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What is Bilevel Optimization?

• Two levels of optimization tasks
• Upper level: (xu,xl)
• Lower level: (xl), xu is fixed

• An upper level feasible solution must be an optimal lower 
level solution: (xu, xl*(xu))

Min is default, can be 
max in any of the levels

3

An Illustration
• Lower level solution xl can be a singleton or multi-valued
• Bilevel optimal solution corresponds to the best combination of lower 

level optimum and upper level values

Single 
LL solution

Multiple
LL solutions

4
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Properties of Bilevel Problems

l Bilevel problems are typically non-convex, 

disconnected and strongly NP-hard

l Solving an optimization problem produces one or 

more feasible solutions

l Multiple global solutions at lower level can induce 

additional challenges

l Two levels can be cooperating or conflicting

5

Multi-level Optimization

• Multi-level (L levels) optimization
• Two or more levels of optimization
• Nested structure

Min F(x1,x2,…xL)
s.t

6

Origin of Bilevel Programming
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More than 10% share 

Topic Models
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Around 5-10% share 

Topic Models
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Around 5% share 

Topic Models
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Less than 5% share 

Topic Models
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Bilevel optimization problem with lower level constraints!

Min(x,y) 3y + x

Such that

y ∈ argmax(y) 2y
Such that  

x + y ≤ 8,  x + 4y ≥ 8, 
x + 2y ≤ 13, 1 ≤ x ≤ 6

An Example

A Bilevel Linear Optimization Problem
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Bilevel vs. Multi-objective

Min(x,y) 3y + x
Min(x,y) -2y

Such that

x + y ≤ 8
x + 4y ≥ 8
x + 2y ≤ 13
1 ≤ x ≤ 6

y

x

Pareto-optimal Set 
(Decision Space)

Bilevel Optimum

Bilevel linear optimization problem is now modified as follows:

Note that two-objective and bilevel problems are different in principle

15

Some Applications

16



Congress on Evolutionary Computation (CEC) 
Conference

5 June 2017

Copyright: Kalyanmoy Deb and Ankur Sinha 5

Bilevel Problems in Practice
• Often appears from functional feasibility

• Stability, equilibrium, solution to a set of PDEs
• Ideally, lower level task must implement above
• Dual problem solving in theoretical optimization

• Lower level is bypassed by approximation or by using 
direct simplified solution principles
• Due to lack of suitable BO techniques

• Stackelberg games: Leader-follower
• Leader must be restricted to follower’s decisions
• Follower must respect leader’s decisions

17

Brotcorne et al. (2001)

• Authority's (Upper level) problem:

• Authority responsible for highway system 
wants to maximize its revenues earned from 
toll

• The authority has to solve the highway users 
optimization problem for all possible tolls

• Highway users' (Lower level) problem:

• For any toll chosen by the authority, highway 
users try to minimize their own travel costs

• A high toll will deter users to take the 
highway, lowering the revenues 

Toll Setting Problem

Does it make sense to choose or not to 
choose a toll high-way before knowing the toll 
amount?

18

Stackelberg Competition
Competition between a leader and a 
follower firm (Duopoly)

Leader solves the following optimization 
problem to maximize its profit

If the leader and follower have
similar functions, leader always
makes a higher profit.

- First mover’s advantage

Can be extended to multiple
leaders and multiple followers

19

Structural Optimization
• Upper level: Topology
• Lower level: Sizes and coordinates

20
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Leader: Government Maximize 
revenue from taxes, Minimize 
Pollution

Follower: Mining Company 
Maximize Profit

• Recently, there was a controversy 
for gold mining in the Kuusamo
region in Finland

• The region is a famous tourist resort 
endowed with immense natural 
beauty

• For any taxation strategy by the 
government (UL), the mining 
company (LL) optimizes its own 
profits

Sinha, et al. (2013)

Taxation Strategy

Can the government know the outcome for any tax 
policy chosen by them?

21

Defense Applications

Interdiction Problem
Attacker-Defender

Two levels

Attacker
Maximize operating costs 
post attack

Defender
Minimize operating cost

Protection Problem
Defender-Attacker

Two levels

Defender
Minimize the maximum 
damage by fortification

Attacker
Maximize damage

Robust Design
Defender-Attacker-Defender

Three levels

Defender
Take interdiction problem into 
account during design phase

Attacker
Maximize operating costs 
post attack

Defender
Minimize operating cost

Nine key substations out of 55,000 substations can 
result in a coast to coast blackout in US
WSJ Link

Hub-and-Spoke Networks

22

Agri-business Management

Upper Level
Regulator

Objective 1: Minimize Pollution (Fertilizer)
Objective 2: Maximize Revenues

Lower Level
Multiple Farms

Objective: Maximize Individual Profit

Decision Variables: Taxation, inputs, outputs Contains multiple lower level 
optimization problems

Whittaker et al. (2016)

23

Parameter Tuning
Upper Level: Find optimal 

parameters that maximize 
algorithm performance over 
a number of initial 
conditions

Lower Level: Run the 
optimization algorithm to 
find optimized solution

Bennett et al. (2008), Sinha et al. (2014)

Researchers commonly rely on
grid search or random search

Does it make sense to conclude an 
algorithm’s performance without spelling 
out algorithm parameters?

24

http://www.wsj.com/articles/SB10001424052702304020104579433670284061220
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Inverse Optimal Control

Mombaur et al. (2010), Suryan et al. (2016)

• While performing actions humans
optimize certain unknown cost
function

• It might be interesting to have an idea
of the cost function that might help in
designing efficient humanoids

• Given the data corresponding to the
motion identifying the reward or cost
function becomes an inverse problem

25

• Single-level reduction using KKT
- Bialas and Karwan (1984), Bard and Falk (1982), Bard 

and Moore (1990)
• Descent methods
- Savard and Gauvin (1994), Vicente et al. (1994)

• Penalty function methods
- Aiyoshi and Shimizu (1981, 1984), Ishijuka and Aiyoshi

(1992), White and Anandalingam (1993)
• Trust region methods
- Colson et al. (2005)

• Using lower level optimal value function
- Mitsos (2010)

Solution Methodologies

26

Special Cases

l Linear bilevel problems
l Reducible to a mixed integer linear program

l Bilevel problems with combinatorial variables at 
upper level and linear program at lower level

l Reducible to a mixed integer linear program

l Bilevel problems with combinatorial variables at both 
levels

l Very hard to solve

l Bilevel problems with similar objectives at both levels
l Reduces to minmax or minmin (min) problems
l Ideas of duality can be utilized

27

Why Use Evolutionary Algorithms?
First, no implementable mathematical optimality conditions exist 

(Dempe, Dutta, Mordokhovich, 2007)
• LL problem is replaced with KKT conditions and constraint 

qualification (CQ) conditions of LL
• UL problem requires KKT of LL-KKT conditions, but handling 

LL-CQ conditions in UL-KKT becomes difficult
• Involves second-order differentials

Moreover, classical numerical optimization methods require 
various simplifying assumptions like continuity, differentiability 
and convexity

• Most real-world applications do not follow these assumptions

EA’s flexible operators, direct use of objectives, and population 
approach should help solve BO problems better

28
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Niche of Evolutionary Methods (cont.)

• At times, LL solutions are multi-modal
• Many BO problems are multi-objective

• Both level might require to find and maintain multiple 
optimal solutions

• EAs are known to be good for these scenarios
• Computationally faster methods possible through meta-

modeling etc.
• Other complexities (robustness, parallel implementation, 

fixed budget) can be handled efficiently

29

EAs for Bilevel Optimization
• Most of the EAs for bilevel optimization have been nested in 

nature
- Using one algorithm for upper level and solving the 

lower level optimization problem for every upper level 
point

- Not very interesting!
- Expensive even for small instances!
- Non-scalable!

30

Bilevel Optimization using EAs
EA at upper level and exact method at lower level
• Mathieu et al. (1994): LP for lower level and GA for upper level
• Yin (2000): Frank-Wolfe Algorithm for lower level and EA for 

upper level

EA at both upper and lower level
• Li et al. (2006): Particle Swarm Optimization at both levels
• Angelo et al. (2013): Differential Evolution at both levels
• Sinha et al. (2014): Genetic Algorithm at both levels

EA used after single-level reduction
• EA researchers have also tried replacing the lower level problems 

using KKT (Hejazi et al. (2002), Wang et al. (2008), Li et al. 
(2007))

31

Bilevel Optimization using EAs
Approximating lower level level rational response
• Sinha, Malo, Deb. (2013, 2014, 2017): Iteratively approximates lower 

level optimal response with upper level decision vector (Discussed later)

Approximating lower level optimal value function
• Sinha, Malo, Deb. (2016): Iteratively approximates lower level optimal 

function value with upper level decision vector (Discussed later)

Trust region method and Approximate KKT
• Sinha, Soun and Deb (2017)

Kriging based methods
• Sinha et al (2018), Islam et al. (2018)

32
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Can EAs be really useful for bilevel
optimization?

33

Can EAs be really useful for bilevel
optimization?

• Nested approaches are certainly not the way forward

34

Can EAs be really useful for bilevel
optimization?

• It is noteworthy that at each iteration an EA has a 
population of points

• Can these population of points be put to use to 
approximate certain mappings in bilevel?

• Exploiting the structure and properties of the 
problem is essential!

35

Approach 1 
(Lower Level Reaction Set Mapping)

Step 0: Solve the lower level problem completely for the initial population
Step 1: Use the population members to approximate the Ψ-mapping locally
Step 2: Solve the reduced single level problem for a few iterations
Step 3: Update the local Ψ-mappings and continue
Step 4: If termination criteria not met, go to Step 2

36
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Actual Ψ-mapping
Upper-level decision space 

Lower-level decision space 

Ψ(a)

a
b

Ψ(b)

c

Ψ(c)

d

Ψ(d)

37

Approximate Ψ-mapping
Upper-level decision space 

Lower-level decision space 

Ψ(a)

a
b

Ψ(b)

c

Ψ(c)

d

Ψ(d)

38

Upper-level decision space 

Lower-level decision space 

Ψ(a)

a
b

Ψ(b)

c

Ψ(c)

d

Ψ(d)

e

For new upper level point ‘e’, we need not solve the lower level problem, as an approximate estimate is available

Using approximate Ψ-mapping

39

Approximation Choice

• Tried different strategies for localized approximation, like,
• Linear Approximation
• Piecewise linear approximation
• Quadratic approximation

• Results were favorable and similar with piecewise-linear as 
well as quadratic approximation

• Decided to use quadratic approximation because of its 
simplicity

• More complex techniques like neural networks are an 
obvious extension but require large number of points

40
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Set-valued Ψ becomes problematic

Upper-level decision space 

Lower-level decision space 

Ψ(d)

d
b

Ψ(b)

c

Ψ(c)

Dual challenge: 1. Finding the set and 2. Approximating the set

Ψ(a)

a

41

Approach 2 
(Optimal Value Function Mapping)

Step 0: Solve the lower level problem completely for the initial population
Step 1: Use the population members to approximate the φ-mapping locally
Step 2: Solve the reduced single level problem for a few iterations
Step 3: Update the local φ-mappings and continue
Step 4: If termination criteria not met, go to Step 2

42

Issues

• The approximate φ-mapping makes the region highly constrained
• With errors in estimation of φ-mapping the reduced problem might become 

infeasible

43

Approximation of Φ-mapping through 
Kriging

Kriging provides
both mean and
standard deviation

+

Addition of the standard
deviation term ensures
feasibility of the auxiliary
problem

Sinha et al. (2018)
Best paper award at 
WCCI 2018

44
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Using Approximate KKT Conditions

• KKT conditions are hard to satisfy because of strict equality 
conditions

• It is possible to relax the KKT conditions using approximate 
KKT conditions (Dutta 2013)

• Bilvel problems can be replaced with approximate KKT 
conditions

45

Next Part by K. Deb
https://www.coin-lab.org
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Outline
Ø Bilevel Optimization: An Introduction

Ø Genesis

Ø Solution Methodologies (Ψ and Φ mappings)

Ø Test Problem Construction

Ø Results

Ø Multi-objective Bilevel Optimization

Ø Applications
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Test Problems

• Given that a convergence proof is difficult, we 
can only use test problems to justify whether an 
an algorithm works or not!

• First, we begin with some simple test problems

48
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8-Problem Test Suite (TP1-TP8)

2-var UL
2-var LL

2-var UL
2-var LL

49

Test Problems

2-var UL
2-var LL

2-var UL
3-var LL

50

Test Problems

2-var UL
2-var LL

1-var UL
2-var LL

51

Test Problems

2-var UL
2-var LL

2-var UL
2-var LL

52
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Results on TPs

Sinha et al. (2016)

53

Results on TPs (Cont.)

Sinha et al. (2016)

In general, 𝜑-Mapping approach is better

Approach 2: 𝜑 –Mapping (Approach 2)
Approach 1: Ψ- Mapping (Approach 1)

54

Comparison with other approaches

WJL – Wang et al. (2005), WLD – Wang et al. (2011)

21 runsApproach 2: 𝜑 –Mapping (Approach 2)
Approach 1: Ψ- Mapping (Approach 1)

In general, 𝜑-Mapping approach is better

55

Modified Test Problems
(m-TP1 to m-TP8)

• Modification leads to multiple lower level optimal 
solutions for each upper level decision vector

• May cause Ψ-Mapping to be difficult
• Multiple 𝑦# and 𝑦$ variables to be mapped to

General Structure (𝑥 and 𝑦 are vectors):

𝑦! and 𝑦" are LL variables, in addition to 𝑦

56
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Results (Modified Test Problems)

Upper Level Function
Evaluations

Lower Level Function
Evaluations Both Methods Fail

21 runs

Only 𝜑-Mapping works! 
A single 𝑦∗ is enough

Optimal 𝑓 𝑖s modeled Optimal 𝑦 𝑖s modeled

57

Bilevel Test Problem Construction:
A Systematic Approach

• Test problems with controllable difficulties are often 
required to evaluate evolutionary algorithms

• Controllable and segregated difficulties help to 
identify what aspects of the problem, the algorithm is 
unable to handle

58

Requirements
• Controllable difficulty in convergence at upper and lower levels
• Controllable difficulty caused by interaction of two levels
• Multiple global solutions at the lower level for any given set of upper 

level variables
• Clear identification of relationships between lower level optimal 

solutions and upper level variables
• Scalability to any number of decision variables at upper and lower 

levels
• Constraints (preferably scalable) at upper and lower levels
• Possibility to have conflict or cooperation at the two levels
• The optimal solution of bilevel test problem can be easily obtained

59

The objectives and variables on both levels are 
decomposed as follows:

Test Problem Framework

(Sinha, Malo and Deb, 2014)

- vectors

60
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Bilevel Test Problems

Table 1: Overview of test-problem framework components
Panel A: Decomposition of decision variables

Upper-level variables Lower-level variables
Vector Purpose Vector Purpose
xu1 Complexity on upper-level xl1 Complexity on lower-level
xu2 Interaction with lower-level xl2 Interaction with upper-level

Panel B: Decomposition of objective functions
Upper-level objective function Lower-level objective function

Component Purpose Component Purpose
F1(xu1) Difficulty in convergence f1(xu1,xu2) Functional dependence
F2(xl1) Conflict / co-operation f2(xl1) Difficulty in convergence

F3(xu2,xl2) Difficulty in interaction f3(xu2,xl2) Difficulty in interaction

Properties for inducing difficulties:

1. Controlled difficulty in convergence at upper and lower levels.

2. Controlled difficulty caused by interaction of the two levels.

3. Multiple global solutions at the lower level for a given set of upper level variables.

4. Possibility to have either conflict or cooperation between the two levels.

5. Scalability to any number of decision variables at upper and lower levels.

6. Constraints (preferably scalable) at upper and lower levels.

Next, we provide the bilevel test problem construction procedure, which is able to induce
most of the difficulties suggested above.

3.1 Objective functions in the test-problem framework

To create a tractable framework for test-problem construction, we split the upper and lower
level functions into three components. Each of the components is specialized for induction
of certain kinds of difficulties into the bilevel problem. The functions are determined based
on the required complexities at upper and lower levels independently, and also by the required
complexities because of the interaction of the two levels. We write a generic bilevel test problem
as follows:

F (xu,xl) = F1(xu1) + F2(xl1) + F3(xu2,xl2)
f(xu,xl) = f1(xu1,xu2) + f2(xl1) + f3(xu2,xl2)
where

xu = (xu1,xu2) and xl = (xl1,xl2)

(3)

In the above equations, each of the levels contains three terms. A summary on the roles
of different terms is provided in Table 1. The upper level and lower level variables have been
broken into two smaller vectors (see Panel A in Table 1). The vectors xu1 and xl1 are used to
induce complexities at the upper and lower levels independently. The vectors xu2 and xl2 are
responsible to induce complexities because of interaction. In a similar fashion, we decompose
the upper and lower level functions such that each of the components is specialized for a certain
purpose only (see Panel B in Table 1). At the upper level, the term F1(xu1) is responsible

Evolutionary Computation Volume x, Number x 5

Roles of Variables

61

Controlling Difficulty for Convergence
Ø Convergence difficulties at each level
Ø Dedicated components:  F1 (Upper) and f2 (Lower)
Ø Example:

Multi-modal

Quadratic

Constant in LL 

62

Controlling Difficulty in Interactions

Ø Interaction between variables xu2 and xl2 can be chosen 
Ø Dedicated components: F3 and f3

Ø Example: 

C

C

63

Difficulty due to Conflict/Co-operation

Ø Dedicated components: F2 and f2 or F3 and f3 may be 
used to induce conflict or cooperation

Ø Examples:
§ Cooperative interaction = Improvement in lower-level improves upper-

level (e.g. F2 = f2) 
§ Conflicting interaction = Improvement in lower-level worsens upper-level 

(e.g. F2 = -f2)
§ Mixed interaction is also possible

64
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Controlled Multimodality

Ø Obtain multiple lower-level optima for every upper level 
solution:
§ Component used: f2

Ø Example: Multimodality at lower-level

Induces multiple solutions: 
x1𝑙1 = x2𝑙1

Gives best UL solution: 
x1
𝑙1 = x2

𝑙1=0

C

C

I

I

Scales LL
values

65

Difficulty due to Constraints
Constraints are included at both levels with one or more of the 
following properties:

Ø Constraints exist, but are inactive at the optimum
Ø A subset of constraints active at the optimum
Ø Upper level constraints are functions of only upper level variables, 

and lower level constraints are functions of only lower level variables
Ø Upper level constraints are functions of upper as well as lower level 

variables, and lower level constraints are also functions of upper as 
well as lower level variables

Ø Lower level constraints lead to multiple global solutions at the lower 
level

Ø Constraints are scalable at both levels
Ø Any other complexities

66

A. Sinha, P. Malo and K. Deb

can be made, whether it is useful to solve the lower level optimization problem at all for a given
xu.

The upper level constraint subsets, Gb depends on xl, and Gc depends on xu and xl. The
values from these constraints are meaningful only when the lower level vector is an optimal
solution to the lower level optimization problem. Based on the various constraints which may
be functions of xu, or xl or both, a bilevel problem introduces different kinds of difficulties in
the optimization task. In this paper, we aim to construct such kinds of constrained bilevel test
problems which incorporate some of these complexities. We have proposed four constrained
bilevel problems, each of which has at least one or more of the following properties,

1. Constraints exist, but are not active at the optimum

2. A subset of constraints, or all the constraints are active at the optimum

3. Upper level constraints are functions of only upper level variables, and lower level con-
straints are functions of only lower level variables

4. Upper level constraints are functions of upper as well as lower level variables, and lower
level constraints are also functions of upper as well as lower level variables

5. Lower level constraints lead to multiple global solutions at the lower level

6. Constraints are scalable at both levels

While describing the test problems in the next section, we discuss the construction proce-
dure for the individual constrained test problems.

4 SMD test problems

By adhering to the design principles introduced in the previous section, we now propose a set of
twelve problems which we call as the SMD test problems. Each problem represents a different
difficulty level in terms of convergence at the two levels, complexity of interaction between two
levels and multi-modalities at each of the levels. The first eight problems are unconstrained and
the remaining four are constrained.

4.1 SMD1

This is a simple test problem where the lower level problem is a convex optimization task, and
the upper level is convex with respect to upper level variables and optimal lower level variables.
The two levels cooperate with each other.

F1 =
∑p

i=1(x
i
u1)

2

F2 =
∑q

i=1(x
i
l1)

2

F3 =
∑r

i=1(x
i
u2)

2 +
∑r

i=1(x
i
u2 − tanxi

l2)
2

f1 =
∑p

i=1(x
i
u1)

2

f2 =
∑q

i=1(x
i
l1)

2

f3 =
∑r

i=1(x
i
u2 − tanxi

l2)
2

(12)
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Figure 3: Upper and lower level function contours for a four-variable SMD1 test problem.

The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ (−π

2 , π
2 ), ∀ i ∈ {1, 2, . . . , r}

(13)

Relationship between upper level variables and lower level optimal variables is given as follows,

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , p}

xi
l2 = tan−1 xi

u2, ∀ i ∈ {1, 2, . . . , r} (14)

The values of the variables at the optima are xu = 0 and xl is obtained by the relationship given
above. Both the upper and lower level functions are equal to zero at the optima.

Figure 3 shows the contours of the upper and lower level functions with respect to the
upper and lower level variables for a four-variable test problem. The problem has two upper
level variables and two lower level variables, such that the dimensions of xu1,xu2,xl1 and xu2

are all one. Sub-figure P shows the upper level function contours with respect to the upper
level variables, assuming that the lower level variables are at the optima. Fixing the upper level
variables (xu1,xu2) at five different locations, i.e. (2, 2), (−2, 2), (2,−2), (−2,−2) and (0, 0),
the lower level function contours are shown with respect to the lower level variables. This shows
that the contours of the lower level optimization problem may be different for different upper
level vectors.

Figure 4 shows the contours of the upper level function with respect to the upper and lower
level variables. Sub-figure P once again shows the upper level function contours with respect
to the upper level variables. However, sub-figures Q, R, S, T and V now represent the upper
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Figure 4: Upper level function contours for a four-variable SMD1 test problem.

level function contours at different (xu1,xu2), i.e. (2, 2), (−2, 2), (2,−2), (−2,−2) and (0, 0).
From sub-figures Q, R, S, T and V, we observe that if the lower level variables move away from
its optimal location, the upper level function value deteriorates. This means that the upper level
function and the lower level functions are cooperative.

4.2 SMD2

This test problem is similar to the SDM1 test problem, however there is a conflict between the
upper level and lower level optimization task. The lower level optimization problem is once
again a convex optimization task and the upper level optimization is convex with respect to
upper level variables and optimal lower level variables. Since, the two levels are conflicting,
an inaccurate lower level optimum may lead to upper level function value better than the true
optimum for the bilevel problem.
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(15)

The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−5, 1], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ (0, e], ∀ i ∈ {1, 2, . . . , r}

(16)
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Figure 4: Upper level function contours for a four-variable SMD1 test problem.

level function contours at different (xu1,xu2), i.e. (2, 2), (−2, 2), (2,−2), (−2,−2) and (0, 0).
From sub-figures Q, R, S, T and V, we observe that if the lower level variables move away from
its optimal location, the upper level function value deteriorates. This means that the upper level
function and the lower level functions are cooperative.

4.2 SMD2

This test problem is similar to the SDM1 test problem, however there is a conflict between the
upper level and lower level optimization task. The lower level optimization problem is once
again a convex optimization task and the upper level optimization is convex with respect to
upper level variables and optimal lower level variables. Since, the two levels are conflicting,
an inaccurate lower level optimum may lead to upper level function value better than the true
optimum for the bilevel problem.
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The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−5, 1], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ (0, e], ∀ i ∈ {1, 2, . . . , r}

(16)
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Figure 6: Upper level function contours for a four-variable SMD2 test problem.

level is convex with respect to upper level variables and optimal lower level variables.
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2 − tanxi
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(18)

The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ (−π

2 , π
2 ), ∀ i ∈ {1, 2, . . . , r}

(19)

Relationship between upper level variables and lower level optimal variables is given as follows,

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q}

xi
l2 = tan−1(xi

u2)
2, ∀ i ∈ {1, 2, . . . , r} (20)

The values of the variables at the optima are xu = 0 and xl is obtained by the relationship given
above. Both the upper and lower level functions are equal to zero at the optima. Rastrigin’s
function used in f2 has multiple local optima around the global optimum, which introduces
convergence difficulties at the lower level.

Sub-figure P in Figure 7 shows the contours of the upper level function with respect to the
upper level variables assuming the lower level variables to be optimal at each xu. Sub-figures Q,
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Figure 6: Upper level function contours for a four-variable SMD2 test problem.

level is convex with respect to upper level variables and optimal lower level variables.
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The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ (−π

2 , π
2 ), ∀ i ∈ {1, 2, . . . , r}

(19)

Relationship between upper level variables and lower level optimal variables is given as follows,

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q}

xi
l2 = tan−1(xi

u2)
2, ∀ i ∈ {1, 2, . . . , r} (20)

The values of the variables at the optima are xu = 0 and xl is obtained by the relationship given
above. Both the upper and lower level functions are equal to zero at the optima. Rastrigin’s
function used in f2 has multiple local optima around the global optimum, which introduces
convergence difficulties at the lower level.

Sub-figure P in Figure 7 shows the contours of the upper level function with respect to the
upper level variables assuming the lower level variables to be optimal at each xu. Sub-figures Q,
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is convex with respect to upper level variables and optimal lower level variables.
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The range of variables is as follows,

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}

xi
u2 ∈ [−1, 1], ∀ i ∈ {1, 2, . . . , r}

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q}

xi
l2 ∈ [0, e], ∀ i ∈ {1, 2, . . . , r}

(22)

Relationship between upper level variables and lower level optimal variables is given as follows,

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q}

xi
l2 = log−1 |xi

u2|− 1, ∀ i ∈ {1, 2, . . . , r} (23)

The values of the variables at the optima are xu = 0 and xl is obtained by the relationship given
above. Both the upper and lower level functions are equal to zero at the optima.

Figure 8 represents the same information as in Figure 7 for a four-variable bilevel prob-
lem. However, this problem involves conflict between the two levels, which make the problem
significantly more difficult than the previous test problem. For this test problem if a lower level
optimization problem is stuck at a local optimum for a particular xu, then it will end up having
a better objective function value at the upper level, than what it will attain at the true global
lower level optimum. Therefore, even if another lower lower level optimization problem is suc-
cessfully solved in the vicinity of xu, the previous inaccurate solution will dominate the new
solution at the upper level. This problem can be handled only by those methods which are able
to efficiently handle lower level multi-modality without getting stuck in a local basin.

4.5 SMD5

In this test problem, there is a conflict between the two levels. The difficulty introduced is in
terms of multi-modality and convergence at the lower level. The lower level problem contains
the Rosenbrock’s (banana) function such that the global optimum lies in a long, narrow, flat
parabolic valley. The upper level is convex with respect to upper level variables and optimal
lower level variables.
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above. Both the upper and lower level functions are equal to zero at the optima.

Figure 8 represents the same information as in Figure 7 for a four-variable bilevel prob-
lem. However, this problem involves conflict between the two levels, which make the problem
significantly more difficult than the previous test problem. For this test problem if a lower level
optimization problem is stuck at a local optimum for a particular xu, then it will end up having
a better objective function value at the upper level, than what it will attain at the true global
lower level optimum. Therefore, even if another lower lower level optimization problem is suc-
cessfully solved in the vicinity of xu, the previous inaccurate solution will dominate the new
solution at the upper level. This problem can be handled only by those methods which are able
to efficiently handle lower level multi-modality without getting stuck in a local basin.

4.5 SMD5

In this test problem, there is a conflict between the two levels. The difficulty introduced is in
terms of multi-modality and convergence at the lower level. The lower level problem contains
the Rosenbrock’s (banana) function such that the global optimum lies in a long, narrow, flat
parabolic valley. The upper level is convex with respect to upper level variables and optimal
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Problem 4
(SMD 4)
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Results Using BLEAQ
u Following are the results for 10 variable instances of the test problems 

(Sinha et al., 2014) using BLEAQ (Ψ-Mapping)
u Comparison performed against nested evolutionary approach

Number of Runs: 21
Savings: Ratio of FE required by nested approach against BLEAQ

For other problems as well, the improvement is more than an order of magnitude
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Figure 12: Quadratic relationship convergence.

also provides the median number of lower level calls, and the average number of
lower level function evaluations required per lower level call. Table 10 compares
the mean function evaluations at the upper and lower levels required by BLEAQ
against that required by WJL. WJl requires close to an order of magnitude times
more function evaluations at the lower level, and two orders of magnitude times
more function evaluations at the upper level, for most of the test problems. This
clearly demonstrates the e�ciency gain obtained using the BLEAQ approach.
It also suggests that the mathematical insights used along with the evolutionary
principles in the BLEAQ approach is helpful in converging quickly towards the
bilevel optimal solution.

Table 8: Function evaluations (FE) for the upper level (UL) and the lower level
(LL) from 11 runs of the proposed BLEAQ.

Pr. No. Best Func. Evals. Median Func. Evals. Worst Func. Evals.

LL UL LL UL LL UL

TP1 14115 718 15041 780 24658 1348

TP2 12524 1430 14520 1434 16298 2586

TP3 4240 330 4480 362 6720 518

TP4 14580 234 15300 276 15480 344

TP5 10150 482 15700 1302 15936 1564

TP6 14667 230 17529 284 21875 356

TP7 234622 3224 267784 4040 296011 5042

TP8 10796 1288 12300 1446 18086 2080
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Convergence Plot for SMD1

Table 7: Accuracy for the upper and lower levels, and the lower level calls from
11 runs of the proposed BLEAQ.

Pr. No. Median Median Median

UL Accuracy LL Accuracy LL Calls LL Evals
LL Calls

SDM1 0.006828 0.003521 528 202.47
SDM2 0.003262 0.002745 522 176.09
SDM3 0.009122 0.004364 603 225.91
SDM4 0.006957 0.002716 574 146.39
SDM5 0.004103 0.003773 513 243.68
SDM6 0.000000 0.000000 167 50.24
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Figure 10: Convergence plot for SMD1.
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Figure 11: Convergence plot for SMD2.

approximations generated at various generations. It can be observed that the
approximations in the vicinity of the true bilevel optimum improves with in-
creasing number of generations.

8.3 Results for constrained test problems

In this sub-section, we provide results for 8 standard constrained test problems
chosen from the literature. We compare our results against the approach pro-
posed by Wang et al. (2005). The reason for the choice of this approach as a
benchmark is that the approach was successful in solving all the chosen con-
strained test problems. The results obtained using the BLEAQ and WJL [25]
approach has been provided in Tables 8, 9 and 10. Table 8 provides the mini-
mum, median and maximum function evaluations required to solve the chosen
problems using the BLEAQ approach. Table 9 provides the accuracy obtained
at both the levels, in terms of absolute di↵erence from the best known solution
to a particular test problem. The numbers in the brackets provide the best
solution known from the literature for each of the test problems. The table
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BLEAQ vs BLEAQ2

• BLEAQ (Ψ-mapping) works well on problems 
with single optimal solution at the lower level, 
but fails in the presence of multiple solutions.

• BLEAQ relies only on the approximation of the 
ᴪ-mapping

• BLEAQ2 (combined (Ψ-𝜑 Mappings) relies on 
the approximation of both ᴪ and 𝜑-mappings 
and is able to handle multiple lower level 
optimal solutions as well.
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Advanced Topics of EBO

• Multi-objective EBO
• At least one level has multiple objectives

• MEBO with decision-making 
• Robust EBO

• Uncertainty in at least one level
• EBO applications

• Parameter tuning of algorithms
• Practical applications

75

Advanced EBO Ideas (cont.)

• Highly constrained EBO
• Mixed-integer EBO
• EBO with a fixed budget at LL and UL
• Error propagation from lower level to upper 

level
• Theoretical convergence studies

• Evolutionary Multi-Level Optimization (EMLO)
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Multi-objective EBO

• Bilevel problems may involve optimization of multiple objectives at one 
or both levels

• Dempe et al. (2006) developed KKT conditions
• Little work has been done in the direction of multi-objective bilevel

algorithms (Eichfelder (2007), Deb and Sinha (2010))
• A general multi-objective bilevel problem may be formulated as 

follows:
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Optimistic Pareto Front

Obj 1

O
bj

2

Leader• Two levels of decision making

• Multiple objectives involved at
both the levels

Leader
Objectives: Max Objective 1

Max Objective 2

Followers

Objectives: Max objective 1

Max objective 2

Follower

ob
j2

obj 1

ob
j2

obj 1

ob
j2

obj 1
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Pessimistic Pareto Front

Obj 1

O
bj

2

Leader• Two levels of decision making

• Multiple objectives involved at
both the levels

Leader
Objectives: Max Objective 1

Max Objective 2

Followers

Objectives: Max objective 1

Max objective 2

Follower

ob
j2

obj 1

ob
j2

obj 1
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obj 1
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Obj 1

O
bj

2

Leader• Two levels of decision making

• Multiple objectives involved at
both the levels

Leader
Objectives: Max Objective 1

Max Objective 2

Followers

Objectives: Max objective 1

Max objective 2

Preference Structure Known

Follower

Lower level problem becomes single objective

ob
j2

obj 1

ob
j2

obj 1

ob
j2

obj 1

80



Congress on Evolutionary Computation (CEC) 
Conference

5 June 2017

Copyright: Kalyanmoy Deb and Ankur Sinha 21

Obj 1

O
bj

2

Leader• Two levels of decision making

• Multiple objectives involved at
both the levels

Leader
Objectives: Max Objective 1

Max Objective 2

Followers

Objectives: Max objective 1

Max objective 2

Uncertainty from Unknown 
Preference Structure

Follower

There is uncertainty around the frontier

ob
j2

obj 1

ob
j2

obj 1

ob
j2

obj 1

(Sinha et al., 2015)
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Challenges

• Such problems can be very difficult to handle
• Optimistic formulation makes little sense in these 

problems
• Considering a known preference structure (and 

accounting for uncertainties) might be a realistic and 
viable approach
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Test problem 1 and Results

x = (xu, xl)    xu = (x)    xl = (y)

• Lower level Pareto front depends on x
• Upper level Pareto-optimal front lies on 

constraint G1

• Maximum two solutions from each x
• Not all x in upper Pareto-optimal front

• Solutions possible even below the upper 
level Pareto-optimal front, but they are 
infeasible

(Eichfelder, 2007)
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BLEMO 
(Deb and Sinha, ECJ 2010)

Both levels use NSGA-II iteratively

Population structure
Lower and upper level 
NSGA-II
Archiving
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x

y2 y1

Iter = 2 Iter = 3

(Deb and Sinha, 2010)
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A Business DM Problem
CEO: Leader and Dept Head: follower

Weighted sum 
solution (Zhang et 
al, 2007) is an 
extreme solution

(Zhang et al, 2007)
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Mine Taxation Strategy Problem from 
Finland

Kuusamo has natural beauty and a famous tourist resort
o Contains large amounts of gold deposits

Dragon Mining is interested in mining in the region
Pros:

o Generate a large number of jobs
o Monetary gains

Cons:
o Run-off water from mining will pollute Kitkajoki river
o Ore contains Uranium, mining may blemish  reputation 
o Open pit mines located next to Ruka slopes will be a turn-off for 

skiing and hiking enthusiasts
o Permanent damage to the nature

87

Leader’s profit
En

vi
ro

nm
en

ta
l 

D
am

ag
e

Region
Preferreda=1

a=2

a=3

a=4

−600

−500

−400

−300

−200

−100

 0  1000  1500  2000  2500  3000

 0

 3500  4000 500
−1000

−900

−800

−700

Fig. 4. Approximate Pareto-frontier for the extended model taking
all technologies into account.

a=2

a=3

a=4

a=1

−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

 0  500  1000  1500  2000  2500  3000

 0

 3500  4000

Fig. 5. Approximate Pareto-frontiers for the individual technologies
considered one at a time.

1 2 3 4 5
8

10

12

14

16

18

20

22

Time Period

Q
u

a
n

ti
ty

 o
f 

M
e

ta
l 
P

ro
d

u
c
e

d

362.3 <= D <= 399.8

2650.0 <= R <= 2776.8

a=2

Fig. 6. Approximate Pareto-frontier for the extended model taking all
technologies into account.

1 2 3 4 5
28

30

32

34

36

38

40

42

Time Period

T
a

x
 p

e
r 

u
n

it
 o

f 
m

e
ta

l

2650.0 <= R <= 2776.8

362.3 <= D <= 399.8

a=2

Fig. 7. Approximate Pareto-frontiers for the individual technologies
considered one at a time.

VIII. ACKNOWLEDGMENTS

The authors wish to thank the Academy of Finland and
the Foundation of the Helsinki School of Economics for
supporting this study.

REFERENCES

[1] E. Aiyoshi and K. Shimizu. Hierarchical decentralized systems and
its new solution by a barrier method. IEEE Transactions on Systems,

Man, and Cybernetics, 11:444–449, 1981.
[2] J. Bard. Practical Bilevel Optimization: Algorithms and Applications.

The Netherlands: Kluwer, 1998.
[3] J. Bard and J. Falk. An explicit solution to the multi-level programming

problem. Computers and Operations Research, 9:77–100, 1982.
[4] L. Bianco, M. Caramia, and S. Giordani. A bilevel flow model for

hazmat transportation network design. Transportation Research Part

C: Emerging technologies, 17(2):175–196, 2009.
[5] B. Colson, P. Marcotte, and G. Savard. An overview of bilevel

optimization. Annals of Operational Research, 153:235–256, 2007.
[6] R. F. Conrad. Output taxes and the quantity-quality trade-off in the

mining firm. Resources and Energy, 3(3):207 – 221, 1981.

[7] R. F. Conrad and B. Hool. Resource taxation with heterogeneous
quality and endogenous reserves. Journal of Public Economics,
16(1):17 – 33, 1981.

[8] K. Deb and A. Sinha. An efficient and accurate solution methodology
for bilevel multi-objective programming problems using a hybrid
evolutionary-local-search algorithm. Evolutionary Computation Jour-

nal, 18(3):403–449, 2010.
[9] S. Dempe, J. Dutta, and S. Lohse. Optimality conditions for bilevel

programming problems. Optimization, 55(5âĂŞ6):505âĂŞ–524, 2006.
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Taxation strategies in preferred 
region.

Preferred strategy: ~75% profit to the government,          
~25% to company: Upper level has more decision-making 
power

a denotes
technologies
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EMBO Test Problem 
Construction Principle

Difficulties 
identified
Bottom-up 
approach
Five-step 
procedure
Conflict between 
lower and upper 
levels
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EMBO with Decision-Making

• Preference in LL Pareto 
front may not lead to UL 
Pareto solutions

• Converse is not true
• Unequal importance 

among UL and LL DMs
• Raises interesting 

hierarchy among UL and 
LL decision-makers
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Importance of LL Decision-Maker
• LL Decision-maker can make a decision on her/his own 

• M-BLEAQ (Sinha, Malo, Deb, ECJ 2014)

Without LL 
Importance

Two Difference Problems:

Without LL 
Importance
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Variation in Expectation
(Sinha, Malo and 
Deb, 2016)• Optimistic PO front: No power on LL DM

• Pessimistic PO front: Complete power on LL DM
• Leader optimizes worst outcome from LL

• The difference between 
optimistic and pessimistic fronts 
provide DM ideas at UL
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Ø Uncertainty is, in most cases, inevitable in practical applications. 
Ø Sources of uncertainties:

Ø Imperfect implementation, changing environment, etc.

Ø In the context of bilevel optimization problems
Ø Uncertainty in design variables and parameters
Ø Uncertainty in objective and constraint function computations (Noise)
Ø Uncertainty in decision making information
Ø Uncertainty in control of decision-making preferences between two levels 

Ø Uncertainties in the context of bilevel optimization have NOT been formally
studied

Ø Clear mathematical definitions and formulations of robust/reliable bilevel
solutions do NOT exist

Bilevel Optimization with Uncertainties

94

Robust Bilevel Optimization
• Both upper and lower-level variables are uncertain within 

their neighborhoods: Type-I Robustness:

Note that even if ∆y = 0, LL is uncertain due to ∆x perturbation, 
stays as parameter uncertainties at LL

(Lu, Deb and Sinha, 2018)
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Bilevel Optimization with 
Uncertainties: Big Picture
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Global & Sensitive

Local & Robust

Robust Bi-Level Optimization  

Lower-level variables are uncertain

f(y)

y
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Robustness-based (Cont.)

Feasible Region

(0.6, 1.2)

98

Type-II Robustness
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IOWA Raccoon Watershed

100



Congress on Evolutionary Computation (CEC) 
Conference

5 June 2017

Copyright: Kalyanmoy Deb and Ankur Sinha 26

IOWA Raccoon Watershed Results 
(GECCO-2017)
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Constrained Bilevel Optimization 

Ø Constraints exist in almost every
practical engineering design
problem, and play a critical role in
deciding the optimal solution.

Ø The deterministic optimum usually
lies on a constraint surface or at the
intersection of constraint surfaces.
Ø Fail to remain feasible in many occasions.

Ø Many studies aim to handle this
issue in single level optimization,
none yet in the domain of bilevel
optimization.

(Lu, Deb and Sinha, 2018)
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Reliability in Bilevel Problem

Ø Reliable bilevel solution definition:

Ø P () signify the joint probability of the solution (x, y) being feasible for all 
constraints.  

Ø The effect of uncertainties in lower, upper or both levels are different
because of the unequal importance of each level.

Ø Test problems proposed for the purpose of concept demonstration, NOT for 
algorithm performance assessment. 
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A Scenario
Ø Constraint functions at both levels

Feasible Region

Lower Level

Feasible Region

Upper Level
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Tri-Level Optimization

• Three levels of optimization problems interlinked by two 
consecutive levels

• Min 𝓕(x,y,z)
• Min F(y,z), given x

• Min f(z), given x and y
• Constraints are expected at every level
• To make an application realistic, we need to replace lowest 

level heuristic/rule based
• Not much work available, but all issues discussed before 

are applicable here too
• BLEAQ can be extended
• Currently pursuing
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A Case Study: Supply Chain Management
Strategic Level
Transport Cost

Operational Level
Transport Cost

Yearly 

Weekly

• UL: Plant to destination 
layput

• LL: At each plant, carrier 
companies are pre-
determined

• Allocation of goods to carrier 
is LL task
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State-Level and Zip-Level Results
44,000 ZIP Codes

Advantage of Using Bilevel Optimization Over 
Single-Level Optimization:
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Uncertainty in Demand
Seasonal demand of goods assumed with uncertainty
Robust bi-level optimization performed
Robust solution is able to handle uncertainties better than 
the deterministic solution
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Bi-Objective at Operational Level

Operational level at each plant considers two objectives:
Transport cost
Service quality obtained carrier companies:

Produces a PO front at each plant
Strategic level chooses the best overall Transport Cost

At one of the plants

Trade-off: 

Average service quality over all plants
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Tri-Level Consideration

Advantage of Using Tri-level Optimization:

Yearly, Plant to 
destination layout
Quarterly, Choice of 
Carriers

Daily, Allocation of 
goods to trucks

Most benefit 

Finer optimization
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Bilevel Application in AI/ML
Neural Architecture Search (NAS):

111

Conclusions
Bilevel problems are plenty in practice, but are avoided 
due to lack of efficient methods
Bilevel optimization received lukewarm interest by EA 
researchers so far
Population approach of EA makes tremendous potential
Nested nature of the problem makes the task 
computationally expensive
Meta-modeling based EBO and its extensions show 
promise
Extension to Tri-Level optimization is needed
Application to industry would be beneficial
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