Introduction to Signal Spaces

Selin Aviyente
Department of Electrical and Computer Engineering
Michigan State University

January 12, 2010
Outline

1 Motivation
2 Vector Space
3 Inner Product Space
4 Normed Vector Space
5 L_2 and l_2 Spaces
6 Basis
7 Fourier Series
Our goal in this course is to expand any signal x from some space S in terms of elementary signals $\{\phi_i\}$ such as
$$x = \sum_i \alpha_i \phi_i.$$

The set $\{\phi_i\}$ should be complete for S.

The expansion coefficients, α_i should be sparse, explain the signal with as few coefficients as possible. Attractive for signal processing applications like compression.

There should be a fast algorithm to compute α_i from the signal.

$\{\phi_i\}$ should be a meaningful set of functions, e.g. sinusoids.
Introduction to Signal Spaces

Outline

1. Motivation
2. Vector Space
3. Inner Product Space
4. Normed Vector Space
5. L_2 and l_2 Spaces
6. Basis
7. Fourier Series
A linear vector space X is a collection of vectors (over the complex or real field) together with two operations; vector addition and scalar multiplication, which for all $x, y \in X$ and $\alpha \in \mathbb{C}/\mathbb{R}$ satisfy the following:

1. **Commutativity:** $x + y = y + x$ for all $x, y \in X$.
2. **Associativity:** $x + (y + z) = (x + y) + z$.
3. **Distributivity:** $\alpha(x + y) = \alpha x + \alpha y$.
4. **Additive Identity:** There is a zero vector such that $x + 0 = x$.
5. **Additive Inverse:** For each $x \in X$ there is a unique vector $-x$ such that $x + (-x) = 0$.
6. **Multiplicative Identity:** $1x = x$.
Examples

- Set of real numbers (\mathbb{R}): It is a real vector space with addition defined in the usual way and multiplication by scalars defined as ordinary multiplication. The null vector is the real number zero.
- n-dimensional real or complex vector spaces: $\mathbb{R}^n, \mathbb{C}^n$.
- $L_p[0, T] = \{f(t) | \int |f(t)|^p dt < \infty\}, 1 \leq p < \infty$. Used for representing continuous time signals.
- $l_p = \{x[n] | \sum |x[n]|^p < \infty\}, 1 \leq p < \infty$. Used for discrete time signals.
- $C[0, T]$: The collection of all real-valued continuous functions on the interval $[0, T]$.
- The collection of functions that are piecewise constant between integers.
- \mathbb{R}^+ a vector space?
Subspace

- A subspace, S, of a vector space V is a subset of V that is closed under vector addition and scalar multiplication.

- Example: Is $X_1 = \{x \in C[0, T] : \int_0^T x(t)dt = 1\}$ a subspace of $C[0, T]$?

- Answer: No, if $x, y \in X_1$, then check whether $x + y \in X_1$.

$$\int_0^T x(t) + y(t)dt = \int_0^T x(t)dt + \int_0^T y(t)dt = 2 \neq 1 \quad (1)$$
Subspace

- A subspace, S, of a vector space V is a subset of V that is closed under vector addition and scalar multiplication.
- Example: Is $X_1 = \{ x \in C[0, T] : \int_0^T x(t)dt = 1 \}$ a subspace of $C[0, T]$?
- Answer: No, if $x, y \in X_1$, then check whether $x + y \in X_1$.

$$\int_0^T x(t) + y(t)dt = \int_0^T x(t)dt + \int_0^T y(t)dt = 2 \neq 1$$ (1)
Outline

1 Motivation
2 Vector Space
3 Inner Product Space
4 Normed Vector Space
5 L_2 and l_2 Spaces
6 Basis
7 Fourier Series
Inner Product

An inner product of two vectors $x, y \in V$ on a vector space is a complex-valued scalar assigned to the two vectors and satisfies the following properties:

1. $< x, y > = (< y, x >)^*$.
2. $< \alpha x, y > = \alpha < x, y >$.
3. $< x + y, z > = < x, z > + < y, z >$.
4. $< x, x > \geq 0, < x, x > = 0$ iff $x = 0$.

An inner product space (pre-Hilbert space) is a linear vector space in which an inner product can be defined for all elements of the space and a norm is given by $\|x\| = (< x, x >)^{1/2}$.

Cauchy-Schwarz Inequality: For all x, y in an inner product space, $| < x, y > | \leq \|x\| \|y\|$. Equality holds if and only if $x = \lambda y$ or $y = 0$.
A complete inner product space is called a Hilbert space. Completeness means that every sequence of vectors in the vector space converge to a vector in the vector space, e.g. the space of rational numbers is not complete.

A sequence of vectors \(\{x_n\} \) is called a Cauchy sequence if \(\|x_n - x_m\| \to 0 \) as \(n, m \to \infty \). If every Cauchy sequence in \(V \) converges to a vector in \(V \), then \(V \) is called complete.

Example: \(V = \mathbb{C}^N, \langle x, y \rangle = y^H x = \sum_{i=1}^{N} x_i y_i^* \).

Example: \(V = L_2[a, b], \langle x, y \rangle = \int_a^b x(t)y^*(t)dt \).

In this course, the space of signals we will consider will be a Hilbert space.
Outline

1 Motivation
2 Vector Space
3 Inner Product Space
4 Normed Vector Space
5 L_2 and l_2 Spaces
6 Basis
7 Fourier Series
A norm is a function \((\| \cdot \| : V \to \mathbb{R}) \) such that the following properties hold:

1. \(\|x\| \geq 0 \) with equality iff \(x = 0 \).
2. \(\|\alpha x\| = |\alpha|\|x\| \).
3. Triangle Inequality: \(\|x + y\| \leq \|x\| + \|y\| \) with equality iff \(x = \alpha y \).

The norm measures the size of a vector. A vector space together with a norm function is called the normed vector space.

The notion of length (norm) gives meaning to the distance between two vectors in \(V \), \(d(x, y) = \|x - y\| \).
Normed Vector Space: Examples

- For example, $V = \mathbb{R}^N$, $\|x\| = \sqrt{\sum_{i=1}^{N} x_i^2}$.
- $V = l_p$, $\|x\| = (\sum_n x^p[n])^{1/p}$.
- The normed space $C[a, b]$ consists of continuous functions on the interval $[a, b]$ together with the norm $\|x\| = \max_{a \leq t \leq b} |x(t)|$.
- You can define different norms for the same vector space yielding different normed spaces.
- A norm can be defined directly from an inner product, though not every norm can be defined from an inner product.
Outline

1. Motivation
2. Vector Space
3. Inner Product Space
4. Normed Vector Space
5. L_2 and l_2 Spaces
6. Basis
7. Fourier Series
L₂ Space

- For an interval \(a \leq t \leq b \), the space \(L₂([a, b]) \) is the set of all square integrable functions defined on \(a \leq t \leq b \), i.e.
 \[
 L₂([a, b]) = \{ f : [a, b] \to \mathbb{C}; \int_a^b |f(t)|^2 \, dt < \infty \}.
 \]
- This corresponds to the space of all signals whose energy is finite.
- Functions that are discontinuous are allowed as members of this space.
- The space \(L₂[a, b] \) is infinite dimensional.
- If \(a = 0 \) and \(b = 1 \), then \(f(t) = 1/t \) is an example of a function that does not belong to \(L₂[0, 1] \).
- The inner product on \(L₂[a, b] \) is defined as
 \[
 \langle f, g \rangle = \int_a^b f(t)g^*(t) \, dt.
 \]
For many applications, the signal is already discrete. In such cases, we represent the signal as a sequence.

The space l_2 is the set of all sequences with $\sum_n |x_n|^2 < \infty$.

The inner product on this space is defined as $\langle x, y \rangle = \sum_n x_n y_n^*$.
Outline

1 Motivation
2 Vector Space
3 Inner Product Space
4 Normed Vector Space
5 L_2 and l_2 Spaces
6 Basis
7 Fourier Series
A necessary and sufficient condition for the set of vectors \(x_1, x_2, \ldots, x_n \) to be linearly independent is that the expression \(\sum_{k=1}^{n} \alpha_k x_k = 0 \) implies \(\alpha_k = 0 \) for all \(k = 1, 2, 3, \ldots, n \).

The span of set \(S \subset V \) is the subspace of \(V \) containing all linear combinations of vectors in \(S \). When \(S = \{ x_1, x_2, \ldots, x_N \} \), \(\text{span}(S) = \{ \sum_{i=1}^{N} \alpha_i x_i \} \).

A subset of linearly independent vectors \(\{ x_1, x_2, \ldots, x_N \} \) is called a basis for \(V \) when its span equals to \(V \). In this case, we say that the dimension of \(V \) is equal to \(N \). \(V \) is infinite-dimensional if it contains an infinite number of linearly independent vectors.

Any two bases for a finite-dimensional vector space contain the same number of elements.
Once you have a basis for a vector space you can express
any vector as a linear combination of the elements of this
set.

Example: For \mathbb{R}^3, the basis is $(1, 0, 0), (0, 1, 0), (0, 0, 1)$.

Example: The space of infinite sequences, such as l_2, is
spanned by the infinite set \(\{ \delta[n - k] \}_{k \in \mathbb{Z}} \). Since they are
linearly independent, the space is infinite-dimensional.

Example: The space of second order polynomials, P_2 is
spanned by \(\{ 1, x, x^2 \} \).

Note: In infinite dimensional spaces, the concept of basis
is a bit different since we have not defined infinite sums.
Orthogonality

- The vectors \mathbf{x} and \mathbf{y} are said to be orthogonal if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.
- The collection of vectors, $e_i, i = 1, \ldots, N$, is said to be orthogonal if each e_i has unit length and $\langle e_i, e_j \rangle = \delta_{ij}$.
- Two subspaces V_1 and V_2 of V are said to be orthogonal if each vector in V_1 is orthogonal to every vector in V_2.
Orthogonal and Orthonormal Basis

A set of vectors \(\{ x_1, x_2, \ldots, \} \) form an orthonormal basis for \(V \) if they span \(V \) and \(< x_i, x_j > = \delta_{ij} \).

In this course, we will work with infinite dimensional function spaces such as \(L_2 \) and \(l_2 \).

In Hilbert space, orthonormal bases are more useful. Any orthonormal set in a Hilbert space can be extended to form an orthonormal basis.

Fourier Series Theorem: Let \(\{ x_n \} \) be an orthonormal set in a Hilbert space, \(H \). Then the following statements are equivalent:

1. \(\{ x_n \} \) is an orthonormal basis.
2. For any \(x \in H \), \(x = \sum_n < x, x_n > x_n \).
3. For any two vectors, \(< x, y > = \sum_n < x, x_n > < y, y_n > \).
4. For any \(x \), \(||x||^2 = \sum_n | < x, x_n > |^2 \).
Orthogonal Projection Theorem

- Suppose V_0 is a subspace of an inner product space V. Suppose $\{e_1, e_2, \ldots, e_N\}$ is an orthonormal basis for V_0. Let $v \in V$ and define v_0 as the orthogonal projection of v onto V_0, then $v_0 = \sum_{i=1}^{N} \langle v, e_i \rangle e_i$ and it is the vector closest to v in the space V_0. Moreover, the error $v - v_0$ is orthogonal to v_0.

- Example: $V = \mathbb{R}^2$ and $V_0 = \mathbb{R}$, then $v_0 = \langle v, e_1 \rangle e_1$. In \mathbb{R}^2, the inner product is the dot product. Therefore, $v_0 = v \cos(\theta)$.

- In this course, we will consider orthogonal projections in infinite dimensional vector spaces. Wavelet expansion is equivalent to projecting a signal onto different subspaces.
Gram-Schmidt Orthogonalization

- Given any countable linearly independent set \(\{ y_n \} \) in an inner product space, it is always possible to construct an orthonormal set from it.
- We can construct an orthonormal set \(\{ x_n \} \) as follows:

 1. \[x_1 = \frac{y_1}{\|y_1\|}. \]
 2. \[x_{k+1} = \frac{y_{k+1} - \sum_{i=1}^{k} \langle y_{k+1}, x_i \rangle x_i}{\|y_{k+1} - \sum_{i=1}^{k} \langle y_{k+1}, x_i \rangle x_i\|}. \]
Outline

1 Motivation
2 Vector Space
3 Inner Product Space
4 Normed Vector Space
5 L_2 and l_2 Spaces
6 Basis
7 Fourier Series
There are many practical reasons for expanding a function as a trigonometric sum. If \(f(t) \) is a signal, then a decomposition of \(f \) into a trigonometric sum gives a description of its component frequencies.

The space of functions considered are periodic functions, \(L_2[-T/2, T/2] \) with the inner product

\[
\langle f, g \rangle = \frac{1}{T} \int_{-T/2}^{T/2} f(t) g^*(t) dt.
\]

The functions \(\{ e^{j\omega_0 kt} \} \) form an orthonormal basis.

By Fourier Theory, they span the space. Orthonormality can be proven as follows:

\[
\langle e^{j\omega_0 kt}, e^{j\omega_0 lt} \rangle = \frac{1}{T} \int_{-T/2}^{T/2} e^{j\omega_0 (k-l)t} dt = \frac{1}{T} \left[\frac{e^{j(k-l)\omega_0 T/2}}{j(k-l)\omega_0} - \frac{e^{-j(k-l)\omega_0 T/2}}{j(k-l)\omega_0} \right]
\]
If we need to find the best approximation of $x(t)$ using N terms in the summation, this is equivalent to finding the orthogonal projection of $x(t)$ onto a subspace spanned by
\{1, e^{i\omega_0 t}, \ldots, e^{i\omega_0 Nt}\} and the expansion coefficients that will minimize the error are given by $\langle x(t), e^{i\omega_0 t} \rangle$.

Fourier transform is an extension for aperiodic signals and can be defined as $F(\omega) = \langle f(t), e^{i\omega t} \rangle$.
Shannon’s Sampling Theorem

- If \(f(t) \) is continuous and bandlimited to \(\omega_m \), then \(f(t) \) is uniquely defined by its samples taken at the sampling frequency of \(2\omega_m \) (the minimum sampling frequency, Nyquist rate), with \(T = \pi / \omega_m \).

\[
f(t) = \sum_{n=-\infty}^{\infty} f(nT) \text{sinc}_T(t - nT)
\]

\[
\text{sinc}_T(t) = \frac{\sin(\pi t / T)}{\pi t / T}
\]

(3)

- This implies that the space of continuous and bandlimited functions form a vector space (\(U_T \) functions whose Fourier transform is limited to \([-\pi / T, \pi / T]\)) and \(h(t - nT) = \text{sinc}_T(t - nT) \) form an orthogonal basis for this space.

- In this case, \(f(nT) = \frac{1}{T} < f(t), h(t - nT) > \).