At Michigan State University, I am a professor of Electrical and Computer Engineering and of Mechanical Engineering and of Computer Science and Engineering. I am the director of BEACON: An NSF Center for the Study of Evolution in Action, headquartered at MSU (see article below and the brand new BEACON site at http://beacon-center.org/. I also co-direct MSU's Genetic Algorithms Research and Applications Group (GARAGe) , which is administered jointly by the Department of Electrical and Computer Engineering and the Department of Computer Science and Engineering. In February, 2007, I was awarded the university's highest teaching award, the Alumni Club of Mid-Michigan Quality in Undergraduate Teaching Award (pictured on right with MSU President Lou Anna Kimsey Simon), followed in 2009 by the Michigan Distinguished Professor of the Year Award (from the Presidents Council, State Universities of Michigan) (see below).
The National Science Foundation
announced in February, 2010, that Michigan State University has been awarded one of five
new highly-coveted Science and Technology Centers, to be called BEACON, an NSF Science & Technology
Center for the Study of Evolution in Action. The initial award is $25 million for
five years, and the center funding began on August 1, 2010, renewable once for an additional $25 million.
BEACON will conduct research on
fundamental evolutionary dynamics in both natural and artificial systems,
educate a generation of multi-disciplinary scientists in these methods, and will
improve public understanding of evolution at all levels. BEACON will focus on evolution as an ongoing process, in organisms in the
laboratory (bacteria, yeast, viruses, etc.), in the field, and with digital
organisms undergoing evolution in the computer. It will be directed by Erik D. Goodman,
Professor of Electrical and Computer Engineering, and will involve more than
more than thirty faculty researchers at MSU, most in the Colleges of Engineering
and Natural Science. Four universities and more thirty
additional biologists, engineers and computers scientists will partner with MSU
in BEACON, from
The selection of five new
centers by NSF took two years, from submission of hundreds of pre-proposals in
2008, through 43 full proposals submitted in April, 2009, and NSF site visits to
eleven finalists last fall. The
BEACON team, nearly 70 investigators, collaborated to generate the plans for the
center. As the lead institution,
MSU made major commitments of space and other resources to BEACON, and the
partner universities have also pledged extensive support. BEACON will be headquartered in MSU's
Biomedical Physical Sciences Building, in space being remodeled for use by
BEACON and iCER, the Institute for Cyber-Enabled Research, for which BEACON is
the biggest customer.
As Goodman, a long-time researcher and practitioner of engineering
applications of evolutionary computation, says, "BEACON is multidisciplinary to
its core, and in addition to making discoveries in basic science and
applications, will prepare a new generation of researchers with the insight that
comes from first-hand experimentation with evolution in the lab and in the
computer. Recognizing the
commonality of evolutionary dynamics in both contexts will enable studies and
applications that could not be done in isolation in either biology or
engineering." The backgrounds of
the four co-principal investigators in BEACON reinforce its multidisciplinary
character. Richard Lenski, Hannah
Professor of Microbiology and Molecular Genetics and member of the National
Academy of Sciences, has been studying evolution of E. coli bacteria for twenty years
(50,000 generations), with regular freezing of samples allowing him to trace
mutations backward in time to pinpoint when they occurred and to explore
alternative paths from ancestors.
Charles Ofria, Associate Professor of Computer Science and Engineering,
is the author of the Avida software system for evolution of digital organisms
in the computer. His digital
organisms self-replicate in the computer, producing (sometimes mutated) copies
of themselves and competing for resources.
Kay Holekamp, Professor of Zoology and director of the interdisciplinary
program in Ecology, Evolutionary Biology and Behavior, studies evolution of
behavior and morphology among spotted hyenas in Kenya. Robert Pennock, Professor of Philosophy
and in Lyman Briggs College, studies evolution and leads a team creating
software to allow students to experiment with digital
evolution.
MSU learned in August, 2009, that a joint proposal from Goodman (College of Engineering), Johannes Bauer and Kurt DeMaagd, of the College of Communication Arts and Sciences, will be funded at about $600,000 over three years. The project, under NSF�s Cyber-Enabled Discovery and Innovation Program, will use agent-based modeling of the telecommunications infrastructure to first develop a model that seeks to reflect adequately many aspects of the market- and regulation-driven dynamics of the telecommunications industry. Evolutionary computation will be used in two ways: 1) in this first stage, to help to find the best structure and parameters to capture the dynamics of this complex system, and 2) in the subsequent stage, to search the space of possible regulatory mechanisms, seeking those that produce the DESIRED emergent properties of this complex system. In the past, many regulatory actions have, in fact, produced effects almost directly opposite to those desired. The goal here is to capture enough of the underlying relationships among the many agents (companies, agencies, market sectors, etc.) that the results of a particular regulatory change can be gauged well enough to allow search for good combinations of regulations to move the infrastructure in desired directions. Goodman will provide expertise in evolutionary computation, and Bauer and DeMaagd are experts in telecommunications policy and modeling of the telecommunications infrastructure.
Then, on May 14, 2009, I was honored as one of three winners of Michigan Distinguished Professor of the Year, by the Presidents Council of the State Universities of Michigan. Michigan's fifteen state colleges and universities annually nominate one faculty member each for the award, and the selection committee picks three to receive the honor. The awards were presented by the President's Council at a banquet at the Radisson Hotel in Lansing.
The 8-minute video clip presented on MSU Today on the Big Ten Network is available at the link above. A half-hour version has also been shown on the Big Ten Network, and I'll post a link to that if I can find it. See the Teaching and International Activities sections of my web pages for more information about the project.
I received the Ph.D. in Computer and Communication Sciences from the University of Michigan in 1972, where I was a member of the Logic of Computers Group, in which John Holland pioneered the development of genetic algorithms. My major professor was Bernie Ziegler, an expert on the theory of simulation and on automata theory. In my dissertation research, I developed a genetic algorithm (using a floating point representation and Gaussian mutation operator) to parameterize a model of the metabolism of a bacterial cell undergoing nutritional shifts, and a simple model, using a cellular automaton, of a bacterial cell colony based upon these cells. To my knowledge, solving for those metabolic rate constants was the first use of a genetic algorithm to solve an actual hard problem (i.e., one for which the solution was wanted, not just a study of the GA on a test problem). It ran about a year (calendar time) and over half a year (CPU time) on an IBM 1800 computer (first at UM, then at MSU).
From 2002-2010, I taught the Senior Capstone Design course in Electrical and Computer Engineering, ECE 480, (http://www.egr.msu.edu/classes/ece480/goodman). I have recently also taught the junior-level course in Professionalism and Ethics, ECE 390. In even-numbered years 2000-2008, I co-taught a graduate course in evolutionary computation. I am developing an undergraduate specialization in Information and Communication Technology for Development (beginning in Africa). I chaired the department's Undergraduate Studies Committee for several years, until 2010. For more information on my teaching and instructional development activities, click on Teaching and on International Activities.
My research deals primarily with developing new ways of using evolutionary computation to solve problems in engineering design (see Research). In 1999, my research colleague, Prof. Ron Averill, and I founded a spinoff company, Red Cedar Technology) to make our design automation technology available to industry.
My research has also included funded work to develop methods to allow teams of engineering students (and, ultimately, engineers) distributed around the world to collaborate more effectively in solving engineering design problems. For more information on that topic, see International Activities.
I was recently co-General Chair of the 2009 World Summit on Genetic and Evolutionary Computation, Shanghai, June 12-14. For my Intro to Genetic Algorithms tutorial slides, see here.
E-Mail Address: goodman@egr.msu.edu
Office address:
BEACON Center
1441 Biomedical & Physical Sciences Building, 567 Wilson Road
Michigan
State University, East Lansing, MI 48824
Phone: (517) 355-6453
Fax: (517) 353-7248
(My name is sometimes misspelled as Eric Goodman.)