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a b s t r a c t

Wind tunnel experiments were used to investigate the effects of geometry on the
transverse galloping behavior of nominally rectangular cylinders at Reynolds numbers
from 1,000 to 10,000. Static measurements of the lift and the drag forces were used
to determine the variation of the normal force coefficient with angle-of-attack, in
accordance with the typical quasi-steady description of galloping. Cylinders with unity
chord-to-thickness ratio (side ratio) were found to vary from unstable, to neutrally
stable, to stable as the corner radius was increased from sharp, to half-round, to fully-
round, with this effect diminishing with decreasing Reynolds number. Cylinders with
side ratios of 2 or 3 demonstrated either stability over the entire Reynolds number range,
or a transition from unstable to stable with increasing Reynolds number, depending on
corner radius. The results demonstrated that in general, increasing the corner radius had
a stabilizing effect.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Elastically mounted cylinders with non-circular cross section are susceptible to a flow induced instability known as
galloping due to the fact that the aerodynamic forces on the body change with its orientation to the oncoming flow.
When a cylinder is elastically mounted in the transverse direction, i.e. the y-direction as defined in Fig. 1, an oscillation
velocity ẏ in this direction will cause a change in the cylinder’s effective angle-of-attack, α. Note that positive y is defined
in the downward direction, as in convention in galloping literature. As such, oscillating lift and drag forces will occur. The
normal force coefficient along the y-direction is related to the lift and drag coefficients, viz.:

Cy =
Fy

1/2ρU2
∞
dl

= −
1

cosα2 (CL cosα + CD sinα), (1)

where CL = FL/(1/2ρU2
reldl) and CD = FD/(1/2ρU2

reldl) are the lift and the drag coefficients, respectively, U∞ is the steady
freestream velocity, Urel is the instantaneous oncoming velocity relative to the cylinder, ρ is the fluid density, d is the
cylinder width and l is the cylinder span. FL and FD are the lift and the drag forces, respectively, and Fy is the normal
force. If the oscillation in Fy is such that it increases with α, this effectively produces negative fluid damping and the
structure could become unstable; a phenomenon known as transverse galloping. That is, if ∂Cy/∂α > 0, the cylinder
meets the necessary aerodynamic condition for galloping. Galloping is a phenomenon that can adversely affect structures
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Fig. 1. Rectangular cylinder cross-section geometry and forces acting on the body when moving in the transverse direction at a velocity ẏ.

such as ice coated power lines, bridge decks and stalled wings by causing large amplitude oscillations that are divergent
with increasing freestream velocity (Blevins, 2001; Naudascher and Rockwell, 2005). Another type of structure that may
be susceptible to the galloping instability is the suspension line used in parachutes (Siefers et al., 2013), such as those
used to attach the payload to the canopy in precision airdrop systems (Bergeron et al., 2009). The cross-section of these
braided cables is not circular, but is more accurately described as a rectangle with a side ratio c/d (where c is chord
length) in the range 2–3 and rounded corners (Siefers et al., 2013). Understanding the aerodynamic behavior relating to
the transverse galloping of such nominally rectangular cylinders is therefore fundamental to the prediction and mitigation
of this instability.

The analysis of galloping typically assumes that the forces acting on the body vary in a quasi-steady manner; that is, the
lift and the drag forces depend only on the magnitude and direction of the instantaneous relative velocity, Urel. However,
this assumption is only valid when the time scale of oscillation is much longer than the time scale associated with vortex
shedding in the wake of the body. The relevant time scale ratio is expressed non-dimensionally as the reduced velocity
Ur = U∞/(df ), where f is the frequency of oscillation. Classically, it has been argued that quasi-steady analysis is valid for
Ur > 20 (Blevins, 2001). In comparison, vortex shedding Strouhal numbers for rectangular cylinders are typically in the
range 0.08–0.2, which corresponds to Ur = 5 – 13 (Mannini et al., 2014; Norberg, 1993). The quasi-steady approximation
typically works well for structures with a high Scruton number (or the product of the mass and the damping ratios),
which leads to a large value of the critical reduced velocity for the onset of galloping. For structures with low Scruton
number, the critical velocity can be substantially lower such that it is comparable to that of vortex shedding. Under these
conditions, vortex-induced and galloping oscillations interact, and the assumption of quasi-steadiness breaks down. A
number of studies have considered these low Scruton number scenarios and the interaction between vortex shedding
and galloping; e.g. Bearman et al. (1987) and Massai et al. (2018). It is also noteworthy that Bearman and Luo (1988)
showed that the validity of the quasi-steady assumption should not only take into account the reduced velocity, but also
the amplitude of oscillation. If the assumption of quasi-steady behavior is valid, then the results from static wind tunnel
tests can be used to describe the variation of the aerodynamic forces with α.

The goal of the present study is to investigate the effects of geometry on the aerodynamic behavior of nominally
rectangular cylinders with side ratio c/d and corner radius ratio r/d as it pertains to the transverse galloping instability.
This is a fundamental investigation in the behavior of rectangular cylinders that are relevant to the application of parachute
suspension lines. This work is motivated by recent experimental studies from Siefers et al. (2013, 2014) who showed that
large amplitude oscillations were present on suspension lines at frequencies much lower than those of vortex shedding
in the wake, and the authors suspected transverse galloping could be the cause. The Reynolds number range considered
in this work is Red = U∞d/ν = 1000–10,000, where ν is the kinematic viscosity, which is relevant to the suspension
lines of precision airdrop systems. Over this relatively low Reynolds number range, there is limited information in the
literature on the flow characteristics of rectangular cylinders, even for sharp-cornered cylinders. To the best of the authors
knowledge, there have been no studies regarding the effect of corner radius on galloping for c/d > 1. In this work, static
wind tunnel testing on geometries with 1 ≤ c/d ≤ 3 and 0 ≤ r/d ≤ 0.5 was performed to determine the variation in the
lift and the drag forces, and surface-pressure distributions with angle-of-attack on rigidly mounted models. The variation
in Cy with α was computed from CL and CD, and from this the ∂Cy/∂α galloping criterion was assessed. Surface pressure
measurements were also performed to gain additional insight into the cause of observed Cy(α) trends. The bulk of the
results in this work were originally presented in a conference paper (Feero et al., 2019a) and have been subsequently
expanded to include additional surface pressure analysis.

2. Experimental setup

The experiments are conducted in a low-speed, low-turbulence open return wind tunnel located at the Flow Physics
and Control Lab at Michigan State University. Flow enters the test section after passing through a series of screens, a
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Fig. 2. Cross-sectional geometry of the models under investigation.

honeycomb and a 10:1 contraction. The test section has a 355 mm × 355 mm square cross-section and is 3 m long.
The mean turbulence intensity at the center of the test section over the range of freestream speeds used in this study
is 0.1% for a frequency range above 0.5 Hz. The Reynolds number varies from Red = 1100 to 10,000, which corresponds
to freestream velocities of approximately 0.8 m/s–7.5 m/s. The freestream velocity is monitored using a pitot-static tube
connected to an MKS Baratron 223B differential pressure transducer with a full-scale range of 133 Pa and a 0.3% of-reading
accuracy. At the low Reynolds number end, the pressure transducer resolution becomes a greater source of uncertainty
than the accuracy, with a resolution of 0.013 Pa.

The experimental models under investigation are cylinders with nominally rectangular cross-section defined by the
chord length c , the diameter d = 20 mm, and the corner radius r , as shown in Fig. 1. The coordinate s is the in-plane
surface tangential direction, originating at the forward intersection of the chord line and the model surface. The cross-
sectional shapes of the nine models are shown in Fig. 2. The case of r/d = 0.5 corresponds to cylinders with fully round
fore and aft faces, while r/d = 0 is the sharp-cornered case. The models are 320 mm in length and span the majority of
the test-section height, giving an aspect ratio of 16. The nominal solid blockage at an angle-of-attack α = 0◦ is 5%, and
the worst case blockage for c/d = 3 and α = 15◦ is 10%. Circular end plates with a diameter of 15d and a 30◦ chamfered
edge are fixed to the walls of the tunnel at each end of the model (Fig. 3(a)). In order to allow free movement of the
model under aerodynamic loading for force measurements, a 30 mm long by 20 mm wide slot is necessary in the end
plates. Initial testing showed that outside air drawn into the test-section through this slot had significant impact on the
flow. As such, 4.5 d diameter, 0.75 mm thick fences are attached to the ends of the model to eliminate the unwanted
axial flow. The diameter of the fences was selected by measuring drag and/or lift forces on several models with increasing
fence diameter and determining the diameter at which the measured forces reached a plateau. The added drag due to the
fences is estimated by assuming a skin friction drag equivalent to that of a turbulent flat plate with the same area. Based
on this assumption, the worst case overestimation in the drag coefficient of the model is 0.04 at Red = 1000. A gap of
approximately 0.5 mm is maintained between the fences and the fixed end plates, as shown in Fig. 3(a).

The models are constructed using one of two methods. For geometries where only force measurements are performed,
the model is machined from a single piece of aluminum. When surface pressure measurements are desired, the model is
made in three spanwise segments; two outer aluminum segments, and a center 3D printed segment housing the pressure
taps. Pressure taps with a diameter of 0.35 mm are distributed around the perimeter of the model with a typical spacing
in the s-direction of 0.02 P, where P is the model perimeter. Where necessary, the spanwise locations of successive taps
are staggered to accommodate the connection of plastic tubing inside the model. For the c/d = 1 models, only half the
perimeter houses pressure taps due to limited space for tubing inside the model. In this case, full pressure distributions
are measured by first measuring at α, and then α+180◦. A step-servo motor with a resolution of 0.02◦ is used to control α.
The tubing is connected to a 48 channel Scanivalve multiplexer and the pressure is measured using an MKS Baratron 226A
transducer with 133 Pa range. This sensor has a 0.3% of-reading accuracy and a resolution of 0.013 Pa. Data is sampled at
2 kHz with a typical sampling time of 120 s. This corresponds to a minimum sampling frequency and sampling time of
5U∞/d and 4800D/U∞, respectively.

A custom one-component force balance is used to measure the lift and the drag forces on the model. For the Reynolds
number range of interest, these forces are very low in magnitude. For example, at Red = 1000 a drag coefficient CD = 1
corresponds to a force of approximately 2.5 mN given the model dimensions. The force balance, shown in Fig. 3(b), is
comprised of a parallelogram four bar linkage from which the model is suspended. Given the length of the bars from which
the moving plate is suspended, the balance moves primarily unidirectionally as the vertical displacement is O(102)–O(104)
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Fig. 3. Experimental setup schematics.

times smaller than the horizontal one. The angular motion at the pivot points is accomplished using Riverhawk 6016–600
rotational flexures that have no surface-on-surface contact, thus avoiding static-friction issues. The loads that oppose the
motion of the balance and provide the necessary stiffness are the total suspended weight and the torque at the pivot
points. By measuring the displacement of the balance in the force direction using a Baumer OADM 12U6430 non-contact
triangulation laser displacement sensor (3–5 µm resolution), the force can be obtained if the stiffness is known. An in-situ
calibration is performed by applying known loads and measuring the displacement. The balance is calibrated over a range
of 2.5 mN–500 mN and a typical stiffness is 110 ± 1 N/m. Extensive calibrations have shown that the response of the
balance is linear over the entire calibrated range. The full balance assembly is mounted to a platform that can be rotated
to change between lift and drag measurement; the configuration in Fig. 3(b) shows the balance in the drag measurement
position. A viscous damper, composed of a mesh plate in an oil reservoir, is necessary to damp the oscillations of the
balance at its natural frequency of approximately 1 Hz. For a c/d = 1, r/d = 0 cylinder with a non-dimensional vortex
shedding frequency of 0.13 (Noda and Nakayama, 2003), the expected shedding frequency is 4 Hz at Red = 1000. These
oscillations have negligible effect on the mean forces as they are also very low in amplitude due to the damping of the
balance, with a maximum amplitude of approximately 0.03 d at the highest Reynolds number. Given the stiffness of
the force balance, which depends on model weight, and the resolution of the displacement sensor, a force resolution of
approximately 0.2 mN is achieved. For CD or CL of 1, the typical accuracy of the force measurements ranges from 0.2 mN
to 2.3 mN over Red = 1100 to 10,000. Complete details regarding the custom force balance, including a validation study,
can be found in Feero et al. (2019b).

3. Results

3.1. Sharp-cornered square cylinder

Examples of the directly measured CL and CD variation with α are shown in Fig. 4 for the c/d = 1, r/d = 0 model.
Five different Reynolds numbers are considered: Red = 1100, 2500, 5000, 7500 and 10,000. The ranges of measurement
uncertainties in CD and CL are 0.02–0.07 and 0.002–0.06, respectively. For Red > 1100, the variation in CD with α is
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Fig. 4. Drag and lift coefficients for the c/d = 1, r/d = 0 cylinder as a function of angle-of-attack and Reynolds number. Other than Red = 1100,
the error bars on CL are less than the marker size.

approximately parabolic at low α, with a local maximum occurring at α = 0◦. This behavior of a maxima in drag at
α = 0◦ was not consistent over the entire geometry range; although not shown for brevity, some of the models with
larger c/d displayed the inverse trend of a local minimum in drag at α = 0◦. When the Reynolds number is reduced to
Red = 1100, there is a substantial decrease in CD and a flattening of the curve for −5◦

≤ α ≤ 5◦. Beyond this flat section,
CD continues to decrease with α up to 15◦, which is similar to the behavior at Red = 2500. For Red ≥ 5000, there is a
drastic change in CD at α = 12◦ where the slope of the curve sharply reverses and drag begins to increase. This change
with Reynolds number is also reflected in the lift coefficient, where CL monotonically decreases with α for Red < 5000,
but a reversal in the CL slope occurs at α = 12◦ for Red ≥ 5000. The drastic change in CD and CL at α = 12◦ is due to flow
reattachment on the bottom face, which is a well known effect for square cylinders with r/d = 0 (e.g. Huang et al., 2010),
and the angle where reattachment occurs is often referred to as the critical angle. This value of the critical angle and its
insensitivity to Reynolds number agree very well with other studies who all found reattachment to occur at α = 12◦

for 5000 ≤ Red ≤ 37, 000 (Carassale et al., 2014; Luo et al., 1994; Norberg, 1993). The presence of a negative CL slope
at each Reynolds number indicates the possibility of galloping, since it can be shown that ∂Cy/∂α > 0 is equivalent to
∂CL/∂α + CD < 0 for small α (Blevins, 2001).

Prior to considering the results for the other geometries, the galloping behavior of the c/d = 1, r/d = 0 case will
first be discussed since there exists data regarding this geometry from previous studies. Fig. 5(a) shows the variation in
the normal force with α computed using CD and CL from Fig. 4. As discussed in Section 1, the sign of ∂Cy/∂α indicates
stability with respect to transverse galloping. In particular, a shape is deemed ‘‘unstable" with respect to galloping when
∂Cy/∂α > 0 at α = 0◦, since this corresponds to a body galloping from rest. If ∂Cy/∂α < 0 at α = 0◦, but the slope in Cy
is positive at some α range away from 0◦, the body can still gallop as a hard oscillator. Hard galloping will be discussed
in a subsequent section. The results in Fig. 5(a) demonstrate that for Red > 1100, ∂Cy/∂α > 0 at α = 0◦ and the body is
unstable. At Red = 1100, the change in Cy near α = 0◦ is negligible within the error bounds, thus the body is neutrally
stable at this Reynolds number. Fig. 5(a) also includes a comparison with the Cy data from Norberg (1993) and Bearman
et al. (1987) at Red = 13,000 and 14,000, respectively. Very good agreement is observed between these studies and the
present data at Red = 10,000. The severity of the galloping instability can be quantified by examining the magnitude
of ∂Cy/∂y, which is shown in Fig. 5(b) for α = 0◦. The derivative was computed from either a cubic spline fit of Cy,
or a sliding cubic fit for Red < 5000 to smooth the scatter in the data. Over 1100 ≤ Red ≤ 10, 000, the derivative of
Cy increases monotonically from a value that is zero (within uncertainty) to 6.4 ± 1.9. This indicates that the cylinder
becomes more susceptible to galloping with increasing Reynolds number. Data from previous studies up to Red = 66,000
are also included in this figure for comparison with the present results. The only value of ∂Cy/∂α that overlaps the present
Reynolds number range is from Norberg (1993) at Red = 5000, which agrees within uncertainty with the present value
of ∂Cy/∂α at the same Red. The combination of the data from this study and that of other researchers shows a maximum
in ∂Cy/∂y ≈ 6 at Red ≈ 10, 000, with the value at higher Reynolds number potentially plateauing at Red ≈ 30, 000 at a
value of ∂Cy/∂y = 2 – 3. It is often assumed that the effect of Reynolds number on the galloping behavior of rectangular
cylinders with r/d = 0 is negligible due to their fixed separation points (e.g. Piccardo et al., 2011). However, the present
results and those of other studies demonstrate that quite the opposite is true for c/d = 1 when the Reynolds number is
sufficiently low.

3.2. Normal force coefficients and galloping behavior

The Cy variation with α and Red for each of the geometries shown in Fig. 2 is shown in Figs. 6–8 for c/d = 1, 2 and 3,
respectively. The c/d = 1, r/d = 0.5 case is not shown since this geometry is stable by definition. The results are grouped
by c/d since the maximum value of Cy increases substantially with increasing c/d for each r/d.
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Fig. 5. Galloping stability for c/d = 1, r/d = 0 (Parkinson and Brooks, 1961; Parkinson and Smith, 1964).

Fig. 6. Normal force coefficient variation with α and Red for c/d = 1. (◦) Red = 1100, (□) Red = 2500, (⋄) Red = 5000, (▽) Red = 7500, (▷)
Red = 10,000.

The results for c/d = 1, shown in Fig. 6, will first be considered. The previously shown plot of Cy for c/d = 1, r/d = 0
is reproduced in this figure for direct comparison with r/d = 0.25. After the region of positive ∂Cy/∂α for r/d = 0 and
Red > 2500, the slope becomes flat for α ≈ 4◦ to 7◦, prior to increasing once again up to the critical angle of 12◦. Beyond
this angle, the slope in Cy becomes negative and the body is stable. Red = 2500 displays a similar trend, however there
is no reattachment at this Reynolds number and ∂Cy/∂α remains positive after α = 10◦. Comparing Cy for r/d = 0.25 to
r/d = 0, a drastic change is observed. At this increased value of r/d, the slope in Cy near α = 0◦ is zero for Red > 1100,
indicating the body is neutrally stable. A slight positive slope is observed for Red = 1100, although given the error bounds
on Cy, the slope may still be very near zero. For 2500 ≤ Red ≤ 7500, an α range away from zero is observed where
∂Cy/∂α becomes positive, and this range both shrinks in size and becomes farther from α = 0◦ with increasing Reynolds
number. After this range of positive ∂Cy/∂α, Cy begins to decrease and the body is stable. Once Red = 10,000 is reached,
Cy is essentially flat up to α = 11◦, after which ∂Cy/∂α < 0. These results demonstrate that for c/d = 1, the corner
radius has a profound effect on galloping behavior and the resistance of a cylinder with unity side ratio to galloping can
be improved by increasing r/d.

The variation in Cy with α for c/d = 2 is shown in Fig. 7 for r/d = 0, 0.25 and 0.5. For r/d = 0, the results are
reminiscent of those for c/d = 1 at the same r/d, although at this larger side ratio ∂Cy/∂α is positive at α = 0◦ for
the entire Reynolds number range. The Cy curves also show a sharp change from ∂Cy/∂α > 0 to ∂Cy/∂α < 0 at a lower
angle-of-attack than for c/d = 1. This angle decreases from approximately 8◦ to 6◦ with increasing Red, and it is possible
that this represents similar flow reattachment behavior as for c/d = 1. Unlike the variation in Cy for c/d = 1, there is
no region of flat Cy and ∂Cy/∂α is positive for all α prior to the sharp change in slope. As r/d is increased to 0.25 for
c/d = 2, substantially different trends are observed. A much stronger dependence on Reynolds number is observed for
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Fig. 7. Normal force coefficient variation with α and Red for c/d = 2. Symbols are the same as in Fig. 6.

this geometry, as the slope in Cy at α = 0◦ is positive for Red = 1100, but becomes negative at Red = 2500 and increasingly
so with increasing Red. Interestingly, increasing r/d to 0.25 has a weaker effect on the slope of Cy at α = 0◦ at Red = 1100
compared with other Reynolds numbers. The local minimum value of Cy for Red > 1100 increases in magnitude with Red,
along with a slight increase in the α value corresponding to the peak. After this local minimum in Cy, each of these cases
shows a range of α over which a strong positive gradient in Cy is observed, followed by a smooth transition to a negative
gradient at high angle-of-attack. Similar to r/d = 0, at high angle-of-attack, the effect of Reynolds number decreases and
Cy begins to decrease at a comparable rate for all Red. The behavior of Cy at r/d = 0.5 is qualitatively similar to that of
r/d = 0.25. The most notable difference at this maximum value of r/d is that the slope in Cy at α = 0◦ varies from flat
at Red = 1100, to slightly positive at Red = 2500, to negative for all higher Red. For Red ≥ 7500, the minimum value of
Cy is very close to that at r/d = 0.25, and it also occurs at α = 2◦. Once again, a consistent trend that is observed is that
Reynolds number effects weaken at high α, where in this case Cy data almost collapse for all Red.

The remaining plots of Cy for the largest side ratio under investigation, c/d = 3, are shown in Fig. 8. The results for
c/d = 3, r/d = 0 bear resemblance to those of c/d = 2, r/d > 0, where ∂Cy/∂α at α = 0◦ shows a strong dependance
on Reynolds number. For this geometry, the slope of Cy near zero angle-of-attack is positive and the body is unstable for
Red ≤ 2500, but becomes negative and stable for larger Reynolds number. A smooth transition from positive to negative
Cy slope with increasing α is observed for Red = 1100, whereas a sharp transition occurs for Red = 2500. For Red > 2500,
Cy is negative for all positive α, and only a small α range can be seen where Cy increases at a relatively low rate. The
effect of Reynolds number on Cy undergoes a change once the corner radius is increased above r/d = 0, where for both
r/d = 0.25 and 0.5 the slope of Cy near α = 0◦ becomes exclusively negative for all Red. In addition to this, the peak
values of Cy show a significant increase compared to r/d = 0, with values of Cy reaching as large as nearly 3 in some cases.
In fact, the general shape of Cy (which is approximately equal to −CL for small α) for c/d = 3 and r/d ≥ 0.25 is much
more reminiscent of that of a streamlined body than that of the other bluff bodies in this study. That is; Cy decreases
approximately linearly near α = 0◦ and Cy < 0 for α > 0, with only a moderate increase in Cy following the peak
minimum before decreasing once again. An interesting double peak behavior is observed for r/d = 0.5 and Red ≥ 7500
that is not seen for any other cases. This side ratio also demonstrates consistent behavior where the slope in Cy becomes
relatively insensitive to Reynolds number at high angle-of-attack.

The effects of c/d and r/d on the galloping criterion, ∂Cy/∂α|α=0, over the Reynolds number range investigated are
highlighted in Figs. 9 and 10, respectively. Considering first the effects of c/d on galloping, Fig. 9 shows that for r/d = 0,
∂Cy/∂α|α=0 shows a very similar trend of increasing with Reynolds number for both c/d = 1 and 2. In fact, over much of
the Red range, the values of ∂Cy/∂α|α=0 are within uncertainty of each other for these two side ratios. Once c/d increases
to 3, the galloping behavior changes substantially as there is a transition from instability to stability between Red = 2500
and 5,000. For Red < 5000 where ∂Cy/∂α|α=0> 0, the derivative is an order of magnitude larger for c/d = 3, and this
body is thus substantially more unstable than c/d = 1 and 2. At r/d = 0.25, there is no longer similar behavior between
c/d = 1 and 2, as c/d = 1 is neutrally stable for all Red, whereas c/d = 2 transitions from unstable to stable between
Red = 1100 and 2500. A similar transitionary behavior for c/d = 2 occurs for r/d = 0.5, although in this case at a larger
Reynolds number. Once c/d is increased to 3 for both r/d = 0.25 and 0.5, these geometries become stable over the entire
Reynolds number range. A similarity that can be observed for both r/d = 0.25 and 0.5 is that the ∂Cy/∂α|α=0 curves for
c/d = 2 and 3 appear to converge as Red approaches 10,000.

The effects of r/d on the galloping criterion are shown in Fig. 10. An overarching observation that can be made for
all side ratios is that increasing the corner radius has a stabilizing effect. That is, increasing r/d from 0 to 0.5 can cause
the cylinder to transition from unstable to stable at a given Reynolds number. For example, c/d = 1 shows this trend at
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Fig. 8. Normal force coefficient variation with α and Red for c/d = 3. Symbols are the same as in Fig. 6.

Fig. 9. Side ratio effect on the galloping criterion at α = 0◦ as a function of Reynolds number.

Fig. 10. Corner radius effect on the galloping criterion at α = 0◦ as a function of Reynolds number. The inset plot for c/d = 1 has a reduced ordinate
scale to highlight the r/d effects.

Red = 10,000. However, for c/d = 1 and 2 this stabilizing behavior has a diminishing effect with decreasing Reynolds
number, where the value of ∂Cy/∂α|α=0 tends towards 0 for most r/d values. The opposite behavior occurs at c/d = 3
where the stabilizing effect of r/d is most pronounced for Red < 5000, while the effect of r/d becomes negligible at the
high Reynolds number end.

A number of previous studies have investigated the transverse galloping behavior of rectangular cylinders with sharp
corners, r/d = 0. The present values of ∂Cy/∂α|α=0 as a function of c/d are compared with data from literature for
Red ≥ 1 × 104 in Fig. 11. In this Reynolds number range, the flow is expected to become relatively insensitive to Red
due to fixed separation points at the sharp corners. Fig. 11 demonstrates that the present results agree well with those
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Fig. 11. Comparison of the galloping criterion dependence on c/d for sharp-cornered (r/d = 0) rectangular cylinders at Red ≥ 1 × 104 in smooth
flow. The data from Blevins (2001) is based on tabulated data from several previous studies. The vertical lines indicate the range of ∂Cy/∂α|α=0 at
a particular c/d from a number of previous studies, as summarized in the review by Mannini et al. (2014). All cases are based on experimental
measurements.

of previous studies; in particular, there is good agreement between the present results and those of Norberg (1993) for
c/d = 1 and 3. Fig. 11 also highlights that a range of instability exists over 0.67 < c/d < 3, with the most unstable
geometry likely occurring between c/d = 2 and 3. The data included from the review by Mannini et al. (2014) highlight
the fact that for c/d = 1 and 2, there is a considerable range of ∂Cy/∂α|α=0 reported in various studies. This is likely
the result of experimental differences, such as boundary conditions and actual r/d (i.e., how close r/d is to zero), as well
as the uncertainty in computing the derivative from experimental data. In addition to this, ∂Cy/∂α|α=0 may plateau at a
Reynolds number larger than Red ≈ 10, 000, as evidenced by the data in Fig. 5(b) for c/d = 1.

3.3. Surface pressure distributions

Further insight into the effects of cylinder geometry on the flow can be gained by considering surface pressure
distributions for select cases. Figs. 12 and 13 show the variation in Cp = (p − p∞)/q∞ over the surface, where p and p∞

are the surface and freestream static pressure, respectively. The pressure coefficient is plotted against the wall-tangential
coordinate s normalized by the perimeter, P . The cases selected for examining Cp are c/d = 1, r/d = 0 and 0.25 (Fig. 12),
and c/d = 3, r/d = 0 (Fig. 13). The geometry, Red and α cases were selected to investigate the cause of different ∂Cy/∂α

behaviors (i.e., α regions of negative, approximately zero, or positive ∂Cy/∂α).
Surface pressure distributions at several angles-of-attack and Red = 5000 for c/d = 1, r/d = 0 are shown in Fig. 12(a).

In this plot, the dashed vertical lines identify the locations of the corners. As per the definition in Fig. 1, s = 0 originates
at the center of the front face and increasing s travels along the cylinder surface in the clockwise direction. At α = 0◦, the
Cp distribution shows that other than the front face, the flow is separated over the remaining three faces, as indicated by
an approximately constant Cp on each of these faces. Once α increases to 4◦, the flow remains separated on these faces,
however the pressure increases on the upper face (0.13 ≤ s/P ≤ 0.38) but is relatively unchanged on the lower face
(−0.38 ≤ s/P ≤ −0.13). This change in the pressure level of the separated flow between the upper and lower faces as α

increases from 0◦ to 4◦ leads to an increase in Cy and thus instability with respect to galloping, as shown in Fig. 5(a). As
α increases further to 8◦, the flow remains separated and the pressure level increases by a similar amount on both the
upper and lower faces, leading to approximately no change in Cy. The local maximum in Cy at α = 12◦ coincides with
the flow on the bottom face reattaching near the corner at s/P = −0.38, as was expected from previous discussion. Flow
reattachment on the bottom face is indicated by the region of substantial pressure recovery that follows the region of
separated flow after the s/P = −0.13 corner. The flow then separates again from the rear corner over the back face.

Similar results are presented for comparison in Fig. 12(b) for the c/d = 1, r/d = 0.25 cylinder. For this geometry,
the curved faces at the corners are indicated by shaded regions on the plot. The flow at α = 0◦ is attached over the
front corners (0.07 ≤ |s/P| ≤ 0.18) and separates immediately following this. The point of separation is indicated
approximately by the location where the gradient in Cp goes to zero (Yarusevych et al., 2006). Compared with r/d = 0,
the value that Cp plateaus to near the rear of the cylinder is substantially larger, which is consistent with lower drag
for r/d = 0.25. As α increases to 5◦, there is a uniform increase in the Cp level over the regions past the top/bottom
corners: −0.5 ≤ s/P ≤ −0.18 and 0.18 ≤ s/P ≤ 0.5. Unlike r/d = 0 where the small α increase leads to relatively little
change in Cp on the front face, there are substantial changes in Cp over the front face and front corners for r/d = 0.25.
Specifically, the pressure decreases over the upper corner and similarly increases over the lower corner; however, the
sum of all these changes is no change in Cy relative to α = 0◦ (Fig. 6). A substantial change occurs at α = 10◦ where
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Fig. 12. Surface pressure distributions at various angles-of-attack for c/d = 1 and Red = 5000.

the pressure minimum decreases at s/P = −0.18 and the flow appears to remain attached over a greater extent of the
cylinder’s lower half, separating near the beginning of the lower back corner (s/P = −0.32). This coincides with the local
maximum in Cy. At α = 15◦ the behavior remains similar with separated flow after the first corner on the upper half of
the model, and attached flow on the bottom half up to the rear corner, which coincides with Cy decreasing and the body
becoming stable.

The effect of increasing c/d to 3 for r/d = 0 is shown in Fig. 13 for Red = 1100, 5000 and 10,000. Unlike the c/d = 1,
r/d = 0 geometry where ∂Cy/∂α|α=0≥ 0, ∂Cy/∂α|α=0 changes from negative to positive over the investigated Reynolds
number range (Fig. 8). A general feature that can be observed for all Reynolds numbers for c/d = 3 is that after separation
occurs at the front corners (|s/P| = 0.06), the flow reattaches at some point near the back corner (|s/P| = 0.44) on the
top and bottom faces for α = 0◦. This is indicated by the region of flat Cp followed by a monotonic pressure increase as
the back corner is approached. The extent of the separated region on the top and bottom faces decreases with increasing
Reynolds number.

Increasing from α = 0◦ to 5◦ at Red = 1100 leads to very little change in the flow over the bottom surface of the
cylinder, while the flow over the upper surface becomes fully separated. In addition, there is a substantial increase in
the separation zone pressure relative to α = 0◦. Similar to the results for c/d = 1, r/d = 0 at Red = 5000, no change
in the flow on the bottom face and an increase in separation zone pressure on the upper face leads to an increase in
Cy, thus making the body unstable. As α increases to 8◦, the separated flow on the upper surface is unchanged, while
on the bottom face it appears that the flow is either fully attached or the separation zone has shrunk considerably. This
is indicated by a region of positive pressure gradient from the front corner up to s/P = −0.36. However, given the
error bounds on Cp at this Red, it is not possible determine whether the pressure is truly increasing over approximately
−0.2 ≥ s/P ≥ −0.1. Irregardless of this fact, the reduced region of separated flow leads to a decrease in Cy relative to
α = 5◦. The Cp distribution shows a marked change at the largest α of 15◦, where there is a relatively strong positive
gradient in Cp originating at the front corner, which indicates attached flow. This is followed by a region of flat Cp over
approximately −0.25 ≥ s/P ≥ −0.15, and finally a decrease in Cp towards the back corner. This region of flat Cp suggests
the possibility of a small separation bubble on the lower surface. The large increase in Cp over the majority of the bottom
face leads to a further decrease in Cy relative to α = 8◦.

The Cp results for Red = 5000 are shown in Fig. 13(b). As α is increased from 0◦ to 5◦, the flow becomes fully separated
on the upper face but on the bottom face the region of separated flow shrinks in length, as indicated by a shorter extent
of Cp that is approximately constant. In addition to this, the rate of pressure recovery increases and a local maximum
appears in the Cp distribution on the bottom face. The flow over one of the cylinder’s front corners resembles that of a
canonical backwards facing step, for which it has been shown that reattachment occurs near the point of maximum Cp (Le
et al., 1997). Therefore, the location of the Cp maximum can be used as an indication of the reattachment location. Unlike
c/d = 1 where a small increase in α from α = 0◦ causes the flow to remain separated on the top and bottom faces and an
increase in Cy, a shrinking of the separated region for c/d = 3 is responsible for the decrease in Cy (Fig. 8) and stability with
respect to galloping. At α = 8◦, Cy increases slightly relative to α = 5◦ and similarly there appears to be very little change
in the length of the separated region on the bottom face, although the pressure recovery rate does increase. The separated
region shrinks in size as α increases to 15◦ and there is a substantial increase in the separation zone pressure, leading to a
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Fig. 13. Surface pressure distributions at various angles-of-attack for c/d = 3, r/d = 0. Dashed vertical lines indicate the corners. Error bars are less
than the marker size for Red > 1100.
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Fig. 14. Surface pressure difference between α = 8◦ and 5◦ for c/d = 3, r/d = 0. Cp is multiplied by cos θ , which represents the contribution of Cp
to the normal force. The dashed horizontal lines are the average values of ∆Cp cos θ over the indicated s range.

large decrease in Cy. It is interesting to note for α = 15◦ at Red = 5000 and 10,000, the flow separates at each of the front
corners, however at Red = 1100 the flow remains attached over the bottom front corner (s/P = −0.06). It is hypothesized
that this is a viscous effect related to the thickness of the boundary layer on the front face. From the Falkner–Skan solution
for plane stagnation flow (White, 1974), the stagnation point boundary layer thickness at Red = 10,000 can be estimated
as ∼ 0.02d, whereas at Red = 1100 it increases to ∼ 0.06d. The thicker boundary layer approaching the corner may lead
to an effective rounding of the corner (i.e., increased r/d), thereby mitigating flow separation.

The Cy results for r/d = 0 in Fig. 8 show that over 5◦
≤ α ≤ 8◦, there are distinct differences between Red = 1100, 5000

and 10,000. In particular, in this range Cy decreases with α by ∼0.6 at Red = 1100, is approximately flat at Red = 5000,
and increases by ∼ 0.3 at Red = 10,000. These three different qualitative trends, caused by changing the Reynolds number,
correspond to stability, neutral stability, and instability to galloping, respectively. The cause of these different behaviors
can be investigated by considering the contribution of surface pressure to Cy, viz.

Cy,p = −

∫
P
Cp cos θ d

( s
d

)
, (2)

where θ is the local angle between the surface and the cylinder chordline. The difference in Cp cos θ between α = 8◦ and
5◦, ∆Cp cos θ , is shown in Fig. 14 for each Reynolds number. Also included in this plot are dashed horizontal lines that
indicate the average value of ∆Cp cos θ over a given face, thus representing the contribution to ∆Cy,p. At Red = 1100, there
is no change in Cp on the top face and the observed decrease in Cy is due entirely to Cp increasing over the bottom face
due to earlier reattachment at α = 8◦, as discussed in Fig. 13(a). The surface pressure on the bottom face also generally
increases at Red = 5000 due to slightly earlier reattachment at α = 8◦, but the pressure also increases over the entire
top face. The average value of ∆Cp cos θ is of approximately equal magnitude but opposite sign (since θ differs by 180◦)
for these two faces, therefore there is no change in Cy. Comparing with Red = 5000, at Red = 10,000 the average value
of ∆Cp cos θ on the bottom surface becomes less positive, while on the top surface it becomes increasingly negative due
to a larger increase in the separation zone pressure. Thus, the primary cause of the difference in the Cy behavior from
α = 5◦ to 8◦ between Red = 5000 and 10,000 is the change in separation zone pressure on the top face, with a smaller
contribution from the flow over the bottom face.

The surface pressure distribution results discussed in this section show that galloping stability versus instability
(i.e., the sign of ∂Cy/∂α) is related to whether the region of separated flow on the bottom face of the cylinder decreases or
not with increasing angle-of-attack, where the former case results in stability. A shrinking of the separation zone leading
to ∂Cy/∂α < 0 is observed at both low and high α depending on the geometry and Reynolds number. In cases where
the flow on the bottom face is relatively unchanged with increasing α (e.g., c/d = 1, r/d = 0 between α = 0◦ and 4◦

at Red = 5000, as shown in Fig. 12(a)), instability is associated with an increase in the separation zone pressure on the
upper face.

3.4. Hard galloping

As shown in Section 3.2, there are certain geometries that are stable with respect to galloping at α = 0◦ (i.e.,
∂Cy/∂α|α=0< 0) but still exhibit ranges of α where ∂Cy/∂α > 0, thereby making them susceptible to hard galloping. For a
more detailed description of the hard galloping phenomenon, the reader is directed to Blevins (2001) and Naudascher and
Rockwell (2005). Ranges of α where ∂Cy/∂α > 0 are observed for c/d = 2 and 3, with dependence on Red and r/d. The
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Fig. 15. Galloping criterion versus angles-of-attack for c/d = 2 and 3, r/d = 0.25 and 0.5 at Red = 5000 and 10,000. Filled markers indicate
r/d = 0.25, open markers indicate r/d = 0.5.

behavior of ∂Cy/∂α over 0 ≤ α ≤ 15◦ is shown in Fig. 15 for four cases with two side ratios and two corner radii: c/d = 2
and 3, and r/d = 0.25 and 0.5. The results demonstrate for each of these four geometries, there are one to two ranges
of α where ∂Cy/∂α > 0 and the body could exhibit hard galloping. At Red = 5000, the c/d = 2, r/d = 0.25 geometry
shows a transition to ∂Cy/∂α > 0 at approximately 1◦, and this angle will be referred to as the galloping angle. When
c/d is increased to 3 for the same corner radius, the galloping angle increases to ∼ 4◦. Interestingly, the geometries with
r/d = 0.5 show the same galloping angle as that for r/d = 0.25 at the same c/d. The angle at which ∂Cy/∂α transitions
back to negative also remains relatively unchanged with r/d. The main difference observed is that for c/d = 3, r/d = 0.5
there are two closely spaced regions of ∂Cy/∂α > 0. This hard galloping behavior is consistent at Red = 10,000 for c/d = 2,
although for c/d = 3 the galloping angle is reduced for r/d = 0.5 compared with 0.25. These results demonstrate that for
Red and r/d cases where hard galloping is observed, the galloping angle is mainly governed by c/d. This is in exception
to c/d = 3 at Red = 10,000. The galloping angle is related to the susceptibility to hard galloping, since a larger galloping
angle is equivalent to a larger initial disturbance that would be required for an elastically mounted body to reach that
value of α instantaneously. Since the galloping angle tends to increase with side ratio, this leads to a decrease in the
susceptibility to hard galloping.

4. Conclusions

This experimental study investigates the effects of side ratio, c/d, and corner radius, r/d, on the galloping behavior
of rectangular cylinders at Reynolds numbers between 1000 and 10,000. Three different c/d values are considered, 1,
2, and 3, along with three different corner radii: r/d = 0, 0.25 and 0.5. Lift and drag forces are measured for varying
angles-of-attack and Reynolds number, and from this the normal force coefficient is computed. The variation in Cy (the
force coefficient in the galloping direction) with angle-of-attack is used to assess the galloping behavior of each geometry.
In addition to this, surface pressure distributions are presented for c/d = 1, r/d = 0 and 0.25, and c/d = 3, r/d = 0.

In general, the results demonstrate that the transverse galloping behavior is Reynolds number dependent over the
investigated range. This is particularly true for several geometries, where there is a distinct change in behavior between
the ‘‘low" Reynolds number range, defined as Red ≤ 2500, and the ‘‘high" Reynolds number range, Red ≥ 5000. This is an
important result, as the majority of experimental galloping studies in literature focus on Reynolds numbers of O(104) and
larger. New contributions from this study include results for 103

≤ Red ≤ 104 and the effect of corner radius for varying
side ratio.

In the high Reynolds number regime, the results demonstrate that the sharp-cornered cylinders with side ratio 1 and 2
are unstable with respect to galloping, which is consistent with literature for Red ≥ 104. It is known that as c/d increases,
r/d = 0 rectangular cylinders become stable, and this transition to stability is reached in this study at c/d = 3. Increasing
the corner radius is found to have a stabilizing effect in that it can cause a decrease in the magnitude of a positive Cy
slope, or a transition from positive to negative Cy slope and therefore, a body that is stable. A similar stabilizing effect is
observed by increasing c/d, with the exception of r/d = 0 where both c/d = 1 and 2 are approximately equally unstable.

Several interesting behaviors are observed in the low Reynolds number range. The sharp-cornered c/d = 3 geometry is
unstable, which is opposite to the behavior at high Reynolds number. Furthermore, increasing c/d has a destabilizing effect
for r/d = 0, which again is opposite to the high Reynolds number behavior. The effect of increasing r/d for both low and
high Reynolds number is generally stabilizing for c/d = 1 and 3. For c/d = 2, the corner radius effect is non-monotonic
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and shows different behavior for Red = 1100 and 2500. Detailed characterization of the boundary layer behavior in this
low Reynolds number range is required to understand the flow physics that leads to this type of non-monotonic behavior.

Surface pressure distributions are used to gain insight into the nature of the flow as it relates to galloping stability.
For c/d = 1, r/d = 0, which is unstable, the increase in Cy with increasing α near α = 0◦ is related to the flow on the
upper and lower faces of the cylinder remaining separated. Once the flow reattaches on the bottom face, a maximum in
Cy occurs and the slope with α becomes negative. This is similarly observed for c/d = 1, r/d = 0.25 where the formation
of a larger region of attached flow on the bottom half of the cylinder coincides with a maximum in Cy. Unlike c/d = 1, the
flow on the upper and lower surfaces for c/d = 3, r/d = 0 separates but reattaches at α = 0◦. A small increase in α above
0◦ causes a shrinking in the length of the separated zone on the bottom face for high Reynolds number, while for low
Reynolds number the flow on the bottom face is relatively unchanged; these cases are stable and unstable, respectively.
Thus, a general observation is made that stability with respect to galloping occurs when the length of the separation zone
on the bottom half of the cylinder decreases with increasing angle-of-attack. Conversely, when such a decrease does not
take place, and the pressure on the top face increases with angle-of-attack, instability to galloping is observed. It is not
clear if the shrinking of the mean separation zone on the bottom surface and the change of the separation zone pressure
on the top face are inter-linked. Direct measurement of the boundary layer characteristics are required to confirm the
flow behavior inferred from the present pressure data.

The final aspect of this study concerns the susceptibility of geometries that are stable to becoming unstable as hard
oscillators, known as hard galloping. This effect is observed for c/d = 2 and 3, in particular for r/d = 0.25 and 0.5. The
results demonstrate that side ratio has a dominating effect on hard galloping, as the galloping angle for a particular c/d
is generally unchanged with r/d. Increasing the side ratio from 2 to 3 increases the galloping angle, and thus makes the
body less susceptible to hard galloping.
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