his own
- M-BLEAQ

(Sinha, Malo, Deb, ECJ 2014)

92

Variation in Expectation

- Optimistic PO front: No power on LL DM Sinha, Malo and
- Pessimistic PO front: Complete power on LL DM
- Leader optimizes worst outcome from LL
- The difference between optimistic and pessimistic fronts provide DM ideas at UL

Robust Bilevel Optimization

(Lu, Deb and Sinha, 2018)

- Both upper and lower-level variables are uncertain within their neighborhoods: Type-I Robustness:

$$
\begin{aligned}
& \operatorname{Min}_{(\mathbf{x}, \mathbf{y})} \quad F^{\mathrm{eff}}(\mathbf{x}, \mathbf{y}), \\
& \text { t. } \mathbf{y} \in \operatorname{argmin}_{(\mathbf{y})}\left\{f^{\text {eff }}(\mathbf{x}, \mathbf{y}) \mid g_{j}(\mathbf{x}+\Delta \mathbf{x}, \mathbf{y}+\Delta \mathbf{y}) \leq 0\right. \\
& \left.\forall \Delta \mathbf{x} \in \mathcal{B}_{\delta \mathbf{x}}, \Delta \mathbf{y} \in \mathcal{B}_{\delta \mathbf{y}}, j=1, \ldots, J_{L}\right\}, \\
& G_{j}(\mathbf{x}+\Delta \mathbf{x}, \mathbf{y}+\Delta \mathbf{y}) \leq 0, \forall \Delta \mathbf{x} \in \mathcal{B}_{\delta \mathbf{x}}, \Delta \mathbf{y} \in \mathcal{B}_{\delta \mathbf{y}} \text {, } \\
& j=1, \ldots, J_{U} \text {. } \\
& f^{\text {eef }}(\mathbf{x}, \mathbf{y})=\frac{1}{\left|\left(\mathcal{B}_{\delta x}, \mathcal{B}_{\delta \mathbf{y}}\right)\right|} \int_{\mathbf{z} \in(\mathbf{x}, \mathbf{y})+\left(\mathcal{B}_{\delta_{x},}, \mathcal{B}_{\delta y}\right)} f(\mathbf{z}) d \boldsymbol{z} \\
& F^{\text {eff }}(\mathbf{x}, \mathbf{y})=\frac{1}{\left|\left(\mathcal{B}_{\delta \mathbf{x}}, \mathcal{B}_{\delta \mathbf{y}}\right)\right|} \int_{\mathbf{z} \in(\mathbf{x}, \mathbf{y})+\left(\mathcal{B}_{\delta x}, \mathcal{B}_{\delta \boldsymbol{y}}\right)} F(\mathbf{z}) \mathbf{d} \mathbf{z} .
\end{aligned}
$$

Note that even if $\Delta \mathbf{y}=0, \mathrm{LL}$ is uncertain due to $\Delta \mathbf{x}$ perturbation, stays as parameter uncertainties at LL

(雨)

95

Bilevel Optimization with Uncertainties

> Uncertainty is, in most cases, inevitable in practical applications.
, Sources of uncertainties:
> Imperfect implementation, changing environment, etc.
> In the context of bilevel optimization problems

- Uncertainty in design variables and parameters

Uncertainty in objective and constraint function computations (Noise)

- Uncertainty in decision making information

Uncertainty in control of decision-making preferences between two levels

- Uncertainties in the context of bilevel optimization have NOT been formally studied
. Clear mathematical definitions and formulations of robust/reliable bilevel solutions do NOT exist

94

Bilevel Optimization with Uncertainties: Big Picture

1)

96

97

99

98

100

101

Reliability in Bilevel Problem

Reliable bilevel solution definition:
$\operatorname{Minimize}_{(\mathbf{x}, \mathbf{y})} \quad F(\mathbf{x}, \mathbf{y})$,
subject to $\quad \mathbf{y} \in \operatorname{argmin}_{(\mathbf{y})}\left\{f(\mathbf{x}, \mathbf{y}) \mid\left(P\left(\bigwedge_{j=1}^{J_{L}} g_{j}(\mathbf{x}, \mathbf{y}) \leq 0\right)\right) \geq r\right\}$, $\left(P\left(\bigwedge_{j=1}^{J_{U}} G_{j}(\mathbf{x}, \mathbf{y}) \leq 0\right)\right) \geq R$.
$P()$ signify the joint probability of the solution (x, y) being feasible for all constraints.
, The effect of uncertainties in lower, upper or both levels are different because of the unequal importance of each level.

Test problems proposed for the purpose of concept demonstration, NOT for algorithm performance assessment.

r

103

102

104

Tri-Level Optimization

- Three levels of optimization problems interlinked by two consecutive levels
- $\operatorname{Min} \boldsymbol{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})$
- Min $F(y, z)$, given x
- $\operatorname{Min} f(z)$, given \mathbf{x} and \mathbf{y}
- Constraints are expected at every level
- To make an application realistic, we need to replace lowest level heuristic/rule based
- Not much work available, but all issues discussed before are applicable here too
- BLEAQ can be extended
- Currently pursuing

(

105

107

- UL: Plant to destination
layput
LL: At each plant, carrier companies are predetermined
- Allocation of goods to carrier is LL task

106

Uncertainty in Demand

- Seasonal demand of goods assumed with uncertainty
- Robust bi-level optimization performed
- Robust solution is able to handle uncertainties better than the deterministic solution


```
央等
```

108

Bi-Objective at Operational Level

- Operational level at each plant considers two objectives: - Transport cost
-Service quality obtained carrier companies: $f_{m, n}^{(2)}(x, y)=\sum_{j=1}^{c} \sum_{i=1}^{d} y_{i j} \cdot C S_{j}$.
- Produces a PO front at each plant
- Strategic level chooses the best overall Transport Cost

109

111

Tri-Level Consideration

Advantage of Using Tri-level Optimization:
Finer optimization

110

Conclusions

- Bilevel problems are plenty in practice, but are avoided due to lack of efficient methods
- Bilevel optimization received lukewarm interest by EA researchers so far
- Population approach of EA makes tremendous potential
- Nested nature of the problem makes the task computationally expensive
- Meta-modeling based EBO and its extensions show promise
- Extension to Tri-Level optimization is needed
- Application to industry would be beneficial

112

113

