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Abstract-The Gabor expansion, which maps the time do- 
main signal into the joint time and frequency domain, has long 
been recognized as a very useful tool in signal processing. Its 
applications, however, were limited due to the difficulties as- 
sociated with selecting the Gabor coefficients. Because time- 
shifted and frequency-modulated elementary functions in gen- 
eral do not constitute an orthogonal basis, the selections of the 
Gabor coefficient are not unique. One solution to this problem, 
developed by Bastiaans, is to introduce an auxiliary biorthog- 
onal function. Then, the Gabor coefficient is computed by the 
usual inner product rule. Unfortunately, it is not easy to deter- 
mine the auxiliary biorthogonal function for an arbitrary given 
synthesis function and sampling pattern. While less success was 
found in the continuous case, we present a discrete solution in 
this paper, which is named the discrete Gabor transform 
(DGT). For a given synthesis window and sampling pattern, 
computing the auxiliary biorthogonal function of the DGT is 
nothing more than solving a linear system. The DGT presented 
applies for both finite as well as infinite sequences. Using the 
advantages of the nonuniqueness of the auxiliary biorthogonal 
function at oversampling, we further introduce the so-called 
orthogonal-like DGT. As the DFT (a discrete realization of the 
continuous-time Fourier transform), the DGT introduced pro- 
vides a feasible vehicle to implement the useful Gabor expan- 
sion. 

I. INTRODUCTION 
HALF century ago, Gabor [7] presented an approach A to characterize a time function in time and frequency 

simultaneously, which later became known as the Gabor 
expansion. For signal s ( t ) ,  the Gabor expansion is defined 
as 

m m 

s ( t )  = C Crn,nhrn,r,(t) 
m =  - m  n =  -m 

h,,,(t) = h( t  - mT)eJnn' 

where T and fl represent time and frequency sampling in- 
tervals, respectively. The synthesis function h ( t )  is sub- 
ject to a unit energy constraint. The existence of (1 )  has 
been found to be possible for arbitrary s ( t )  only for T Q 
5 2a [2], [9]. T Q  = 2a is called critical sampling and 
T s2 < 2a is oversampling. 

Although the Gabor expansion has been recognized as 
very useful for signal processing, its applications were 
limited due to the difficulties associated with computing 
the Gabor coefficients Cm,n. According to the Balian-Low 
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theorem, hm,n ( f )  do not form an orthogonal basis unless 
the corresponding elementary function h ( t )  is badly lo- 
calized in either time or frequency [9]. Therefore, the se- 
lection of the Gabor coefficient Cm,n in general is not 
unique. There are two problems that have continued to 
draw much research-how to define the Gabor coefficients 
and to what extent the resulting coefficients represent the 
analyzed signal [l], [21, [71, [81. 

One solution to this problem, developed by Bastiaans 
[2], is to introduce an auxiliary function y ( t )  and then 
compute the Gabor coefficient Cm,n by the usual inner 
product rule for projecting s ( t )  onto y ( t ) ,  i.e., 

m 

-m 

mT) eJnat. 

Equation (2) is in fact a sampled version of the windowed 
Fourier transform, which we term the Gabor transform. 
y ( t )  in (2) can also be considered as an analysis function. 

Substitute (2) into (1). The completeness of (1) leads 
to the following biorthogonality relationship between y ( t )  
and h ( t )  [14]: 

m 
To no s-, h ( t ) y * ( t  - mTo)e-jnn('' dt = 6(m)6(n). 

2a 2a 
n T - - l  0 -  ""=. (3) 

The major problem of Bastiaan's approach is to com- 
pute the analysis function y ( t )  that satisfies (3) for a given 
synthesis function h ( t )  and sampling constants T and !d. 
The authors are not aware of the general solution of (3).' 
In fact, even when y ( t )  can be found in a few special 
cases [3], [ 5 ] ,  [ 6 ] ,  [lo], y ( t )  may not be localized. In 
those cases, the Gabor coefficients C,,,n do not reflect sig- 
nal's local behavior. 

While less success was found in continuous cases, the 
discrete Gabor expansions have been investigated re- 
cently [ll], [14]. Applying the sampling theory and the 
discrete Poisson-sum formula to (1)-(3), Wexler and Raz 
derived the discrete version of the Gabor expansion pair 
for finite sequence [ 141. For an arbitrary given synthesis 
window and sampling pattern, the implementation of the 

'The recently introduced frame approach throws some light on this sub- 
ject [4]. However, to compute the biorthogonal function, one has to know 
the frame bounds A and E .  Unfortunately, it is not trivial to estimate A and 
B for an arbitrary given frame. 
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finite discrete Gabor expansion, developed by Wexler and 
Raz, is nothing more than solving a linear system. 

In general, the solution of the analysis window function 
(i) in the finite discrete Gabor expansion is not unique. 

In this case, authors solved Yopt(i) which is most similar 
to the given synthesis window function h ( i )  [13]. When 
yopt (i ) is close to h ( i  1, yopt ( i )  = ah ( i  for a constant a ,  
the resulting representation has the same form as the or- 
thogonal representation, despite that hm., ( i )  may not be 
linear independent. The remaining problems in applica- 
tions are: 1) The analyzed signal is limited to the finite 
and periodic sequence; 2) The lengths of the analyzed sig- 
nal and windows have to be equal. Consequently, the 
memory and computation burden associated with com- 
puting the analysis window prohibits processing data of 
even moderate size. 

In this paper, based on the previous work, we develop 
the discrete Gabor transform (DGT) and Gabor expansion 
for infinite sequences. In the DGT, the length of the win- 
dow h (i) and y (i) is independent of the length of the ana- 
lyzed sequence. Consequently, one can use a finite win- 
dow to process infinite sequences. The DGT presented 
applies for both finite as well as infinite sequences. 

As in the finite case, the analysis window function of 
the DGT may also be a solution of an underdetermined 
linear system. Restricting y(i)  to one that is most similar 
to the given synthesis window h ( i ) ,  we further obtain the 
orthogonal-like DGT. In the orthogonal-like DGT, the 
Gabor coefficient can be thought of as the measure of sim- 
ilarity between the underlying signal s ( i )  and the individ- 
ual basis function hm,n(i) .  Therefore, it will reflect the 
signal's local behavior as long as the given synthesis win- 
dow h ( i )  is indeed localized. 

where A M  and A N  are time and frequency sampling in- 
tervals, respectively. M and N are the numbers of sam- 
pling points in time and frequency domains. AMM = 
ANN = L. The condition A M A N  4 L (or MN 2 L)  must 
be satisfied for a stable reconstruction. The critical sam- 
pling occurs when A M A N  = MN = L (The number of 
coefficients C,,,n is equal to the number of time samples 
S ( i ) ) .  There may be a loss of information in an undersam- 
pling condition (MN < L).  S ( i ) ,  h ( i ) ,  and r ( i )  are peri- 
odic in L .  In addition, h ( i )  has unit energy, i.e., 

L -  I 

The Gabor coefficient C,,,,  in  this case is periodic in both 
m and n,  i .e.,  

Wexler and Raz proved [ 141 that the biorthogonality 
between h ( i )  and r ( i )  in the finite discrete case is equiv- 
alent to 

L -  I 

h( i  + m N ) W , " M i y * ( i )  = 6 ( m ) 6 ( n )  
i = O  

O I m I A N - 1 ,  and O s n s A M - 1 .  

The DGT presented has been extensively tested for var- 
ious window types and lengths. In all cases, the test re- 
sults fit perfectly to the theory. As the DFT (discrete 
Fourier transform), the DGT presented provides a feasi- 

Now ( i )  becomes a solution of a linear system given by 
(6). Let A M A N  = p .  Equation (6) can be written in the 
following matrix 

ble vehicle to implement one of the most important trans- 
formations, the Gabor expansion, in signal processing. 

The rest of this paper is organized in the following 
fashion. In Section 11, the finite discrete Gabor expansion 
will be briefly reviewed. In particular, we introduce the 
orthogonal-like representation. Based on the finite case, 
the DGT is developed in Section 111. Finally, the numer- 
ical examples of DGT are provided. Appendix A is de- 
voted to highlight the algorithm of solving the optimal 
biorthogonal window function "/qpt ( i  ). The general bior- 
thogonality relationship will be discussed in Appendix B. 

11. FINITE ORTHOGONAL-LIKE DISCRETE GABOR 
EXPANSION 

Applying the sampling theory and the discrete Poisson- 
sum formula, Wexler and Raz obtained a discrete version 
of the Gabor expansion for the finite and periodic se- 
quence S ( i )  with a period L [14] as follows: 

M - l  N - l  

~ ( i )  = mzo nzo c m , n h r n , n ( i )  (4) 

where H is a p X L matrix constructed by 

H ( m A M  + n,  i )  = h( i  + mN)WLnMi 

O I m < A N ,  O I ~ I A M ,  and 

O s i < L .  

For critical sampling, A M A N  = L,  T ( i )  is unique if the 
matrix H i s  nonsingular. When oversampling, A M A N  = 
p < L ,  the linear system given by (7) is underdetermined 
and the solution is not unique. 

One particularly interesting choice of T ( i )  is Topc that 
is most similar to h ( i ) ,  e.g., 

where h ( i )  has unit energy. If r ( i )  = ah( i ) ,  where the 
constant a = I( T ( i ) ( ( ,  then (4) has an orthogonal-like rep- 
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TABLE I 
ERROR r 

the smallest error occurred when2 

a 2  = __- A M  for 0 << L. 
A N  27r' Variance U*  

Sampling Pattern 0.5 L / 2 u  L / 2 u  2 L / 2 u  
Once y(i) is determined, it is rather trivial to compute 

AM = 16, A N  = 8 (critical) 1.2382 0 .9494  0.9002 Cm," in (5 )  by a sampled FFT: 
AM = A N  = 8 (double) 0.3035 0.0865 0.3035 
AM = 8, A N  = 4 (quadruple) 0.3035 0.0612 0.0037 
AM = 4 ,  A N  = 8 (quadruple) 0.0037 0.0612 0.3035 

L = 128. The boldface numbers correspond to the smallest error for the 
same sampling pattern but different variances. It is interesting to note that 
the smallest errors occur when u 2  = ( A M / A N ) ( L / 2 u ) .  

L -  1 

Cm,n = c f(i)q*(i - mAM)W,"' 
i = O  

L -  I 

= c Rm(i)W,"' 
i = O  

A N - I  N - l  

resentation, i.e., = c R,(kN + i)W,"'wWVi' 
k = O  i = O  

M - 1 . N - I  / L - l  \ A N - I  N - l  

= c Rm(kN + i)W,"', 
k = O  i = O  

M -  I ,N-  1 L -  I 
where the second summation is an N-point FFT. 

2: CY m , n = O  c [ k = O  c f (k )&* , (k ) ]  h m , n ( i ) .  (9) 

Consequently, the Gabor coefficient Cm," could be con- 
sidered as the measure of similarity between the-under- 
lying signal f ( i )  and the individual basis function hm," (i). 
In this case, Gabor coefficients well reflect signal local 
behaviors as long as the synthesis window h ( i )  is local- 
ized. 

The solution of (8) has been addressed in [ 131 and will 
be summarized in Appendix A. If matrix H has a full row 
rankp, the solution of (8) is the pseudoinverse of H (min- 
imum energy of y (i)), i.e., 

The error I' is a function of the window h (i) as well as 
the sampling pattems. Table I shows different error values 
for different sampling pattems and variances, where the 
window h ( i )  is a normalized Gaussian function given by 

f o r 0  I i < L .  

In general, the error I' decreases as the oversampling 
ratio, L I A M A N ,  increases. At the critical sampling, the 
error I' is quite large. However, the error r could be only 
0.0037 at quadruple oversampling. It is important to note 
that for the same sampling rate, the errors can be quite 
different depending on the selection of sampling pattern 
and variance. For instance, at quadruple oversampling 
(third and fourth rows), using different sampling patterns 
and variance the corresponding errors range from 0.3035 
to 0.0037. At the same oversampling rate, the error I? usu- 
ally is smaller when A M  is proportional to the time du- 
ration of the window and A N  is proportional to the win- 
dow bandwidth. During our extensive tests, we found that 

111. DISCRETE GABOR EXPANSION FOR INFINITE 
SEQUENCES 

The finite discrete Gabor expansion presented in Sec- 
tion I1 works very well when the length of analyzed se- 
quences is small. For an arbitrary given synthesis window 
h ( i )  and sampling pattern one can readily obtain r(i)opt 
if matrix H i s  of a full row rank. The authors are not aware 
of other existing techniques that achieve the same result. 

In many real applications, however, the number of 
samples could be very large. In those cases, the algorithm 
introduced earlier is no longer adequate. It is desirable to 
investigate the discrete version of the Gabor expansion for 
infinite sequences. 

Given finite signal s ( i )  with length L, and synthesis 
window h ( i )  with length L ,  let us construct two periodic 
sequences $(i) and h ( i )  with period LO = L + L,: 

0 - L I i < O  

s ( i )  0 5 i < L, 
3( i )  = s^(i + kL0) = 

h ( i )  0 5 i < L 

0 L s i < M  
h( i )  = h(i + kL0) = 

k = 0,  f l ,  f 2 ,  +3, - * . 
$(i) is the original sequen$e s ( i )  padded with L points of 
zero in the beginning and h (i) is an L-point window func- 
tion h (i) appended with L, points of zero in the end. 

Now, let us compute theAfinite discrete Gabor expan- 
sion of 3 ( i )  by the window h (i). In this case, the number 
of frequency sampling points N = L O / A N ,  where A N  
denotes the frequency sampling constant. Shifting the 
range of indices m and i in (4), ( 5 )  yields the following 

*A theoretical proof has not yet been found. However, we feel that this 
interesting observation is worth presenting as a guideline in selecting the 
variance and sampling constants. 
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finite discrete Gabor expansion pair: written in the matrix form, i.e., 
- 
Hy* = ji. 

(15) 
- 
/.l = (1, 0, 0, - * , o y  

where is ( ( 2 A  M / N )  L - A M )  x L matrix constructed Ls- I Ls- l  

C m , n  = , C t ( i ) ? : , n ( i )  = r = O  ,z j ( i ) ? ; , n ( i ) *  (11) by 
I = -L 

6,,,n(i) = i ( i  - m A M )  W: p ( m A M  + n ,  i )  = h(i + m N )  W G ’  

2L 
N 

O l m < - - 1 ,  O s n < A M ,  and ? m , n ( i )  = ?(i - m A M )  W: (12) 

where we use the fact that ANN = LO and s”(i) = 0 for i 
< 0, The necessary condition for a stable reconstruction 
is 

M 
N 

A M A N  = A M -  I LO 

that is, N / A M  z 1. 

and ? ( i )  is 
From (6), the biorthogonality relationship between h^(i) 

Lo- 1 c $(i + m N )  W z ’ ?  *(i) = 6 ( m ) 6 ( n )  
i = O  

M 
N 

0 I m < - and 0 I n < AM (13) 

O I Z < L .  

Fig. 1 depicts S ( i )  and + (i). Due to sufficient zero pad- 
ding in both S ( i )  and ? ( i ) ,  the Gabor coefficients Cm,n can 
be completely determined without rolling over, which ac- 
tually releases the periodic constraint. 

With L remaining finite, letting L, -, 00 and thereby LO 
-+ 00, (1 l ) ,  (12) directly lead to the discrete version of 
the Gabor expansion pair for infinite sequence s ( i ) ,  i.e., 

m N - l  

s ( i )  = Cm,,h(i - m A M ) W i  (16) 
m = - L / A M  n = 0 

m 

CmTn = s ( i ) y * ( i  - m A M ) W , ” ‘ .  (17) 
i = O  

where ? (i) is also periodic with period LO. It is natural to 
define the length of y(i)  to be equal to that of the given 
synthesis window h ( i ) ,  i.e., 

To distinguish it from other related approaches [ 11, [ 1 11, 
[141, we name (17) the discrete Gabor transform (DGT) 
and (16) the discrete Gabor expansion (or inverse DGT). 

If we restrict the length of y (i) and h (i) to be the same, 
y(i) 

k = 0, +1, k 2 ,  +3, * * * 

0 I i < L 

0 L < i < L O  
?( i )  = ? ( i  + kL0) = 

. 
As shown in Appendix B, under this assumption we can 
rewrite (13) as 

L -  1 c h(i + “) W 2 . y  *(i) = 6(m)6(n) 
i = O  

2L 
N 

0 I m < - - 1, and 0 I n < A M  (14) 

where the periodic sequence h( i )  with period 2L - N is 
given by 

h( i )  = h(i + k [ 2 L  - N I )  

h ( i )  0 I i < L = i  0 L < i < 2 L - N  

k = 0, + I ,  + 2 ,  +3, * . 

It is worthwhile to note that y (i) obtained from (14) is a 
special solution of (13), whose length is equal to the length 
of the given window function h ( i ) .  The significance of 
(14) is its independence of the signal length L,, which 
suggests that y (i) can be completely determined regard- 
less of the analyzed data size. Equation (14) can also be 

then y(i)  is determined by (15). At critical sampling, 
N / A  M = 1, (15) is an overdetermined linear system. The 
solution usually does not exist since ji must be an element 
of range of B. At oversampling, N /  A M I 2 ,  (15) is an 
underdetennined linear system. In this case, the system 
either has no solution or has an infinite number of solu- 
tions. The particularly interesting choice of y(i) is one 
that is most similar to the given h ( i )  since such constraint 
will lead to a useful orthogonal-like representation. 

In fact, (14) and (6) have a similar form. Analog to the 
finite case [13], the y ( i )  that is most similar to h ( i ) ,  in 
the sense of least square error, can be easily obtained as3 

(18) 
- T  - - r  - 1 -  

d p p t  = H ( H H  1 P -  

When yopt(i) is close to h ( i ) ,  (16) can be thought of as 
orthogonal-like expansion. 

One of the main purposes of applying the Gabor expan- 
sion is to have a localized synthesis function as well as 
the localized Gabor coefficients. The Zak transform ap- 
proach [ I ]  presents many interesting features, but gener- 
ally it is not known to what extent the resulting coeffi- 
cients represent the analyzed signal. On the other hand, 
the orthogonal-like DGT presented has meaningful phys- 
ical interpretations. As long as the synthesis window 
function h (i) is localized, the orthogonal-like DGT will 

’Equation (18) only holds for H with full row rank. During our contin- 
uous research, we have solved r&(i) for more general cases (121. 
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0 L-1 LO -1 

t 
m=-L /AM 

Fig. 1 .  i ( i )  and ? ( i ) .  

well reflect signal local behaviors because Cm,n is very 
close to the inner product of s ( i )  and hm,n ( i ) .  

Analog to the finite case, once yop, ( i )  is found Cm," can 
be efficiently evaluated by a sampled FFT. Since y ( k )  = 
0 for k < 0 and k 1 L.  Substituting k = i - mAM in 
(17) yields 

L -  I 

= c s(k + m A M ) y * ( k ) W , " ' k + m A M )  
k = O  

L -  I 
-nmA M - - N C R m ( k ) W i n k  

k = O  

A N -  I N -  I w -nmAM - - N C C Rm(kN + i )W,"' .  
k = O  i = O  

The right-side summation is a standard N-point FFT. 
Figs. 2 to 5 illustrate biorthogonal analysis windows 

corresponding to the Gaussian function, the chirp func- 
tion, the one-side exponential function, and a smoothed 
exponential function. The similarity between yopt ( i )  and 
h ( i )  usually is proportional to the oversampling rate. At 
the same oversampling rate, in general, the error r is 
smaller for the smoothed synthesis window, as indicated 
in Figs. 4 and 5 .  In all our simulations, reconstruction 
errors (MSE) were around which were virtually er- 
ror-free reconstruction. 

IV. CONCLUSIONS 
In this paper, we present a feasible algorithm to imple- 

ment the Gabor expansion, whose coefficients are com- 
puted by the discrete Gabor transform (DGT). We begin 
with the finite discrete case, in which the analysis func- 
tion y ( i )  is simply a solution of a linear system deter- 
mined by a given synthesis function h ( i )  as well as the 
sampling pattern. In order to have localized Gabor coef- 
ficients C,,,, we restrict ourselves to y o p t ( i )  which is most 
similar to the given synthesis window function h ( i ) ,  and 
thereby obtain the so-called orthogonal-like expansion. 
Based on the finite discrete Gabor expansion, we devel- 
oped DGT which applies for both finite as well as infinite 
sequences. In the DGT, the selection of the window length 
is independent of the size of the analyzed data. For an 
arbitrary given synthesis window and sampling pattern, 
we are always able to find the corresponding biorthogonal 

h(n) = A ~xp[-(n-62.5)~2 / 40.74361 

0.35 

10 20 30 40 50 60 70 -0.05 
0 

G-64, dm=8, Nd6,  emr=O.0865 
(a) 

h(n) = A * ~xp[-(n-62.5)~2 I40.74361 

"'-1 I 

I 
10 20 30 40 50 60 70 -0.05 L 

0 
k64, dm=8, N=16, crm=O.1421 

(b) 

h(n) = A * exp[-@-62.5)A2 / 20.37181 
0.45 

0.4 - 
0.35 - 

0.3 - 

1 
10 20 30 40 50 60 70 -0.05 

G-64, dm=4, N=16, cm~O.0037 
(C) 

Fig. 2 .  Normalized Gaussian basis and corresponding biorthogonal win- 
dow. (Solid lines represent the given synthesis window h ( i ) .  Broken line 
curves represent yopt(i). Oversampling rate = N / d m . )  (a) Finite discrete 
Gabor expansion at double oversampling. (b) Infinite discrete Gabor ex- 
pansion (DGT) at double oversampling. (c) DGT at quadruple oversam- 
pling. (The given synthesis window and the optimal analysis window vir- 
tually are identical.) 
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1 

-0.2 ' a- 

(c) 

Fig. 3. Chirp basis and biorthogonal window DGT. As the oversampling rate increases, the optimal analysis window gets closer 
to the given synthesis window. (Solid lines represent the given synthesis window h ( i ) .  Broken line curves represent ~ , , ~ , ( i ) .  
Oversampling rate = N / d m . )  (a) L = 64, dm = 2, N = 8, error = 0,3031. (b) L = 64, dm = 2, N = 16, error = 0.061. (c) 
L = 64, dm = 1, N = 16, error = 0.0123. 

0 10 20 30 40 50 60 70 

h(n) = A*cxp(4 15(n-16)) h(n) = A  * cxp(-0 15 * (n - 16)) 
0.7 

0.6 - 

(b) 

-0.1 
0 10 m 

(a) 

Fig. 4. One-side exponential basis and biorthogonal window of DGT. (Solid lines represent the given synthesis window h ( 1 ) .  
Broken line curves represent -yopt(i). Oversampling rate = N / d m  ) (a) 1: = 64, dm = 8, N = 32, error = 0.6436 (b) L = 64, 
dm = 4, N = 32, error = 0.3444. (c) L = 64, dm = 2, N = 32, e n w  = 0.1824, (d) L = 64, dm = 1 ,  N = 32, error = 
0.1052. 

3 
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-0.1 

h(n) = A * exp(-O.IS * (n - 16)) 

I 
0 10 U) 30 40 so 60 70 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 
10 U )  30 40 50 60 70 

(C) 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

a 

2435 

h(n) = A  cxp(-O.lS * (n - 16)) 

I 

Fig. 4 .  (Continued) 

3 

(C)  

Fig. 5.  Smoothed one-side exponential basis and biorthogonal window of DGT. As shown in Figs. 4 and 5, at the same over- 
sampling rate the optimal analysis window in general is closer to the synthesis window if it is smoother. (Solid lines represent 
the given synthesis window h ( i ) .  Broken line curves represent yop,(i). Oversampling rate = N / d m . )  (a) L = 64, dm = 8 ,  N 
= 32, error = 0.4435. (b) L = 64, dm = 4, N = 3 2 ,  error = 0.1875. (c) L = 64, d m  = 4 ,  N = 64, error = 0.0736. 
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analysis window (if it exists). The implementation of the 
DGT is nothing more than solving a linear system. Ana- 
log to the finite case, we further discussed the orthogonal- 
like DGT. As the DFT (a discrete realization of the con- 
tinuous-time Fourier transform), similarly, the DGT pre- 

the useful Gabor expansion. 

the particular constraints. For Q,. y = 0 ,  y = Q,x = ymln, 
which has a minimum energy. 

Rewriting the error equation obtain 

sented in this paper provides a feasible vehicle to realize r = 

(A. 9) 
APPENDIX A 

If H has a full row rankp, then we can write H in terms 
of the QR decomposition, i.e.,  

where Q is orthonormal and R is upper triangular. Be- 
cause the first row of H is h' where hT = [h(O), h ( l ) ,  
* 

* , h ( L  - l)], (A. l )  leads to 

Ih, - - 1  = l~ l , l%9  rl,2ql + r 2 . 2 q 2 3  . . . I .  
Hence 

h = rl,lql (A.2) 

then minimizing r w.r.t. y is equivalent to 

Replacing y and 1 1  yll via (A.5) and (A.8). (A. 10) can be 
written as 

where we use the fact that Q,.h = 0. Obviously, the max- 
imum of E occurs when 11 yl1.i~ a zero vector. Substituting 
y = 0 in (A.5) yields 

where ql  is the first column of Q. Substituting (A. l )  into yOpt = Q,x = Q , ( R T ) - ' P .  (A. 12) 

Hr = I(. (A.3) The corresponding least square error is 
obtain 

Re (p T R  - I  Q:h) 

I R T I O ( Q T ~  = ( R T I O (  

yopt obtained via (A .  12) implies 1 )  yII = 0, which says 
that yopt contains the minimum energy. Hence, yopt is also 
a pseudoinverse of matrix H ,  i.e., 

Y ( L  - p )  x I yopt = HT(HHT)-'p. (A. 14) 

By H T  = QR, one can easily verify that (A. 14) and (A. 12) 

where 

xpx I QTr = I----/. 
Since Q Q = I ,  we could further have 

= Q,x + QYy.  (A*5) First let us assume that 
From (A.4), 1) L = NAN,, where ANL is an integer; 

x = ( R T ) - I p .  2 )  LO = NANLO. 
(A'6) Then, ( 1  3 )  can be rewritten as 

Several remarks are now in order. 
a) Because h = r l ,  q l ,  the window function h ( i )  is in ML- 1 N -  1 

the range of the matrix Q,. Therefore, k = O  r = O  
k( (m + k)N + i )Wi:+*(kN + i) 

Q,'h = 0. (A. 7) = 6(m)6(n) 0 I m 5 ANLO. 

O < n < A M ,  and O < i < N .  (B. 1) b) The biorthogonal analysis window function y is the 
sum of two orthogonal vectors, Q,x + QVy.  Thus 

IIY1l2 = 11x1I2 + II Yl12. 

c) While Q,x is determined by the given matrix H as 
well as the biorthogonality relationship, Q, y depends on 

Equation (B. 1) can also be written in the matrix form 
(A.8) 
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where 

. . .  B1 B2 BANL Bmr+ I BANLO- I BO * 

. . . . . . . . .  . . .  . . . . . . . . . . . .  

. . . . . .  BANm-* I 

where B, + k  is A M  X N matrix with element 

B,+k[i, n] = k ( (m  + k)N + i ) W i z  0 I n I A M  and 0 I i < N .  03.4) 

Because f i  ( i )  is periodic with period LO, B, + k = B, + + Lo. Consequtntly, each row of f?  is a circular shifted version 
of the previous row. Moreover, B, + k  = 0 for m + k 2 ANL since h (i) = 0 for L I i < LO. Replacing B, + k  = 0 
for m + k 2 ANL, H can be rewritten as 

BO B1 B"L-1 * * a  0 0 

Bl B2 - * *  0 * * *  0 Bl 

B"L-1 0 * * e  0 

. . . . . . . . . . . . . . . . . . . . .  
. . .  

* * BAN[ - 2  

0 0 0  0 . . .  B A N , - 1  

0 0 0 Bo B2 * * .  . ' .  

0 Bo * * BANL-2 0 * * e  0 

. . .  
. . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  

Rearranging the row of H in (B.5) such that the last A N ,  - 1 rows are immediately after the AN,th row, we obtain 

BO B1 * - *  B m L P I  0 * * .  0 0 

BI 
B m L - I  0 - * a  0 

. . .  0 Bo B2 0 0 

0 . . .  * * e  Bm,-2 

0 0 * * .  Bo BI B2 . . . . . .  

0 Bo . . .  B"L-2 B"r-1 0 . . .  0 

. . . . . . . . . . . .  . . . . . . . . . . . .  

. . .  . . . . . . . . . . . .  0 0 0 
. . . . . . . . . . . .  . . . . . . . . . . . .  

. . .  0 0 0 

For the first ANL columns of H ,  the last ANLO - ( 2 A N L  - 1) rows are zero. Group H in (B.6) into submatrices such 
that 

where 
BO BI * .  * B M L - ~  

B1 B2 0 

BLW-1 0 0 0 

0 0 0 Bo 

. . . . . . . . . . . .  

. . . . . . . . . . . .  
0 B1 e . .  BmL-2 

(B. 7) 
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Since the dimension of B, + k is A M  X N ,  A ,  is A M ( 2 A N L  
- 1) x L ,  that is, ( ( 2 A M I N ) L  - AM) X L ,  matrix. For 
a stable reconstruction, A M / N  5 1 .  Replacing H in (B.2) 
obtains 

It is natural to have the lengths of the given synthesis win- 
dow and the analysis window equal. In this case, the so- 
lution of (B.8) is 

AOY* = c1 

L = O  

= (1, 0, 0, * * , of (B.9) 
Equation (B.9) can be explicitly written as 

C h(i + m N ) W G ’ y * ( i )  = 6 ( m ) 6 ( n > .  
L -  I 

i = O  

2L 
N 

O S m < - - l ,  and O s n < A M  

where the periodic sequence h( i )  with period 2L 
given by 

- 
h ( i )  = h(i  + k [ 2 L  - N I )  

h( i )  O s i < L  

k = O , f l , + 2 * * -  

(B. 10) 

- N is 
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