Guaranteed Performance State-
Feedback Gain-Scheduling Control
With Uncertain Scheduling Parameters

Ali Khudhair Al-Jiboory
Mechanical Engineering,
Michigan State University,
East Lansing, MI 48824
e-mail: aljiboor@egr.msu.edu

Guoming G. Zhu1
Mechanical Engineering,
Michigan State University,
East Lansing, MI 48824
e-mail: zhug@egr.msu.edu

Jongeun Choi
Mechanical Engineering,
Michigan State University,
East Lansing, MI 48824
e-mail: jchoi@egr.msu.edu

State-feedback gain-scheduling controller synthesis with guaranteed performance is considered in this brief. Practical assumption has been considered in the sense that scheduling parameters are assumed to be uncertain. The contribution of this paper is the characterization of the control synthesis that parameterized linear matrix inequalities (PLMIs) to synthesize robust gain-scheduling controllers. Additive uncertainty model has been used to model measurement noise of the scheduling parameters. The resulting controllers not only ensure robustness against scheduling parameters uncertainties but also guarantee closed-loop performance in terms of \mathcal{H}_2 and \mathcal{H}_∞ performances as well. Numerical examples and simulations are presented to illustrate the effectiveness of the synthesized controller. Compared to other control design methods from literature, the synthesized controllers achieve less conservative results as measurement noise increases.

[DOI: 10.1115/1.4031727]

1 Introduction

In the vast majority of the existing works in gain-scheduling control community, it is implicitly assumed that exact measurement of scheduling parameters is available in real-time. Since uncertainties in scheduling parameters are unavoidable, perfect measurement is impossible to obtain in practical control applications. Several articles in literature dealt with the synthesis of stabilizing controllers for linear parameter varying (LPV) systems but only a few techniques have been reported to cope with uncertainties associated with scheduling parameters. A gain-scheduling design method proposed in Ref. [1] handle uncertainties in scheduling parameters. However, their method cannot cope with additive errors since the uncertainty was assumed to be proportional to the true scheduling parameters. Moreover, only the dynamic matrix was assumed to be affected by the time-varying parameters. Then, quadratic stability approach was used to address this control problem in Ref. [2]. However, it is well-known that such approach is extremely conservative and certain systems are not even quadratically stabilizable [3]. As a remedy to quadratic stability approach, parameter-dependent Lyapunov approach is used in Refs. [4, 5]. However, some of the system matrices are restricted to be constant in Ref. [5] for controller synthesis. In Ref. [6], new approach is developed to handle uncertainties in scheduling parameters for filter design problem. Similar approach is used in Ref. [7] to synthesize gain-scheduling control via two stages design method; where in the first stage, stabilizing (state-feedback) controller is designed, and then the resulting controller is used in the second stage to synthesize output-feedback controller. PLMIs synthesis conditions for \mathcal{H}_2 dynamic output-feedback controller have been developed in Ref. [8].

The main contribution of this paper is the characterization of the control synthesis PLMIs to synthesize robust gain-scheduling controllers when scheduling parameters are not exact for state-feedback case. In other words, PLMIs conditions are derived to synthesize robust gain-scheduling controller with guaranteed closed-loop performance in terms of \mathcal{H}_2 and \mathcal{H}_∞ norms. Affine LPV systems are studied in this brief. Multisimplex modeling approach [9] has been utilized to model the scheduling parameters and their uncertainties. Matrix coefficient check relaxation approach [10] is used to relax the PLMIs conditions. To overcome conservativeness associated with quadratic stability approach, parameter-dependent Lyapunov function approach has been studied to assess stability and improve performance measures. Slack variable (SV) approach has been used to introduce additional optimization variables that decouple Lyapunov matrix from system matrices; thus, the controller can be synthesized independently from Lyapunov matrix. Following some notions that exist in the literature [11], line search with a scalar parameter has been used as an extra degree-of-freedom to improve controller performance. Compared to other design methods from literature, the synthesized controllers achieve very competitive results.

This paper is organized as follows: Problem formulation of the uncertain scheduling parameters is given in Sec. 2. Section 3 presents the modeling approach. Controller synthesis PLMIs conditions are given in Sec. 4. Section 5 presents numerical examples, simulations, and comparisons with other methods from literature. Finally, conclusions are given in Sec. 6.

2 Problem Formulation

Consider the following LPV system:

$$\dot{x}(t) = A(\theta(t))x(t) + B_u(\theta(t))u(t) + B_w(\theta(t))w(t)$$

$$z(t) = C(\theta(t))x(t) + D_u(\theta(t))u(t) + D_w(\theta(t))w(t)$$

where $x(t) \in \mathbb{R}^n$ is the state, $w(t) \in \mathbb{R}^r$ is the disturbance input, $z(t) \in \mathbb{R}^q$ is the controlled output with the following matrices $A(\theta(t)) \in \mathbb{R}^{n \times n}$, $B_u(\theta(t)) \in \mathbb{R}^{n \times m}$, $B_w(\theta(t)) \in \mathbb{R}^{n \times r}$, $C(\theta(t)) \in \mathbb{R}^{q \times n}$, $D_u(\theta(t)) \in \mathbb{R}^{q \times m}$, and $D_w(\theta(t)) \in \mathbb{R}^{q \times r}$. The system matrices in Eq. (1) are assumed to be affine parameter-dependent, i.e., each of these matrices can be represented by the following parametrization:

$$A(\theta(t)) = A_0 + \sum_{i=1}^{q} \theta_i(t)A_i$$

\[1\]

Contributed by the Dynamic Systems Division of ASME for publication in the Journal of Dynamic Systems, Measurement, and Control. Manuscript received December 10, 2014; final manuscript received September 20, 2015; published online October 29, 2015. Assoc. Editor: Ryozo Nagamune.

\footnote{1Corresponding author.}

\footnote{To be precise, since we are dealing with LPV systems, the \mathcal{H}_2 and \mathcal{H}_∞ performance is not well defined in the addressed problem yet. However, we use \mathcal{H}_2 and \mathcal{H}_∞ norm here with slightly abused terminology so that the reader can easily grasp our problem setting. We will postpone the strict definition of the control problem until the end of Sec. 3 since necessary definitions and transformations need to be introduced in Sec. 2.}
The scheduling parameter vector, defined as

\[\theta(t) = [\theta_1(t), \theta_2(t), \ldots, \theta_q(t)]' \]

is assumed to be in exactly measured or corrupted with noise denoted by \(\hat{\theta}(t) \), such that

\[\hat{\theta}_i(t) = (\theta_i(t) + \delta_i(t)), \quad i = 1, 2, \ldots, q \] (3)

where \(\delta_i(t) \) represents uncertainty in the scheduling parameters and \(\theta_i(t) \) is the actual value. These parameters and their uncertainties assumed to have the following known bounds:

\[-\overline{\theta}_i \leq \theta_i(t) \leq \overline{\theta}_i, \quad -\overline{\delta}_i \leq \delta_i(t) \leq \overline{\delta}_i, \quad i = 1, 2, \ldots, q \] (4)

Furthermore, these parameters have their rates of variations bounded by

\[-b_{\theta_i} \leq \dot{\theta}_i(t) \leq b_{\theta_i}, \quad -b_{\delta_i} \leq \dot{\delta}_i(t) \leq b_{\delta_i}, \quad i = 1, 2, \ldots, q \] (5)

where each scheduling parameter and the associated uncertainty have a different rate of variation. Without loss of generality, these bounds have been assumed to be symmetric.

The goal is to synthesize gain-scheduling state-feedback controller of the form

\[u(t) = K(\hat{\theta}(t))x(t) \] (6)

where \(\hat{\theta}(t) = \theta(t) + \delta(t) \) that stabilizes the closed-loop system while minimizing the \(H_\infty \) or \(H_2 \) performance costs from the disturbance input \(w(t) \) to the controlled output \(z(t) \), where

\[\hat{\theta}(t) = [\hat{\theta}_1(t), \hat{\theta}_2(t), \ldots, \hat{\theta}_q(t)], \]

\[\delta(t) = [\delta_1(t), \delta_2(t), \ldots, \delta_q(t)] \]

Furthermore, the controller should be robust against the uncertainties associated with the scheduling parameters as well. By substituting Eq. (6) in Eq. (1), we obtain the following closed-loop system:

\[\dot{x}(t) = A(t)(\theta(t))\hat{\theta}(t)x(t) + B(t)(\theta(t))w(t), \]

\[z(t) = C(t)(\theta(t))\hat{\theta}(t)x(t) + D(t)(\theta(t))w(t) \] (7)

where

\[A(t)(\theta(t)) = A(\theta(t)) + B(\theta(t))K(\hat{\theta}(t)), \]

\[C(t)(\theta(t)) = C(\theta(t)) + D(\theta(t))K(\hat{\theta}(t)) \] (8)

Some terminologies and definitions are necessary to introduce now, since it will be used in Secs. 3–5.

Definition 1. Unit-simplex [9]: a unit-simplex is defined as follows:

\[\Lambda_i = \{ \bar{z} \in \mathbb{R}^\ell : \sum_{i=1}^\ell \bar{z}_i = 1, \bar{z}_i \geq 0, i = 1, 2, \ldots, \ell \} \]

where the variable \(\bar{z}_i \) varies in the unit-simplex \(\Lambda_i \) that have \(\ell \) vertices.

Definition 2. Multisimplex [12]: a multisimplex \(\Lambda \) is the Cartesian product of a finite number of \(q \) simplexes that

\[\Lambda_{N_1} \times \Lambda_{N_2} \times \cdots \times \Lambda_{N_q} = \prod_{i=1}^q \Lambda_{N_i} \]

The dimension of the multisimplex \(\Lambda \) is defined as the index \(N = (N_1, N_2, \ldots, N_q) \) and for simplicity of notation, \(\mathbb{R}^N \) denotes for the space \(\mathbb{R}^{N_1+N_2+\cdots+N_q} \). Thus, any variable \(\bar{z} \) in the multisimplex domain \(\Lambda \) can be decomposed as \((\bar{z}_1, \bar{z}_2, \ldots, \bar{z}_q) \), and each \(\bar{z}_i \)

Note that the controller is implemented in real-time using the structure of Eq. (11) that requires only sensor measurement of \(\hat{\theta} \). Substituting for \(\theta_1 \) and \(\delta_1 \) from Eqs. (9) and (10) yields

\[F(\hat{\theta}) = F_0 + \theta_1 F_1 = F_0 + (\theta_1 + \delta_1) F_1 \] (11)

as a result, \(F(\bar{z}) \) is a parameter-dependent matrix that depends on time-varying parameters inside the multisimplex domain \(\Lambda \). Then, applying homogenization procedure that developed in Ref. [9] to obtain

\[F(\bar{z}) = \bar{z}_1 \hat{\theta}_1 F_{1,1} + \bar{z}_1 \hat{\theta}_1 F_{2,1} + \bar{z}_2 \hat{\theta}_2 F_{1,2} + \bar{z}_2 \hat{\theta}_2 F_{2,2} \] (13)
where the matrices $F_{1,1}, F_{1,2}, F_{2,1},$ and $F_{2,2}$ can be generated as

$$
F_{1,1} = F_0 + (\hat{\theta}_1 + \tilde{\delta}_1)F_1,
F_{1,2} = F_0 + (\hat{\theta}_1 - \tilde{\delta}_1)F_1,
F_{2,1} = F_0 + (-\hat{\theta}_1 + \tilde{\delta}_1)F_1,
F_{2,2} = F_0 + (-\hat{\theta}_1 - \tilde{\delta}_1)F_1
$$

(14)

This procedure can be systematically extended to handle all system matrices and optimization variables to be dependent on the multisimples parameters $\bar{x} = (x, \bar{z})$ for any number of scheduling variables $q \geq 1$. The matrices $F_{j,k}$ in Eq. (14) for $j = 1, 2$ and $k = 1, 2$ can be generated systematically as

$$
F_{j,k} = F_0 + \sum_{i=1}^{q} \left((-1)^{j+1} \frac{\partial i}{\partial x} + (-1)^{k+1} \frac{\partial j}{\partial \bar{z}} \right) K_i
$$

(15)

Remark 1. The system matrices in Eq. (1) depend only on the true scheduling parameters $\hat{\theta}_i(t)$. However, the same procedure described above could be used to convert them into multisimplex domain by imposing $\tilde{\delta}_i = 0$ in Eq. (15) to obtain $A(\bar{x}), B_u(\bar{x}), D_u(\bar{x}),$ and $D_u(\bar{x})$.

3.2 Rate of Variation Modeling

The rates of change of each parameter and uncertainty are assumed to be bounded as in Eq. (5) for all $t \geq 0$. Since each varying parameter belongs to a unit simplex, it is clear that the following relation should be satisfied:

$$
\dot{z}_i(t) + \dot{z}_j(t) = 0 \quad i = 1, 2, \ldots, q
$$

(16)

The relationship between the bounds of the rates of variations of scheduling parameters and the rates of changes of multisimples variables can be obtained using Eqs. (5) and (9) to be

$$
-b_i \frac{\partial y}{\partial \psi} \leq \dot{z}_i \leq b_i \frac{\partial y}{\partial \psi}
$$

with $\dot{z}_2 = -\dot{z}_1$ as the consequence of Eq. (16). Therefore, the transformation of the rate of variations to the simplex parameters domain is exact. The derivative of \dot{z}_i can be modeled via the same procedure using the bounds on the uncertainties $\tilde{\delta}_i$.

Since $z_i(t) \in \Lambda_i$ and $\dot{z}_i(t) \in \Lambda_i$, the time derivatives of the parameters z_i can assume values that modeled by a convex polytope Ω_i. Given the bounds b_i and b_ψ in Eq. (5), the matrices H_i (of size 2×2) can be constructed such that Ω_i is defined as

$$
\Omega_i = \left\{ \phi \in \mathbb{R}^2 : \phi = \sum_{i=1}^{2} \eta_i H_i^{(k)}, \eta_i \in \Lambda_i \right\}
$$

(17)

where $H_i^{(k)}$ represents the kth column of matrix H_i. Notice that, due to Eq. (16), the sum of the elements of each column of $H_i^{(k)}$ is zero. Therefore,

$$
\hat{\dot{z}} \in \Omega = \Omega_1 \times \Omega_2 \times \ldots \times \Omega_2
$$

(18)

At this point, we are ready to define our control problem precisely.

Problem 3. Suppose that $D_u(\hat{\theta}(t)) = 0$ in Eq. (1). For a given positive scalar ν, find a state-feedback controller in the form of Eq. (6) for any pair $(\bar{x}, \bar{z}) \in \Lambda \times \Omega$ that stabilizes the closed-loop system (7) and satisfies

$$
\sup_{(x, \bar{z}) \in \Lambda \times \Omega} E \left[\int_0^t z(t)z(t) dt \right] < \nu^2
$$

(19)

for the disturbance input $w(t)$ given by

$$
W(t) = \begin{cases} w_0 & (t = 0) \\ 0 & (t \neq 0) \end{cases}
$$

where w_0 is a random variable with $E[w_0w_0] = I$, and $E[\cdot]$ denotes the mathematical expectation.

Problem 4. For a given positive scalar γ, find a state-feedback controller in the form of Eq. (6) for any pair $(\bar{x}, \bar{z}) \in \Lambda \times \Omega$ that stabilizes the closed-loop system (7) and satisfies

$$
\sup_{(x, \bar{z}) \in \Lambda \times \Omega} \sup_{w \in \mathbb{R}^{n_w}} \|z(t)\| < \gamma
$$

(20)

The next two Lemmas characterize the H_2 and H_∞ performance indices, respectively.

Lemma 1. If there exist a continuously differentiable symmetric positive definite matrix $P(\bar{x}) \in \mathbb{R}^{n_x \times n_x}$ and parameter-dependent matrix $W(\bar{x}) = W(\bar{x})' \in \mathbb{R}^{n_y \times n_y}$ for any pair $(\bar{x}, \bar{z}) \in \Lambda \times \Omega$ such that the following PLMI’s are satisfied [14]:

$$
\begin{bmatrix}
A_{d}(\bar{x})P(\bar{x}) + P(\bar{x})A_{d}(\bar{x})' - \frac{\partial P(\bar{x})}{\partial t} \bar{x} & * \\
B_u(\bar{x})' & -I_r
\end{bmatrix} < 0
$$

(21)

$$
\begin{bmatrix}
P(\bar{x}) & * \\
C_{d}(\bar{x})P(\bar{x}) & W(\bar{x})
\end{bmatrix} > 0
$$

(22)

$$
\text{trace}(W(\bar{x})) < \nu^2
$$

(23)

then the closed-loop system (7) is exponentially stable with H_2 performance bound ν satisfies Eq. (19).

Lemma 2. If there exists a continuously differentiable symmetric positive definite matrix $P(\bar{x}) \in \mathbb{R}^{n_x \times n_x}$ for any pair $(\bar{x}, \bar{z}) \in \Lambda \times \Omega$ such that the following PLMI satisfied [15]:

$$
\begin{bmatrix}
A_{d}(\bar{x})P(\bar{x}) + P(\bar{x})A_{d}(\bar{x})' - \frac{\partial P(\bar{x})}{\partial \bar{z}} \bar{z} & * & * \\
C_{d}(\bar{x})P(\bar{x}) & -I_r & * \\
B_u(\bar{x})' & D_u(\bar{x})' & -\frac{1}{\gamma} I_r
\end{bmatrix} < 0
$$

(24)

then the closed-loop system (7) is exponentially stable with H_∞ performance bound γ satisfies Eq. (20).

Since all scheduling parameters and their uncertainties (with their rates of variations) have been modeled as multisimplex variables, we are ready now to derive PLMI’s conditions for controller synthesis which is the main contribution of this brief.

4 Gain-Scheduling Controller Synthesis

In this section, we derive controller synthesis conditions in terms of PLMI’s. Note that, regarding H_2 controller synthesis, it is assumed that $D_u(\bar{z}) = 0$ in Eq. (1) so that finite H_2 cost can be obtained.

Theorem 5. For a given scalar ν, if there exist a continuously differentiable matrix $A(\bar{x}) = A(\bar{x})' \in \mathbb{R}^{n_x \times n_x}$ matrices $W(\bar{x}) = W(\bar{x})' \in \mathbb{R}^{n_y \times n_y}$, such that the following PLMI satisfied:

$$
\begin{bmatrix}
\Phi_1(\bar{x}, \bar{z}) & * & * \\
\Phi_2(\bar{x}) & -\epsilon(G(\bar{x}) + G(\bar{x})') & * \\
\Phi_3(\bar{x}) & -I_r & *
\end{bmatrix} < \theta_{2u+\nu}
$$

(25)

$$
\begin{bmatrix}
\Phi_1(\bar{x}, \bar{z}) & * \\
\Phi_2(\bar{x}) - \epsilon(G(\bar{x}) + G(\bar{x})') & * \\
\Phi_3(\bar{x}) & -I_r
\end{bmatrix} < \theta_{2u+\nu}
$$

(26)

$$
\begin{bmatrix}
\Phi_1(\bar{x}, \bar{z}) & * \\
\Phi_2(\bar{x}) - \epsilon(G(\bar{x}) + G(\bar{x})') & * \\
\Phi_3(\bar{x}) & -I_r & *
\end{bmatrix} < \theta_{2u+\nu}
$$

(27)

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 11/03/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use
\[
\frac{\partial P(z)}{\partial z} = \sum_{i=1}^{2n} \sum_{j=1}^{2n} \frac{\partial P(z)}{\partial z_{ij}} z_{ij} = \sum_{i=1}^{2n} \sum_{j=1}^{2n} \frac{\partial P(z)}{\partial z_{ij}} \times (\eta_i H_i(j,1) + \eta_j H_i(j,2)) =: \Pi(z, \eta), \quad \eta_j \in \Lambda_2
\]

Additional SV \(X(z)\) can be introduced using Finsler’s Lemma [16] to decouple the dynamic matrix \(A_{cl}(z)\) from Lyapunov matrix \(P(z)\), hence

\[
\Psi(z) + X(z)V(z) + V(z)'X(z)' < 0
\]

where

\[
\Psi(z) \triangleq \begin{bmatrix} \Pi(z, \eta) & P(z) & 0 \\ P(z) & 0 & 0 \\ 0 & 0 & I \end{bmatrix}, \quad X(z) \triangleq \begin{bmatrix} G(z)' & 0 & \cdots \\ R(z)' & 0 & \cdots \\ 0 & \cdots & 0 \end{bmatrix}, \quad V(z) \triangleq \begin{bmatrix} A_{cl}(z)' & -I & \cdots \\ B_u(z)' & 0 & \cdots \\ 0 & \cdots & 0 \end{bmatrix}
\]

such that \(V(z)^{1/2} \Psi(z) V(z)^{-1/2} < 0\), with \(V(z)^{1/2} = \begin{bmatrix} I & A_{cl}(z) & B_u(z) \end{bmatrix}\). Therefore, substituting Eqs. (33) and (34) into Eq. (32) to obtain

\[
\begin{bmatrix} \Pi(z, \eta) & P(z) & 0 \\ P(z) & 0 & 0 \\ 0 & 0 & I \end{bmatrix} + \begin{bmatrix} A_{cl}(z) & B_u(z) \end{bmatrix} - \begin{bmatrix} G(z)' & 0 & \cdots \\ R(z)' & 0 & \cdots \\ 0 & \cdots & 0 \end{bmatrix} < 0
\]

At this point, it is important to impose particular structure to the SV \(X(z)\) to provide convex parametrization. Therefore, choosing \(R(z) = \imath G(z)\) is sufficient to keep convexity of Eq. (35), where \(\imath\) is a scalar used to provide extra degree-of-freedom to perform line search to reduce conservatism. Using the change of variable \(Z(z) = K(z)G(z)\) yields

\[
\begin{bmatrix} \Pi(z, \eta) & P(z) & 0 \\ P(z) & 0 & 0 \\ 0 & 0 & I \end{bmatrix} + \begin{bmatrix} A_{cl}(z) & B_u(z) \end{bmatrix} - \begin{bmatrix} G(z)'A_{cl}(z)' - \imath G(z)' & 0 \\ \imath G(z)A_{cl}(z) & -\imath G(z) & 0 \\ 0 & 0 & I \end{bmatrix} < 0
\]

that directly leads to Eq. (25). Multiplying Eq. (28) from left by \(C_{cl}(z) = \begin{bmatrix} -I \end{bmatrix}\) and by its transpose from right with \(C_{cl}(z) = \begin{bmatrix} C(z) + D_z(z)K(z) \end{bmatrix}\) to obtain \(W(z) = C_{cl}(z)P(z)\), with Schur complement, Eq. (22) can be recovered. The LMI (29) ensures that \(\nu\) is the guaranteed bound of the \(H_2\) norm of the closed-loop system.

Theorem 6. For a given scalar \(\gamma_\infty\), if there exist a continuously differentiable matrix \(0 < P(z) = P(z)' \in R^{n \times n}\), matrices

\[
\begin{bmatrix} \Phi_1(z) & \Phi_2(z) & \Phi_3(z) & \Phi_4(z) & \Phi_5(z) & \Phi_6(z) \\ \Phi_7(z) & \Phi_8(z) & \Phi_9(z) & \Phi_{10}(z) & \Phi_{11}(z) & \Phi_{12}(z) \end{bmatrix} < 0
\]

with \(\Phi_1(z)\) and \(\Phi_2(z)\) defined in Eqs. (26) and (27), and

\[
\begin{align*}
\Phi_3(z) &= C(z)G(z) + D_u(z)Z(z), \\
\Phi_4(z) &= \imath C(z)G(z) + \imath D_u(z)Z(z)
\end{align*}
\]

then the gain-scheduling controller

\[
K(z) = Z(z)G(z)^{-1}
\]

stabilizes the closed-loop system with \(H_\infty\) performance bound \(\gamma_\infty\) for any pair \((z, \dot{z})\) in \(\Lambda \times \Omega\).

Proof. Using Eq. (17), the time-derivative of Lyapunov matrix in Eq. (21) can be expressed as

\[
\frac{\partial P(z)}{\partial z} = \sum_{i=1}^{2n} \sum_{j=1}^{2n} \frac{\partial P(z)}{\partial z_{ij}} z_{ij} = \sum_{i=1}^{2n} \sum_{j=1}^{2n} \frac{\partial P(z)}{\partial z_{ij}} \times (\eta_i H_i(j,1) + \eta_j H_i(j,2)) := \Pi(z, \eta), \quad \eta_j \in \Lambda_2
\]

where

\[
\Pi(z, \eta) = \begin{bmatrix} \Pi(z, \eta) & P(z) & 0 \\ P(z) & 0 & 0 \\ 0 & 0 & I \end{bmatrix}, \quad X(z) = \begin{bmatrix} G(z)' & 0 & \cdots \\ R(z)' & 0 & \cdots \\ 0 & \cdots & 0 \end{bmatrix}, \quad V(z) = \begin{bmatrix} A_{cl}(z)' & -I & \cdots \\ B_u(z)' & 0 & \cdots \\ 0 & \cdots & 0 \end{bmatrix}
\]

such that \(V(z)^{1/2} \Psi(z) V(z)^{-1/2} < 0\), with \(V(z)^{1/2} = \begin{bmatrix} I & A_{cl}(z) & B_u(z) \end{bmatrix}\). Therefore, substituting Eqs. (33) and (34) into Eq. (32) to obtain

\[
\begin{bmatrix} \Pi(z, \eta) & P(z) & 0 \\ P(z) & 0 & 0 \\ 0 & 0 & I \end{bmatrix} + \begin{bmatrix} A_{cl}(z) & B_u(z) \end{bmatrix} - \begin{bmatrix} G(z)' & 0 & \cdots \\ R(z)' & 0 & \cdots \\ 0 & \cdots & 0 \end{bmatrix} < 0
\]

that directly leads to Eq. (25). Multiplying Eq. (28) from left by \(C_{cl}(z) = \begin{bmatrix} -I \end{bmatrix}\) and by its transpose from right with \(C_{cl}(z) = \begin{bmatrix} C(z) + D_z(z)K(z) \end{bmatrix}\) to obtain \(W(z) = C_{cl}(z)P(z)\), with Schur complement, Eq. (22) can be recovered. The LMI (29) ensures that \(\nu\) is the guaranteed bound of the \(H_2\) norm of the closed-loop system.

Finally, the relaxation approach developed in Ref. [9] is adopted in this paper to relax the LMI conditions of Theorems 5 and 6, since it supports PLMIs that depends on multisimplex parameters. It is worth noting that the algebraic manipulation of PLMIs is a sophisticated procedure. However, a specialized parser, ROLMIP [21], has recently been developed as a tool to perform such manipulation and relaxation of the PLMIs. This package works jointly with the LMI parser YALMIP [22] and the solver SeDuMi [23] that have been used in this paper to obtain the optimal solution of the convex optimization (synthesis) problem.
5 Numerical Examples

The objective of the numerical examples and simulation results presented in this section is to demonstrate the advantage of the PLMs conditions proposed in this paper. Comparison results only with the approach described in Ref. [4] will be included since it represents the state-of-the-art for gain-scheduling control with uncertain scheduling parameters.

Example 1. Consider the following LPV system that represents the dynamics of two-masses and two-springs [4]:

\[
A(\theta(t)) = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & 1 & -\theta_0(t) & 0 \\
2 & -2 & 0 & -2\theta_0(t)
\end{bmatrix},
\]

\[
B_w = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad B_u = [0, 0, 0, 1]^T,
\]

\[
C = [0, 0, 0, 0], \quad D_w = 0, \quad D_u(\theta(t)) = \theta_2(t)
\]

with the following bounds:

\[
0.5 \leq \theta_1(t) \leq 3.5, \quad 0.5 \leq \theta_2(t) \leq 1.5, \quad |\dot{\theta}_0(t)| \leq \kappa,
\]

\[
|\delta_q(t)| \leq \zeta, \quad |\dot{\delta}_q(t)| \leq 10 \times \zeta, \quad q = 1, 2
\]

Theorem 5 is used to synthesize gain-scheduling controllers for different bounds of measurement noise. Table 1 presents the achieved \(H_2\) bound \(\nu\). Clearly, the \(H_2\) bounds are influenced by the uncertainty \(\delta_q(t)\) associated with the scheduling parameters \(\theta(t)\) for \(q = 1, 2\). Table 2 from Ref. [4] is given here to facilitate comparison with our controllers. Although the achievable performance for the two methods is very close, it can be observed that the controllers synthesized via Theorem 5 outperform the method of Ref. [4] for large values of \(\zeta\) and \(\kappa\).

In addition to the gain-scheduling controller, robust controller (parameter-independent) has been synthesized (see Remark 2) with its performance shown in the last row of Table 1. Note that as the uncertainty size increases, the achieved \(H_2\) performance (for the gain-scheduling controller) deteriorates. For example, when \(\zeta = 2\), the achieved performance is the same as the performance provided by the robust controller. This is a logical observation since the uncertainty of the scheduling parameter increases, the measurement is not reliable to be used for scheduling anymore. In this case, there is no benefit for the designer to implement gain-scheduling controller over the robust one since the achievable performance is the same.

Example 2. Consider the following LPV system [4]:

\[
A(\theta(t)) = \begin{bmatrix}
25.9 - 60\theta(t) & 1 \\
20 - 40\theta(t) & 34 - 64\theta(t)
\end{bmatrix}, \quad B_u = \begin{bmatrix} 3 \\ 2 \end{bmatrix},
\]

\[
B_w = \begin{bmatrix} -0.03 \\ -0.47 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \quad D_w = 0, \quad D_u = 0
\]

The varying parameter \(\theta(t)\) has the following bounds \(0 \leq \theta(t) \leq 1\), \(|\theta(t)| \leq \kappa\), with measurement uncertainty bound \(|\delta(t)| \leq \zeta\) and \(|\dot{\delta}(t)| \leq 10 \times \zeta\).

Theorem 6 is used to synthesize \(H_\infty\) gain-scheduling controller for this example. The guaranteed \(H_\infty\) performance is shown in Table 3, as expected, the performance deteriorates as \(\delta\) and \(\kappa\) increase. Robust controller has been synthesized as well to study its performance compared to the gain-scheduling controller. The performance of the robust controller is shown in the last row of Table 3. While the gain-scheduling controller shows better performance for low range of uncertainty size, it provides no

Table 3 \(H_\infty\) Guaranteed cost using Theorem 6

<table>
<thead>
<tr>
<th>(\zeta)</th>
<th>(\kappa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.001</td>
</tr>
<tr>
<td>0.1</td>
<td>0.583</td>
</tr>
<tr>
<td>0.5</td>
<td>0.718</td>
</tr>
<tr>
<td>0.2</td>
<td>0.791</td>
</tr>
<tr>
<td>0.5</td>
<td>0.795</td>
</tr>
<tr>
<td>Robust</td>
<td>0.795</td>
</tr>
</tbody>
</table>

Table 4 \(H_\infty\) Guaranteed cost method of Ref. [4]

<table>
<thead>
<tr>
<th>(\zeta)</th>
<th>(\kappa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.001</td>
</tr>
<tr>
<td>0.1</td>
<td>0.480</td>
</tr>
<tr>
<td>0.5</td>
<td>0.752</td>
</tr>
<tr>
<td>Robust</td>
<td>0.795</td>
</tr>
</tbody>
</table>

![Fig. 1 Performance versus \(\epsilon\) with \(\zeta = 0.2\)](image-url)
significant improvement over the robust controller when $\zeta \geq 0.5$. Table 4 shows the results of Ref. [4] for the same example. Comparing these two tables, it can be observed that our approach achieves very competitive results with those associated with Ref. [4]. A line search for ϵ with a linear-grid of 350 points between 10^{-4} and 10^{-1} has been conducted and is shown in Fig. 1 for $\zeta = 0.2$ with different rates of change (κ). Figure 2 shows the guaranteed H_∞ performance as function of ζ and κ.

Simulation study has been conducted for this example to illustrate robustness of the synthesized controller against the mismatch between the actual and measured scheduling parameters. A scheduling parameter that is defined as $\theta(t) = 0.05 + 0.5 \sin(0.2t)$ and a noisy version of this signal ($\tilde{\theta}(t)$) are both shown in Fig. 3(a). A random noise with bounds $|\tilde{\theta}(t)| \leq 0.075$ and $|\tilde{\dot{\theta}}(t)| \leq 1$ has been intentionally added to the actual scheduling parameter to imitate the measurement noise. Then, Theorem 6 is used to synthesize controller (with $\epsilon = 0.001$) at the vertices of the multisimplex domain as

$$K_1 = [2.060 - 84.399], \quad K_2 = [-0.725 - 50.508], \quad K_3 = [1.096 - 75.031], \quad K_4 = [-0.837 - 48.307]$$

To simulate the closed-loop system, an L_2 disturbance signal defined by $w(t) = \exp(-0.0t)$ is generated as disturbance input. The responses to this disturbance for both cases are shown in Fig. 3(b). Clearly, the noise amplitude in the response (associated with the noisy scheduling parameter) is much less than the noise amplitude in the measured scheduling parameter. This simulation result not only shows good robustness against measurement noise but also good disturbance attenuation as well.

6 Conclusions

This brief deals with state-feedback gain-scheduling controller synthesis for polytopic LPV systems with noisy scheduling parameters. PLMIs conditions have been derived to synthesize controller with a prescribed performance measure in terms of H_∞ and H_∞ norms. Our synthesis conditions encompass robust controller synthesis as a special case. Numerical examples and simulations are given to study the effect of uncertainty on the guaranteed performance. Compared with other approaches from literature, the proposed controllers are less conservative when noise level is high. The effectiveness of the synthesized approach is very tempting to be extended to handle dynamic output-feedback controllers in future work. In addition, experimental validation is another direction for future study to demonstrate practicality of the developed synthesis conditions.

Acknowledgment

The authors would like to express their sincere gratitude to Professor Ryozo Nagamune for his useful suggestions that help to improve our paper. Ali Khudhair Al-Jiboory would like to thank the Higher Committee for Education Development (HCED) and University of Diyala in Iraq for their financial support during his graduate study at Michigan State University (MSU).

Nomenclature

- I_n = identity matrix of size $n \times n$
- n = is omitted when the size of the identity can be easily inferred from the context
- $0_{n \times p}$ = zero matrices of size $n \times p$
- \ast = the transpose of the off-diagonal matrix block

References

