ECE 360 EXAM 2
November 20, 2002

- No textbooks, notes or HW solutions.
- One page of hand-written notes.
- Calculators are allowed.
- Exam is 50 minutes.
- To maximize your score on this exam, read the questions carefully and write legibly. For those problems that allow partial credit, show your work clearly.
- Good luck.

Part A- Multiple choice and short answer questions. It is not necessary to show work, no partial credit will be given.

1. [5] A continuous-time LTI system is described by the corresponding input/output differential equation

\[\frac{d^2 y(t)}{dt^2} - 4 \frac{dy(t)}{dt} + 3y(t) = 4 \frac{dx(t)}{dt} - x(t) \]

Which one of the following statements is true for this system?

a) \(H(s) = \frac{s^2 - 4s + 3}{4s - 1} \), and the system is stable.

b) \(H(s) = \frac{s^2 - 4s + 3}{4s - 1} \), and the system is unstable.

c) \(H(s) = \frac{4s - 1}{s^2 - 4s + 3} \), and the system is stable.

d) \(H(s) = \frac{4s - 1}{s^2 - 4s + 3} \), and the system is unstable

2. [5] What is the Fourier transform of the periodic signal \(x(t) = \sum_{k=-\infty}^{\infty} rect(t - 2k) \)?

a) \(X(f) = sinc(f) \)

b) \(X(f) = sinc(f)e^{-j4\pi f} \)

c) \(X(f) = \sum_{k=-\infty}^{\infty} 0.5sinc(0.5k)\delta(f - 0.5k) \)

d) \(X(f) = \sum_{k=-\infty}^{\infty} 2sinc(2k)\delta(f - 2k) \)
3. [5] The Fourier transform of \(x(t) = |t|e^{-|t|} \) is

\[
X(f) = \frac{2 + 8\pi^2 f^2}{1 - 8\pi^2 f^2 + 16\pi^4 f^4}
\]

Based on this, what is the inverse Fourier transform of \(X(f) = |f|e^{-|f|} \)?

Hint: If you use one of the properties discussed in class the answer is immediate and requires no computation.

\[\text{a)} \ x(t) = \frac{2 + 8\pi^2 t^2}{1 - 8\pi^2 t^2 + 16\pi^4 t^4} \]
\[\text{b)} \ x(t) = |t|e^{-|t|} \]
\[\text{c)} \ x(t) = e^{-|t|}u(t) \]
\[\text{d)} \ x(t) = \frac{1}{1 + t^2} \]

4. [12] Determine whether the following statements are true or false.

a) If \(X(f) \) is the Fourier transform of \(x(t) \), then \(|X(f)| \) is always an even function.

\[\text{F} \]

b) The spectrum of a periodic signal is always discrete.

\[\text{T} \]

c) For a continuous time signal, \(x(t) = 10sinc(10t) \) the Nyquist rate of sampling is 5Hz.

\[\text{F} \]

d) For an even symmetric periodic signal, \(a_k \) s are equal to zero in the trigonometric Fourier series expansion, \(x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(2\pi kf_0 t) + \sum_{k=1}^{\infty} b_k \sin(2\pi kf_0 t) \).

\[\text{F} \]
Part B- Show all your work to get partial credit. Correct answers without complete work will not receive full credit.

1. [36] For the following system

\[p(t) = \sum_{k=-\infty}^{\infty} \delta(t - 0.5k) \]
\[X(f) = \text{tri}(f) \]
\[H(f) = \begin{cases}
1, & -2 \leq f \leq -1, \quad 1 \leq f \leq 2 \\
0, & \text{otherwise}
\end{cases} \]
\[G(f) = \begin{cases}
1, & -1 \leq f \leq 1 \\
0, & \text{otherwise}
\end{cases} \]

Sketch A(f), B(f), C(f) and Y(f). Show amplitudes and frequencies.
Extra Sheet for Question 1:

\[A(f) = X(f) \ast 2 \sum_{k=-\infty}^{\infty} s(f-2k) = \sum_{k=-\infty}^{\infty} X(f-2k) \]

\[B(f) \]

\[C(f) \]

\[Y(f) \]
Extra Sheet for Question 1:
2. [37] For the following periodic signal,
\[x(t) = 2 - 4 \cos(8\pi t) + 10 \sin(12\pi t - \frac{\pi}{3}) \]

(a) [4] Find the fundamental frequency of the signal.

(b) [15] Find the exponential Fourier series coefficients.

Hint: You can first find the trigonometric Fourier series coefficients and then convert them to the exponential Fourier series.

\[\sin(a - b) = \sin(a) \cos(b) - \sin(b) \cos(a) \]
\[\cos(\frac{\pi}{3}) = \frac{1}{2}, \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2} \]

(c) [8] Find the power of the signal from the Fourier series coefficients.

(d) [10] When \(x(t) \) is used as an input to the following ideal highpass filter, \(H(f) \), find the steady-state output, \(y(t) \).

\[|H(f)| = \begin{cases} 1, & |f| \geq 5 \\ 0, & \text{otherwise} \end{cases} \]
\[\angle H(f) = \begin{cases} \frac{-f\pi}{12}, & |f| \geq 5 \\ 0, & \text{otherwise} \end{cases} \]

\[f_1 = 4 \text{ Hz}, \quad f_2 = 6 \text{ Hz} \quad f_0 = \text{GCD}(4, 6) = 2 \text{ Hz}. \]

\[x(t) = 2 - 4 \cos(8\pi t) + 10 \left[\sin(12\pi t) \cos(\frac{\pi}{3}) - \cos(12\pi t) \sin(\frac{\pi}{3}) \right] \]

\[x(t) = 2 - 4 \cos(8\pi t) + 5 \sin(12\pi t) - 5\sqrt{3} \cos(12\pi t) \]

\[a_0 = 2 \]
\[a_1 = 0 \]
\[b_1 = 0 \]
\[a_2 = -4 \]
\[b_2 = 0 \]
\[a_3 = -5\sqrt{3} \]
\[b_3 = 5 \]

\[x[0] = 2 \]
\[x[1] = 0, \quad x[-1] = 0 \]
\[x[2] = -2, \quad x[-2] = -2 \]
\[x[3] = \frac{1}{2} (-5 \sqrt{3} + 5) \frac{1}{2} \]
\[x[-3] = \frac{1}{2} \left(-5 \sqrt{3} + 5 \right) \]

(all other coefficients are zero).
Extra Sheet for Question 2:

\[P = \sum_{k=\infty}^{\infty} |x_k|^2 \]
\[= 4 + (2)(4) + 2 \left(\frac{75}{4} + \frac{25}{4} \right) \]
\[= 12 + 50 \]
\[= 62 \text{ W/} \]

\[y(t) = 10 |H(6)| \sin(12\pi t - \frac{\pi}{3} + \angle H(6)) \]
\[= 10 \sin(12\pi t - \frac{\pi}{3} - \frac{\pi}{2}) = 10 \sin(12\pi t - 150^\circ) \]

\[\angle H(6) = \frac{-6 \pi}{12} = -\frac{\pi}{2} \]
Extra Sheet for Question 2:
Table 9.2 Operational Properties of the Fourier Transform

<table>
<thead>
<tr>
<th>Property</th>
<th>(x(t))</th>
<th>(X(f))</th>
<th>(X(\omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarity</td>
<td>(x(t))</td>
<td>(x(-f))</td>
<td>(2\pi x(-\omega))</td>
</tr>
<tr>
<td>Time Scaling</td>
<td>(v(at))</td>
<td>(\frac{1}{</td>
<td>a</td>
</tr>
<tr>
<td>Folding</td>
<td>(x(-t))</td>
<td>(X(-f))</td>
<td>(X(\omega))</td>
</tr>
<tr>
<td>Time Shift</td>
<td>(x(t-a))</td>
<td>(e^{-j2\pi ft}X(f))</td>
<td>(e^{-j2\pi \omega t}X(\omega))</td>
</tr>
<tr>
<td>Frequency Shift</td>
<td>(e^{j2\pi ft}x(t))</td>
<td>(X(f-a))</td>
<td>(X(\omega - 2\pi a))</td>
</tr>
<tr>
<td>Convolution</td>
<td>(x(t) \ast h(t))</td>
<td>(X(f)H(f))</td>
<td>(X(\omega)H(\omega))</td>
</tr>
<tr>
<td>Multiplication</td>
<td>(x(t)h(t))</td>
<td>(X(f) \ast H(f))</td>
<td>(\frac{1}{2\pi} X(\omega) \ast H(\omega))</td>
</tr>
<tr>
<td>Modulation</td>
<td>(x(t)\cos(2\pi at))</td>
<td>(0.5[X(\omega + a) + X(\omega - a)])</td>
<td>(0.5[X(\omega + 2\alpha a) + X(\omega - 2\alpha a)])</td>
</tr>
<tr>
<td>Derivative</td>
<td>(x'(t))</td>
<td>(j2\pi fX(f))</td>
<td>(j\omega X(\omega))</td>
</tr>
<tr>
<td>Times-t</td>
<td>(-2\pi itz(t))</td>
<td>(X'(f))</td>
<td>(2\pi X'(\omega))</td>
</tr>
<tr>
<td>Integration</td>
<td>(\int_{-\infty}^{\infty} x(t)dt)</td>
<td>(\frac{1}{j2\pi f} X(f) + 0.5X(0)\delta(f))</td>
<td>(\frac{1}{j2\pi \omega} X(\omega) + \pi X(0)\delta(\omega))</td>
</tr>
<tr>
<td>Conjugation</td>
<td>(x^*(t))</td>
<td>(X(-f))</td>
<td>(X(-\omega))</td>
</tr>
<tr>
<td>Correlation</td>
<td>(x(t) \ast y(t))</td>
<td>(X(f)Y(f))</td>
<td>(X(\omega)Y(\omega))</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>(x(t) \ast x(t))</td>
<td>(X(f)X(f) =</td>
<td>X(f)</td>
</tr>
</tbody>
</table>

Fourier Transform Theorems

- **Central ordinates**
 \(x(0) = \int_{-\infty}^{\infty} X(f)df = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)d\omega \)

- **Parseval’s theorem**
 \(\int_{-\infty}^{\infty} x^2(t)dt = \int_{-\infty}^{\infty} |X(f)|^2df = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2d\omega \)

- **Plancherel’s theorem**
 \(\int_{-\infty}^{\infty} x(t)y(t)dt = \int_{-\infty}^{\infty} X(f)Y(f)df = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)Y(\omega)d\omega \)

Table 11.2 Operational Properties of the Laplace Transform

Note: \(x(t) \) is to be regarded as the causal signal \(x(t)u(t) \).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Property</th>
<th>(x(t))</th>
<th>(X(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Superposition</td>
<td>(ax_1(t) + bx_2(t))</td>
<td>(aX_1(s) + bX_2(s))</td>
</tr>
<tr>
<td>2</td>
<td>Times-exp</td>
<td>(e^{-st}x(t))</td>
<td>(X(s))</td>
</tr>
<tr>
<td>3</td>
<td>Times-cos</td>
<td>(\cos(\alpha x(t)))</td>
<td>(0.5[X(s+\alpha) + X(s-\alpha)])</td>
</tr>
<tr>
<td>4</td>
<td>Times-sin</td>
<td>(\sin(\alpha x(t)))</td>
<td>(j0.5[X(s+\alpha) - X(s-\alpha)])</td>
</tr>
<tr>
<td>5</td>
<td>Time Scaling</td>
<td>(x(at)), (a > 0)</td>
<td>(\frac{1}{a}X\left(\frac{s}{a}\right))</td>
</tr>
<tr>
<td>6</td>
<td>Time Shift</td>
<td>(x(t-a)u(t-a)), (a > 0)</td>
<td>(e^{-as}X(s))</td>
</tr>
<tr>
<td>7</td>
<td>Times-t</td>
<td>(tz(t))</td>
<td>(-\frac{dX(s)}{ds})</td>
</tr>
<tr>
<td>8</td>
<td>Derivative</td>
<td>(x'(t))</td>
<td>(sX(s) - x(0-))</td>
</tr>
<tr>
<td>9</td>
<td>Integral</td>
<td>(\int_{0}^{\infty} x(t)dt)</td>
<td>(\frac{x(s)}{s})</td>
</tr>
<tr>
<td>10</td>
<td>Convolution</td>
<td>(x(t) \ast h(t))</td>
<td>(X(\omega))</td>
</tr>
<tr>
<td>11</td>
<td>Switched periodic, (x_0(t) = \text{first period})</td>
<td>(x_0(t)u(t))</td>
<td>(X_0(s)), (T = \text{time period of } x(t))</td>
</tr>
</tbody>
</table>

Table 11.3 A Short Table of Laplace Transforms

<table>
<thead>
<tr>
<th>Entry</th>
<th>Property</th>
<th>(x(t))</th>
<th>(X(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\delta(t))</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(u(t))</td>
<td>(\frac{1}{s})</td>
<td>(\frac{1}{s^2})</td>
</tr>
<tr>
<td>3</td>
<td>(t \ast u(t))</td>
<td>(\frac{1}{s^2})</td>
<td>(\frac{1}{s^3})</td>
</tr>
<tr>
<td>4</td>
<td>(\delta(t)u(t))</td>
<td>(\frac{1}{s})</td>
<td>(\frac{1}{s^2})</td>
</tr>
<tr>
<td>5</td>
<td>(e^{-at}u(t))</td>
<td>(\frac{1}{s+a})</td>
<td>(\frac{1}{(s+a)^2})</td>
</tr>
<tr>
<td>6</td>
<td>(te^{-at}u(t))</td>
<td>(\frac{1}{(s+a)^2})</td>
<td>(\frac{1}{(s+a)^3})</td>
</tr>
<tr>
<td>7</td>
<td>(e^{-at})</td>
<td>(\frac{1}{s+a})</td>
<td>(\frac{1}{(s+a)^2})</td>
</tr>
<tr>
<td>8</td>
<td>(\sin(at)u(t))</td>
<td>(\frac{1}{s^2+a^2})</td>
<td>(\frac{1}{s^2+a^2})</td>
</tr>
<tr>
<td>9</td>
<td>(\cos(at)u(t))</td>
<td>(\frac{s}{s^2+a^2})</td>
<td>(\frac{s}{s^2+a^2})</td>
</tr>
</tbody>
</table>

Laplace Transform Theorems

<table>
<thead>
<tr>
<th>Entry</th>
<th>Property</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Initial value</td>
<td>(x(0+) = \lim_{t \to 0^+} x(t)) (if (x(s)) is strictly proper)</td>
</tr>
<tr>
<td>16</td>
<td>Final value</td>
<td>(x(\infty) = \lim_{t \to \infty} x(t)) (if poles of (x(s)) lie in LHP)</td>
</tr>
</tbody>
</table>