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Abstract—Identifying the most influential nodes in social net-
works is a key problem in social network analysis. However,
without a strict definition of centrality the notion of what
constitutes a central node in a network changes with application
and the type of commodity flowing through a network. In this
paper we identify social hubs, nodes at the center of influential
neighborhoods, in massive online social networks using principal
component centrality (PCC). We compare PCC with eigenvector
centrality’s (EVC), the de facto measure of node influence by
virtue of their position in a network. We demonstrate PCC’s
performance by processing a friendship graph of 70, 000 users
of Google’s Orkut social networking service and a gaming graph
of 143, 020 users obtained from users of Facebook’s ‘Fighters’
Club’ application.

I. INTRODUCTION

Centrality [1], [2], [4], [9], [17] is a measure to assess the

criticality of a node’s position. Node centrality as a measure of

a node’s importance by virtue of its central location has been in

common use by social scientists in the study of social networks

for decades. Over the years several different meanings of

centrality have emerged.

Among many centrality measures, eigenvalue centrality

(EVC) is arguably the most successful tool for detecting the

most influential node(s) within a social graph. Thus, EVC

is a widely used centrality measure in the social sciences

( [10], [19], [1], [8], [6], [7], [20], [18], [3], [2]). As we

demonstrate earlier in [11], one key shortcoming of EVC is

its focus on (virtually) a single influential set of nodes that

tends to cluster within a single neighborhood. EVC has the

tendency of identifying a set of influential nodes that are all

within the same region of a graph. This shortcoming does

not represent a major issue for many social science problems

and Internet applications, such as PageRank, where EVC has

been used extensively [13]. Meanwhile, when dealing with

massive social network graphs, it is hardly the case that there

is a single neighborhood of influential nodes; rather, there are

usually multiple influential neighborhoods most of which are

not detected or identified by EVC.

In order to identify influential neighborhoods, there is a

need for a measure of centrality that identifies neighborhoods

of influential nodes. One can think of a centrality plane that
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is overlaid over the underlying social graph. This centrality

plane may contain multiple centrality score maxima, each

of which is centered on an influential neighborhood. Nodes

that have centrality score higher than other nodes are located

under a centrality peak and are more central than any of

their neighbors. We use the term social hubs to refer to

nodes forming centrality maxima. These social hubs form the

kernel of influential neighborhoods in social networks. Our

focus in this paper is on identifying influential neighborhoods

rather than influential nodes. To this end, we apply principal

component centrality (PCC) which we introduced in [11].

We motivate the search for local centrality maxima by the

following application. Suppose we wish to deploy a limited

number of monitors in a social graph to spot the emergence

and adoption of as many trends as possible. The spread of

trends in social networks is modeled as an influence process.

The degree to which a node is influential in the spread of a

trend in the long term is measured by its EVC. We define

a social hub in a network as a node whose centrality score

forms a local maxima, i.e. its centrality score is higher than

all of its neighbors’. The number of local maxima identified is

used as a performance metric. The results obtained by using

EVC provides the baseline for comparison. On a walk over a

graph, the EVCs of nodes change gradually, i.e. a node’s EVC

is high in part because its neighbors EVC is also high. This

means, if we were to pick nodes for placement of monitors in

descending order of EVC, quite a few will end up monitoring

the same well connected cluster of nodes. This will introduce

redundancy in the monitoring at the cost of coverage. With

a limited number of monitors available it would be more

desirous to position them in different vicinities of the graph.

If, on the other hand, a node is selected only if its centrality

measure is significant and locally maximum we can avoid

redundancy and in effect, observe a greater number of nodes

with the same number of monitors. This is why our focus is

on identifying influential neighborhoods rather than influential

nodes.

The rest of this paper is organized as follows. Section II

gives background review of EVC and PCC. Section III applies

PCC to an undirected, unweighted friendship graph from

Google’s Orkut social networking service. Orkut currently has

approximately 440, 000 active subscribers [16] and has large



subscriber bases in Brazil and India. The data set available

to us [14] consists of 70, 000 users connected by 2, 971, 776
links. In section IV we apply PCC to a weighted, undirected

gaming graph of matches between users of Facebook’s ‘Fight-

ers’ Club’ application. This data set was originally collected

by Nazir in [15]. It consists of 667, 560 recorded matches

between 143, 020 users making for a graph with 526, 224
edges between users. Section V concludes the paper.

II. BACKGROUND

Let A denote the adjacency matrix of a graph G(V,E)
consisting of the set of nodes V = {v1, v2, v3, . . . , vN} of

size N and set of undirected edges E. When a link is present

between two nodes vi and vj both Ai,j and Aj,i are set equal

to 1 and set to 0 otherwise. Let Γ(vi) denote the neighborhood

of vi, the set of nodes vi is connected to directly.

A. Eigenvector Centrality

Eigenvector centrality (EVC) is a relative score recursively

defined as a function of the number and strength of con-

nections to its neighbors and as well as those neighbors’

centralities. Let x(i) be the EVC score of a node vi. Then,

x(i) =
1

λ

∑

j∈Γ(vi)

x(j)

=
1

λ

N
∑

j=1

Ai,jx(j)
(1)

Here λ is a constant. Equation 1 can be rewritten in vector

form equation 2 where x = {x(1), x(2), x(3), . . . , x(N)}′ is

the vector of EVC scores of all nodes.

x =
1

λ
Ax

λx = Ax (2)

This is the well known eigenvector equation where this

centrality takes its name from. λ is an eigenvalue and x is

the corresponding eigenvector of matrix A. Obviously several

eigenvalue/eigenvector pairs exist for an adjacency matrix A.

The EVC of nodes are defined on the basis of the Perron

eigenvalue λA (the Perron eigenvalue is the largest of all

eigenvalues of A and is also called the principal eigenvalue). If

λ is any other eigenvalue of A then λA > |λ|. The eigenvector

x = {x(1), x(2), . . . , x(N)}′ corresponding to the Perron

eigenvalue is the Perron eigenvector or principal eigenvector.

Thus the EVC of a node vi is the corresponding element x(i)
of the Perron eigenvector x. Note that when the adjacency

matrix A is symmetric all elements of the principal eigenvector

x are positive.

Computing a node’s EVC it takes into consideration its

neighbors’s EVC scores. Because of its recursive definition,

EVC is suited to measure nodes’ power to influence other

nodes in the network both directly and indirectly through

its neighbors. Connections to neighbors that are in turn well

connected themselves are rated higher than connections to

neighbors that are weakly connected.

B. Principal Component Centrality

While EVC assigns centrality to nodes according to the

strength of the most dominant feature of the data set, PCC

takes into consideration additional, subsequent features. We

define the PCC of a node in a graph as the Euclidean

distance/ℓ2 norm of a node from the origin in the P -

dimensional eigenspace formed by the P most significant

eigenvectors. For a graph consisting of a single connected

component, the N eigenvalues |λ1| ≥ |λ2| ≥ . . . ≥ |λN | = 0
correspond to the normalized eigenvectors x1, x2, . . . , xN . The

eigenvector/eigenvalue pairs are indexed in order of descend-

ing magnitude of eigenvalues. When P = 1, PCC equals a

scaled version of EVC. Unlike other measures of centrality,

the parameter P in PCC can be used as a tuning parameter

to adjust the number of eigenvectors included in the PCC.

Let X denote the N ×N matrix of concatenated eigenvectors

X = [x1x2 . . . xN ] and let Λ = [λ1λ2 . . . λN ]′ be the vector

of eigenvalues. Furthermore, if P < N and if matrix X has

dimensions N ×N , then XN×P will denote the submatrix of

X consisting of the first N rows and first P columns. Then

PCC can be expressed in matrix form as:

CP =
√

((AXN×P )⊙ (AXN×P )) 1P×1
(3)

The ‘⊙’ operator is the Hadamard (or entrywise product

or Schur product) operator. Equation 3 can also be written in

terms of the eigenvalue and eigenvector matrices Λ and X, of

the adjacency matrix A:

CP =
√

(XN×P ⊙ XN×P ) (ΛP×1 ⊙ ΛP×1).
(4)

Adding successively more features/eigenvectors will have

the obvious effect of increasing the sum total of node PCC

scores, i.e. 11×NCm > 11×NCn when m > n. However, it is

unclear how much PCC’s scores change as P is varied from

1 through N . In [5] Canright et al. use the phase difference

between eigenvectors computed in successive iterations as a

stopping criteria for their fully distributed method for comput-

ing the principal eigenvector. We use the phase angle between

PCC vectors and EVC to study the effect of adding more

features. We compute the phase angle φ(n) of a PCC vector

using n features with the EVC vector as,

φ(P ) = arccos

(

CP

|CP |
·

CE

|CE |

)

.
(5)

Here, ‘·’ denotes the inner product operator. For a more

detailed coverage of PCC we refer readers to [11].



III. PCC APPLICATION I: GOOGLE ORKUT

In this section we apply PCC to a large scale data set ob-

tained from the friend network of the Orkut social networking

service [12]. The first data set is a friendship graph of 70, 000
users of Google’s Orkut social network service. This data set

was originally collected by Mislove [14] and constitutes an

unweighted, undirected graph. The data set is a social graph

obtained from subscriber friends lists of Google’s Orkut social

network service [14]. The data set consists of 70, 000 user

nodes with 2, 971, 776 undirected links between them and was

processed and analyzed on Matlab 7.4 (R2007a) on a Dell

PowerEdge server with an Intel QuadCore Xeon 2.13GHz

processor and 4GB RAM.

Our objective for applying PCC on this data set is the

discovery of more social hubs than are identified by EVC.

Figure 1a plots the EVC scores of all 70, 000 nodes in the

data set. It shows that node 692 in the network has the highest

EVC, followed by a cluster of nodes with node IDs centered

around 43, 000. The remaining majority of nodes is assigned

centrality scores close to 0. The histogram of node EVCs in

figure 1b confirms this. The number of features P to use for

the computation of PCC is the number of eigenvalues after

which the rate of growth of their cumulative sum begins to

decline significantly. An alternative approach which yields a

clearer cutoff point for the selection of the number of features

to use in PCC was the plot of the rate of change in the phase

angle of PCC vectors with the EVC vector. Figure 1c plots the

phase angles φ of PCC while varying the number of features

from 1 through 100. We select P = 14 as a cut-off point for

the computation of PCC (marked in red). Figure 1e plots PCC

vector of all nodes in the Orkut graph. When we compare it

to the plot of the EVC vector what stands out immediately is

how a lot of nodes with near-zero EVCs are assigned higher

and highly varying PCC scores. Figure 1f is the histogram of

PCC scores which, at a standard deviation of 6839.7, is more

spread out than that of the EVC with a standard deviation of

4382.7.

Figure 1d plots the number of local maxima that are found

in the graph for values of P . At first glance it might appear

that EVC found 84, while PCC improves this number to 91
when using just 14 out of 70, 000 possible features. In the

plotted range a maximum of 95 maxima are identified when

61 features are used. We examine how many of the social

hubs identified are in fact trivial maxima with low centrality.

This is accomplished by viewing the centrality scores of nodes

identified as social hubs. Let Sn denote the set of social hubs

identified by using PCC with n features/eigenvectors. Figure

1g is the histogram of EVC histogram of the top 20 EVC

scoring nodes in S1 (set of social hubs identified using only

EVC/PCC with 1 feature). Only one node (node number 692,

the node with the highest EVC of all 70, 000 nodes in figure

1b) truly stands out with a high EVC, whereas the other 19
social hubs’ EVC scores lie in the lowest bin of the histogram.

Thus, after the definition of local maxima excludes nodes

surrounding the most central node, EVC fails to identify any

other influential neighborhood. One might wonder if, among

the more than 2000 nodes with pronounced EVC scores in

figure 1b there is not a single node besides node 692 that

might be a local maxima. We verified from the data set that

node 692 has 2185 neighbors, most of which have node IDs in

the range between 42134 and 44314 (clearly visible in figure

1b). In contrast, figure 1h is a histogram of the PCC scores

of the 20 nodes with highest PCC scores in S14 (the set

of social hubs identified using C14, PCC with 14 features).

Here, a total of 8 social hubs have non-trivial PCC scores,

the remaining 12 social hubs have PCC scores too low to be

considered significant. The IDs of nodes identified as social

hubs of influential neighborhoods in descending order of PCCs

are 692, 317, 4749, 487, 39, 14857, 35348 and 12219. This

is a substantial improvement over the single neighborhood

identified using EVC. Thus, using PCC in conjunction with

a node selection criteria provided by the definition of local

maxima identifies many more influential neighborhoods in a

social network than is possible by using EVC.

We also raise the question of how different the set of nodes

identified as social hubs is from the nodes we would have

identified as central were we to rely solely on nodes’ centrality

scores. This raises the question of how different SP , the

set of nodes identified as social hubs based on CP , is from

V (CP [|SP |]), the vertex set (returned by the function V ()) of

the first |SP | nodes ranked in descending order of CP . Figure

1i plots the size of the intersection set |SP∩V (CP [|SP |])|. The

data point at P = 1 is 1 and is the number of nodes common

in the set of social hubs identified by EVC and those identified

by node EVC scores alone. For the range 1 ≤ P ≤ 100 at

most 3 nodes identified as social hubs are also present in the

set of the first |SP | most central nodes, i.e. placing monitors

at nodes based solely on their centrality scores produces a lot

of redundant coverage.

We compute the sizes of intersection sets of all pairs of SP1

and SP2 for 1 ≤ P1, P2 ≤ 100. This is plotted in figure 1j. It

shows that as the number of features P1 used to compute CP1

is increased from CP2, the set of social hubs SP2 identified

by it is (almost) always a superset of the set SP1 if P1 < P2.

Thus the inclusion of more feature vectors adds members to

the set of social hubs without removing previous ones.

IV. PCC APPLICATION II: FACEBOOK FIGHTER’S CLUB

APP

The second data set is derived from a list of matches played

between users of Facebook’s ‘Fighters’ Club’ application.

This data set contains 143, 020 users and 667, 560 matches

was originally collected by Nazir in [15]. It differs from the

Orkut friendship graph in that it is a weighted, undirected

graph. The weights of links between two user nodes represent

the number of interactions/matches played against each other.

Each vertex in the weighted gaming graph represents a user

of the application with 526, 224 edges between them. Thus,

weight of an edge between two users is the number of matches

recorded between them in the data set. Edge weights in this

data set range from 1 to 29.
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Fig. 1. Orkut data set: a) EVC scores of nodes, b) A histogram of EVC scores, c) Phase angles φ of PCC vectors C1 through C100 with EVC vector CE ,
d) Number of local maxima discovered using PCC’s of varying number of features, e) PCC scores of nodes using 14 features, f) A histogram of PCC scores
of nodes using 14 features, g) A histogram of EVCs of the 20 social hubs with the highest EVCs, and h) A histogram of PCCs of the 20 social hubs with
the highest PCCs based on 14 features, i) The size of the intersection set of SP and V (CP [|SP |]) for 1 ≤ P ≤ 100, and j) The size of the intersection set
of SP1 and SP2 when 1 ≤ P1, P2 ≤ 100.

Figure 2a plots the EVC scores of all 143, 020 nodes in

the data set. Unlike in the preceding Orkut data set, there

are only very few nodes that are assigned EVCs significantly

greater than 0. The group of nodes in the node ID space above

130, 000 are the only ones with high EVCs, while almost

all other nodes have near-zero EVCs. Like in the example

illustrated earlier, the remaining majority of nodes is assigned

centrality scores close to 0. The histogram of node EVCs in

figure 2b confirms this. Figure 2c plots the phase angles φ of

the PCC vector while varying the number of features from 1
through 100. Figure 2d plots the number of local maximas that

are found in the gaming graph for values of 1 ≤ P ≤ 100.

EVC finds approximately 1.23×105 while PCC increases this

number slightly to 1.232 × 105 when using just 20 out of
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Fig. 2. Facebook Fighters’ Club application data set: a) EVC scores of nodes, b) A histogram of EVC scores, c) Phase angles φ of PCC vectors C1 through
C100 with EVC vector CE , d) Number of local maxima discovered using PCC’s of varying number of features, e) PCC scores of nodes using 10 features,
f) A histogram of PCC scores of nodes using 10 features, g) A histogram of EVCs of the 200 social hubs with the highest EVCs, and h) A histogram of
PCCs of the 200 social hubs with the highest PCCs based on 10 features, i) The size of the intersection set of SP and V (CP [|SP |]) for 1 ≤ P ≤ 100, and
j) The size of the intersection set of SP1 and SP2 when 1 ≤ P1, P2 ≤ 100.

143, 020 possible features. The phase angle φ attains a stable

value around P = 10 features (marked by red line) and so we

will use P = 10 for the computation of PCC, i.e. C10. Figure

2e plots PCCs of all nodes in the graph with 10 features and

figure 2f is their histogram.

This raises the question of how different SP , the set of nodes

classified as social hubs based on CP , is from V (CP [|SP |]),
the vertex set (returned by the function V ()) of the first |SP |

nodes ranked in descending order of CP . Figure 2i plots the

size of the intersection set |SP ∩V (CP [|SP |])|. The data point

at P = 1 is approximately 1.23 × 105 and is the number of

nodes common in the set of social hubs identified by EVC and

those identified by node EVC scores alone. As we proceed on

the horizontal axis the number of features used to compute

PCC is increased. Each data point is the number of nodes in

the intersection of the set of social hubs by P -feature PCC



(CP ) with the set of most central nodes nodes by PCC CP of

equal size. As P increases in the range 1 ≤ P ≤ 100 the size

of the intersection set rapidly drops at first and then climbs

back close to the starting value at 65 features.

We compute the sizes of intersection sets of all pairs of SP1

and SP2 for 1 ≤ P1, P2 ≤ 100. This is plotted in figure 2j. It

shows that as the number of features P1 used to compute CP1

is increased from CP2, the set of social hubs SP2 identified

by it is (almost) always a superset of the set SP1 if P1 <

P2. Thus the inclusion of more feature vectors retains a large

fraction of social hubs identified using fewer features.

V. CONCLUSIONS

We reviewed previously defined measures of centrality and

pointed out their shortcomings in general and EVC in par-

ticular. We reviewed PCC, a new measure of node centrality.

PCC is based on PCA which takes the view of treating a

graphs adjacency matrix as a covariance matrix. PCC interprets

a node’s centrality as its ℓ2 norm from the origin in the

eigenspace formed by the P most significant feature vectors

(eigenvectors) of the adjacency matrix. Unlike EVC, PCC

allows the addition of more features for the computation of

node centralities. We explore two criteria for the selection

of the number of features to use for PCC; a) The relative

contribution of each feature’s power (eigenvalue) to the total

power of adjacency matrix and b) Incremental changes in the

phase angle of the PCC with P features and the EVC as P is

increased.

We applied PCC analysis to Google’s Orkut social network-

ing service. Our objective was the identification of social hubs

in social networks that are left undiscovered by EVC. In the

case of the Orkut graph we saw that using 14 most significant

eigenvectors out of a possible 70, 000 raises the number of

influential neighborhoods discovered from just 1 (that around

the most central node) to 8 (including the one identified by

EVC). The increase in the number of social hubs found using

PCC is even greater. The top 200 social hubs found using

PCC all have normalized PCC greater than 0.1. The social

hubs found using EVC however contain only 13 social hubs

with normalized EVC greater than 0.1.

The Orkut friendship graph we used was unweighted and

undirected, while the Facebook application graph was an

undirected and weighted graph. However, in order to ensure

that eigenvalues and eigenvectors remain real the graphs must

be undirected. We compared the sets of nodes identified as

social hubs with the set of highest scoring nodes by centrality

alone and saw that many of the nodes with high centralities

belong to the same neighborhood. Thus, the notion of a local

maxima serves its purpose of removing neighbors of highly

central nodes. A comparison of social hubs discovered by PCC

with different numbers of features showed that the addition

of more features in PCC adds new social hubs to the list of

identified hubs without replacing previously identified ones.

In the future we intend to extend the definition of PCC

so it can be applied to both directed and undirected graphs.

Furthermore, we propose to formulate a distributed method for

computing PCC along the lines of Canright’s method [5] for

computing EVC in peer-to-peer systems.
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