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B S T R A C T

he effect of geometry on the transverse galloping instability of rectangular cylinders was studied experimentally for Reynolds numbers between 1,000 and
0,000. In particular, a comparison was made between a rectangular cylinder with rounded corners and a smooth surface, and the same baseline geometry
ith added surface topology synthesized from two-dimensional Fourier-modes. The effects of the topology amplitude and wavelength were investigated. From
easurements of the normal (galloping direction) force coefficient variation with angle-of-attack, it was found that the added surface topology generally had a
estabilizing effect relative to the smooth cylinder. At the lowest Reynolds number, the smooth cylinder was stable, while the cylinders with added topology
ere unstable with respect to galloping. For Reynolds numbers from 5,000 to 10,000, the added topology did not cause a similar instability. However, there
as a monotonic increase in the slope of the normal force coefficient at zero angle-of-attack with increasing surface height amplitude, thus moving the geometry

loser to the instability threshold. This effect diminished as Reynolds number increased. Overall, for the range of parameters investigated herein, whenever the
ylinders with topology were unstable to soft or hard galloping, the larger topology exhibited more favorable galloping resistance characteristics than the one
ith smaller topology. Topology wavelength was found to have no effect on the galloping behavior of the cylinder for Reynolds numbers below 7500, and a
oderate increase in the normal force slope at zero angle of attack with decreasing wavelength for larger Reynolds numbers. The latter effect was associated
ith an increase in the angle of attack at which the cylinder could become unstable to hard galloping.
. Introduction

This study is undertaken in light of recent findings that the sus-
ension lines of Precision Air Drop Systems (PADS) may exhibit sig-
ificant lateral vibration due to an aeroelastic instability known as
alloping (Siefers et al., 2013, 2014). The resulting unsteady forces
ould adversely affect the overall performance and controllability of
ADS (Bergeron et al., 2009). Thus, understanding the galloping be-
avior of parachute suspension lines is fundamental to the prediction
nd mitigation of this aeroelastic instability.

It is well known that elastically mounted cylinders with non-circular
ross section may be susceptible to galloping. This is a result of the
erodynamic forces acting on the body varying with its orientation to
he oncoming flow; as described schematically in Fig. 1 for a rectan-
ular cylinder elastically mounted in the transverse (𝑦) direction. The
ift and the drag forces, 𝐹𝐿 and 𝐹𝐷, respectively, will be oscillatory
n time due to the oscillation of the body at a velocity �̇�. The normal
orce coefficient in the 𝑦-direction is related to the lift and the drag
oefficients, viz:

𝑦 =
𝐹𝑦

0.5𝜌𝑈2
∞𝑑𝑙

= − 1
cos2 𝛼

(𝐶𝐿 cos 𝛼 + 𝐶𝐷 sin 𝛼), (1)

here 𝐶𝐿 = 𝐹𝐿∕(0.5𝜌𝑈2
rel𝑑𝑙) and 𝐶𝐷 = 𝐹𝐷∕(0.5𝜌𝑈2

rel𝑑𝑙) are the lift
nd the drag coefficients, respectively, 𝛼 is the instantaneous angle-of-
ttack, 𝑈∞ is the steady freestream velocity, 𝑈rel is the instantaneous

∗ Corresponding author.

oncoming velocity relative to the cylinder, 𝜌 is the density, 𝑑 is the
cylinder width and 𝑙 is the cylinder span. If the oscillation is such
that 𝐶𝑦 increases with 𝛼, this produces negative fluid damping and
the structure may become unstable. Mathematically, the necessary
aerodynamic condition for transverse galloping is 𝜕𝐶𝑦∕𝜕𝛼 > 0. This
phenomenon can affect structures such as ice coated power lines, bridge
decks and stalled wings (Blevins, 2001).

For a cylinder geometry that is unstable to galloping, the reduced
flow velocity (𝑈𝑅 = 𝑈∞∕𝑓𝑦𝑑, where 𝑓𝑦 is the body’s natural frequency
of oscillation) has to exceed a critical reduced velocity 𝑈𝑅,crit for
galloping to occur (Naudascher and Rockwell, 2009):

𝑈𝑅,crit =
4𝜋𝑆𝑐

( 𝜕𝐶𝑦
𝜕𝛼

)

𝛼=0

, (2)

where 𝑆𝑐 is the Scruton number, or the mass ratio-damping product.
In air flows, the fluid density is typically much less than that of the
oscillating structure, leading to a mass ratio of order 103–104, which
with a typical damping ratio of order 10−2 (Parkinson, 1989), leads to
a Scruton number of the order 10 – 102, and 𝑈𝑅,crit is of order 102–103.
At such a high reduced velocity, the corresponding reduced frequency
of galloping (or 1∕𝑈𝑅) is very low. Therefore, in air flows, galloping
is predominantly analyzed under the assumption of quasi-steady flow
conditions (Blevins, 2001; Naudascher and Rockwell, 2009; Parkinson,
1989).
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Fig. 1. Rectangular cylinder cross-section geometry and forces acting on the body when
oscillating at a velocity �̇� in the transverse direction.

On the other hand, even in air, galloping could occur with relatively
ow mass ratio (e.g., order 102 for chimneys Parkinson and Wawzonek,

1981 and other light structures) and/or low damping (e.g., order 10−3

in structures such as bridges Stoyanoff, 2001), leading to 𝑈𝑅,crit as low
as order 10. In addition, in water flows the mass ratio is typically of
order 1–10 (Parkinson, 1989), and hence 𝑈𝑅,crit is of order 0.1–10.
In these situations, 𝑈𝑅,crit overlaps with the reduced-velocity range of
vortex-induced vibration (𝑈𝑠 = 𝑈∞∕𝑓𝑠𝑑 = 1∕𝑆𝑡𝑠 ≈ 5 − 10, where
𝑓𝑠 is the frequency of vortex shedding, and 𝑆𝑡𝑠 is the corresponding
Strouhal number). Under such conditions, vortex-induced and gallop-
ing oscillations interact and the assumption of quasi-steadiness breaks
down (Parkinson, 1989).

A typical PADS suspension line has a non-circular cross section
that resembles a rectangle with side ratio 𝑐∕𝑑 = 2 – 3 (where 𝑐
is chord length) and rounded corners (Siefers et al., 2013). Much of
the present understanding of the galloping behavior of rectangular
cylinders is based on cross-sections with sharp corners. It is well
established that these cylinders are prone to galloping in the side-
ratio range 𝑐∕𝑑 ≈ 0.75–3 in the absence of freestream turbulence.
Parkinson (1989) connects the dependence on the side ratio to the
significance of the afterbody, which is defined as the length of the
cylinder’s surface downstream of the separation points. For the sharp-
corner rectangle, separation occurs at the upstream corners, and for
𝑐∕𝑑 < 0.75, the afterbody is too short for the vortices forming in the sep-
arated shear layer to interact with the cylinder side surface (Nakamura
and Tomonari, 1977). Such an interaction is necessary for establishing
a secondary flow that produces a surface pressure distribution favorable
to galloping (Parkinson, 1989). On the other hand, if the afterbody is
sufficiently long (𝑐∕𝑑 larger than approximately 3), the shear layers
reattach on the sides of the cylinder, and vortices are produced from
separation of the shear layers at the trailing-edge corners, with no
afterbody to interact with. This leads to stability to galloping for 𝑐∕𝑑 ≈
3, and larger side ratios (Parkinson, 1989).

Recently, Feero et al. (2020) conducted a study focused on the
Reynolds number range relevant to galloping of PADS (1000 ≤ 𝑅𝑒𝑑 =
𝑈∞𝑑∕𝜈 ≤ 10,000, where 𝜈 is the kinematic viscosity). They found that a
sharp-corner rectangular section, with a sufficiently-long afterbody to
be stable to galloping (𝑐∕𝑑 = 3), becomes unstable as the Reynolds
number is decreased below a certain value. This finding was rather
surprising given the insensitivity of the boundary layer separation
location to Reynolds number. Feero et al. (2020) used surface pressure
data to hypothesize that the reattachment of the shear layers on the
sides of cylinders with long afterbody is a necessary but not sufficient
condition for stability to galloping. Specifically, they noted that the
reattachment point on the bottom surface of the cylinder (for positive
angle of attack) must also shift upstream with increasing 𝛼 for the
rectangular section to be stable to galloping. Their results showed that
in the range 𝛼 = 0◦ – 5◦, this shift occurs for Reynolds number based on
2

the cylinder thickness of 𝑅𝑒𝑑 ≥ 5000 but not at lower Reynolds numbers d
(as seen from their pressure measurements at 𝑅𝑒𝑑 = 1100). Additional
unusual behavior observed in the range 𝑅𝑒𝑑 < 5000 included the sharp-
corner rectangular section becoming more unstable to galloping with
increasing 𝑐∕𝑑 in the range 1–3 (manifested in the increase of the
positive magnitude of 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0, which would lead to smaller 𝑈𝑅,crit),
and the non-monotonic effect of various parameters on galloping insta-
bility for rectangular sections with rounded corners. The authors also
commented that, given the predominant focus of galloping literature
on the range 𝑅𝑒𝑑 > 10,000, the unique behavior below 𝑅𝑒𝑑 = 5000 had
not been brought into focus previously.

Flow-induced vibration of PADS suspension lines is a complex
problem with several attributes including: unique geometry that may
change dynamically due to stretching and twisting of the lines; different
possible oscillation modes (transverse, torsional and coupled oscilla-
tion); yaw and pitch orientation with respect to the approach stream;
and multi-line interactions. The present study is part of a foundational
investigation into the fundamental aerodynamics underlying the vibra-
tion of suspension lines. As such, to attain good understanding of the
physics associated with the various complexities, we take the approach
of starting with the simplest aspects of the problem, and then gradually
add these complexities into the investigation. The current study is
focused on understanding how unique aspects of the suspension-line
geometry might affect the possibility of transverse galloping of the lines
within the Reynolds number range relevant to the operation of PADS
(𝑅𝑒𝑑 = 1000 – 10,000). While (Siefers et al., 2013, 2014) concluded
that the vibration of the lines is most likely caused by galloping, it was
not known if the cross-section shape of the line is nominally unstable
to galloping. It is also unknown how this instability might change with
𝑅𝑒𝑑 over the range 1000–10,000, where interesting flow physics relevant
to galloping remain unexplored, as discussed above.

The goal of the present work is to experimentally investigate the
galloping instability characteristics of rectangular cylinders that ap-
proximate the geometry of parachute suspension lines. A parachute
line is often formed by braiding smaller lines, therefore the surface
is not smooth but has variations in height that are generally of order
(0.01𝑑)–(0.1𝑑). An investigation regarding this type of geometry has
not previously been performed, except by Siefers et al. (2013) and
Siefers et al. (2014) who observed flow-induced vibrations of parachute
suspension lines in a wind tunnel, analyzed the vortex shedding fre-
quencies from the lines, and carried out flow visualization around
a scaled-up solid model of the suspension line in a water tunnel.
The present study investigates the aerodynamic forces and galloping
instability of rectangular cylinders with smooth surfaces and those with
an idealized surface topology with parameters approximating that of
a parachute line. In particular, the effects of topology amplitude and
wavelength are the focus of this study. Given the operation of PADS is
in air, it is highly likely that any galloping of the suspension line would
occur at a frequency that is much smaller than that of vortex shedding
from the line. Hence, the assumption of quasi-steadiness would be
appropriate in analyzing galloping, and the results from static wind-
tunnel tests can be used to describe the variation of aerodynamic
forces with angle-of-attack. Consequently, in this work, measurements
of aerodynamic loads are performed on rigidly mounted, static models
with varying angle-of-attack.

2. Experimental setup

Experiments are conducted in a low-speed, low-turbulence open
return wind tunnel located in the Flow Physics and Control Lab at
Michigan State University. After passing through a section of flow
management devices and a 10:1 contraction, the flow enters a 355 mm
by 355 mm square test section that is 3 m long. The experiments in this
work span a Reynolds number range of 𝑅𝑒𝑑 = 1100 to 10,000, which
corresponds to 𝑈∞ ≈ 0.8 m∕s to 7.5 m/s. The freestream velocity is

onitored using a pitot-static tube connected to an MKS Baratron 223B

ifferential pressure transducer with a full-scale range of 133 Pa and a
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Table 1
Experimental model geometries. All models have 𝑐∕𝑑 = 2.5 and 𝑟∕𝑑 = 0.5.

Description 𝜖𝑜∕𝑑 (%) 𝑛 𝜆𝑠∕𝑑 𝜆𝑧∕𝜆𝑠
Smooth 0 – – –
Topology 5 10 0.61 1.5
Topology 10 10 0.61 1.5
Topology 5 20 0.31 1.5

0.3% of-reading accuracy. At the low Reynolds number end, the pres-
sure transducer resolution becomes a greater source of uncertainty than
the accuracy, with a resolution of 0.013 Pa. The relative uncertainty in
the measurement of 𝑅𝑒𝑑 varies from 2% to 0.5% for 𝑅𝑒𝑑 = 1100 to
10,000. Over the range of freestream velocities used in this study, the
mean turbulence intensity in the test section is 0.1% for a frequency
range from 0.5 Hz to 10 kHz. The mean velocity uniformity in the test
section is within 0.5% of the cross-section-averaged value.

The geometric parameters of the models under investigation are
selected to approximate a typical flat parachute suspension line, both
with and without the surface topology representative of braided cables.
Based on the work of Siefers et al. (2013), the basic cross-sectional
dimensions of the models used in this study are 𝑐∕𝑑 = 2.5 and 𝑟∕𝑑 = 0.5.
The surface topology of the braided cables is approximated using two-
dimensional Fourier-modes to describe the height of the surface relative
to the local nominal smooth cylinder. The local surface height, 𝜖, is
defined as:
𝜖
𝜖𝑜

= 1
2
cos

[

2𝜋
(

𝑠
𝜆𝑠

+ 𝑧
𝜆𝑧

)]

+ 1
2
cos

[

2𝜋
(

𝑠
𝜆𝑠

− 𝑧
𝜆𝑧

)]

, (3)

where 𝑠 and 𝑧 are the wall-tangential and axial coordinates, respec-
tively, 𝜖𝑜 is the surface height amplitude, and 𝜆𝑠 and 𝜆𝑧 are the
wavelengths in the 𝑠 and 𝑧 directions, respectively. The 𝑠-direction
wavelength can also be defined as 𝜆𝑠 = 𝑃∕𝑛, where 𝑛 is the number of
wavelengths in the 𝑠-direction and 𝑃 is the perimeter. In order to avoid
discontinuities in the surface, 𝑛 is selected as an integer. This approach
gives a rigorous definition of the surface topology and allows systematic
modification of specific topological parameters to investigate their
effects, as opposed to a heuristic method of approximating a braided
cable topology. To create a model with added topology, the height
variation with 𝑠 and 𝑧 is superimposed on a nominal cross-sectional
shape, such as the one shown in Fig. 1. The baseline cylinder with
topology, shown in Fig. 2, has 𝜖𝑜∕𝑑 = 5%, 𝜆𝑠∕𝑑 = 0.61 (𝑛 = 10) and
𝜆𝑧∕𝜆𝑠 = 1.5, and approximates the geometry of 600 lb load-capacity
Dacron cable. The effect of surface height amplitude is investigated
using a second cylinder with a higher amplitude of 𝜖𝑜∕𝑑 = 10% and
the same 𝜆𝑠 and 𝜆𝑧. The effect of topology wavelength is investigated
using a cylinder with 𝜖𝑜∕𝑑 = 5% and a smaller wavelength of 𝜆𝑠∕𝑑 =
0.31 (𝑛 = 20). The baseline cylinder without topology (𝜖𝑜∕𝑑 = 0) is
machined from aluminum, while the cylinders with topology consist
of a 3D printed plastic outer sleeve around a solid aluminum spar. The
solid aluminum spar corrects any warping or twisting in the 3D printed
parts and maintains spanwise straightness over time. The geometric
parameters of the four models used in this study are summarized in
Table 1.

The models have dimensions 𝑑 = 20 mm and 𝑙 = 320 mm, which
spans the height of the test section between circular end plates. The
end plates are fixed to the tunnel walls and have a diameter of 15𝑑
and a 30◦ chamfered edge. In addition to the large end plates, small
end plates with 4.5𝑑 diameter and 0.75 mm thickness were fixed to the
ends of the model. These small end plates were necessary to eliminate
axial flow effects due to air being drawn into the test section from the
surroundings through the 20 mm × 30 mm holes in the end plates. The
hole in the upper end plates allows the model support shaft to pass
through the end plate to connect with a force balance while moving
freely. The nominal solid blockage of the models at 𝛼 = 0◦ is 5%.

The accuracy of the 3D printed topology models is assessed prior
to the wind tunnel experiments to ensure that the intended surface
3

Fig. 2. Top and side views of the cylinder with 𝜖𝑜∕𝑑 = 5%, 𝜆𝑠∕𝑑 = 0.61 and 𝜆𝑧∕𝜆𝑠 = 1.5.
The dashed line indicates the nominal smooth cylinder.

height variation is faithfully reproduced. The surface height variation
is measured using a Keyence VR 3200 3D profilometer over a 18 mm
by 24 mm area centered at the model centerline (i.e., 𝑧 = 0 and 𝑠 = 0).
Note that due to the length of the model, the 3D printed sleeve is
manufactured in two spanwise segments that meet at the midspan of
the model (𝑧 = 0). Fig. 3 shows a comparison of the theoretical to
the measured 𝜖∕𝜖𝑜 for the 𝜖𝑜∕𝑑 = 5% (equivalent to 𝜖𝑜 = 1 mm),
𝜆𝑠∕𝑑 = 0.61 model. The results in Fig. 3 demonstrate that despite
some slight distortion near 𝑧 = 0 where the two model halves meet,
the 3D printed model accurately reproduces the prescribed surface
topology. A measurement of 𝜖∕𝜖𝑜 along the leading edge (not shown
for brevity) shows similar agreement between the nominal and the
measured surface height.

Mean lift and drag forces on the models are measured using a
custom designed one-component force balance (Feero et al., 2019). This
force balance is designed to allow accurate load measurement despite
the low Reynolds number range where commercially available load
cells would be inadequate. To give a sense of scale, a drag coefficient
𝐶𝐷 = 1 for the models used in this study corresponds to a drag
force ranging from approximately 2.5 to 200 mN over 𝑅𝑒𝑑 = 1100 to
10,000. The force balance is comprised of a four bar parallelogram
linkage from which the model is vertically suspended. A horizontal
aerodynamic force on the model causes the linkage/model to displace
primarily in the horizontal direction, and this displacement is measured
by a non-contact laser displacement sensor. Given the stiffness of the
force balance, which depends on model weight, it provides a resolution
of 0.19 mN. For 𝐶𝐷 or 𝐶𝐿 of 1, the typical accuracy of the force
measurements ranges from 0.2 mN to 2.3 mN over 𝑅𝑒𝑑 = 1100 to
10,000. Forces were measured for a range of 𝛼, where the model angle
was varied using a step-servo motor with a resolution of 0.02◦. The 0◦

angle-of-attack position was determined by adjusting the model angle
until symmetry was achieved in the force being measured (either lift or
drag). The entire force balance can be rotated to switch between lift and
drag measurement. Further details concerning the experimental setup
and procedure can found in Feero et al. (2019, 2020), which focused
on investigating smooth models.
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Fig. 3. Comparison between theoretical and measured 𝜖∕𝜖𝑜 for the 𝜖𝑜∕𝑑 = 5%, 𝜆𝑠∕𝑑 = 0.61, 𝜆𝑧∕𝜆𝑠 = 1.5 model. Note that equivalent contour levels are used in the two plots.
3. Results

3.1. Topology amplitude

This section is focused on discussing the effects of topology ampli-
tude, 𝜖𝑜, for a fixed 𝑠-direction wavelength of 𝜆𝑠∕𝑑 = 0.61 (equivalent
to 𝑛 = 10). The lift and drag forces are measured for −5◦ ≤ 𝛼 ≤ 15◦

at 𝑅𝑒𝑑 = 1100, 2500, 5000, 7500 and 10,000 for each of the models.
Results at 𝑅𝑒𝑑 = 1100 and 𝑅𝑒𝑑 = 10,000 are shown in Fig. 4. For
the smooth model at 𝑅𝑒𝑑 = 10,000, 𝐶𝐿 varies with 𝛼 in a way that
is similar to a streamlined body; that is, 𝐶𝐿 increases as 𝛼 increases
from 0◦ up to a maximum at 3◦ and then experiences a moderate
decrease. A second peak occurs in 𝐶𝐿 at 𝛼 = 6◦, which is followed
by 𝐶𝐿 increasing slightly with 𝛼. The 𝜖𝑜∕𝑑 = 5% model displays a
similar trend, although the maximum 𝐶𝐿 is reduced relative to the
smooth case. This case also exhibits some asymmetry between positive
and negative angles of attack, the reason for which is unknown. As the
surface height amplitude increases to 𝜖𝑜∕𝑑 = 10%, no peaks in 𝐶𝐿 are
observed but rather the slope of 𝐶𝐿 smoothly decreases and the curve
approximately plateaus at 6◦. For small values of 𝛼, below that of the
first peak and the plateau, the slope of the lift curve decreases with
increasing topology amplitude.

A considerable change in the overall behavior in 𝐶𝐿 is observed for
all geometries when 𝑅𝑒𝑑 is reduced to 1100. At this Reynolds number,
the slope in 𝐶𝐿 near 𝛼 = 0◦ is negative for all but the smooth case.
The peak 𝐶𝐿 magnitude is decreased substantially to approximately 0.2,
whereas values up to 1.2 occur at 𝑅𝑒𝑑 = 10,000. Unlike the topology
models, the smooth model experiences a nearly linear increase with 𝛼
over the entire range.

The drag coefficient at 𝑅𝑒𝑑 = 1100 and 10,000 is shown in Fig. 4c
and d, respectively. Examining first the smooth geometry at 𝑅𝑒𝑑 =
10,000, 𝐶𝐷 is found to decrease slightly as 𝛼 increases from 0◦ to 2◦,
beyond which it increases monotonically with 𝛼. Over 0◦ ≤ 𝛼 ≤ 15◦,
𝐶𝐷 increases by more than a factor of two from approximately 0.5 to
1.2. When the 𝜖𝑜∕𝑑 = 5% surface topology is added, the slope of 𝐶𝐷
becomes exclusively positive over the entire 𝛼 range (except at 𝛼 = 0◦

where the slope is approximately zero), and there is a small increase
in 𝐶 relative to the smooth case at 𝛼 = 0◦. As 𝜖 ∕𝑑 increases from 5%
4

𝐷 𝑜
to 10%, the 𝐶𝐷 curve near 𝛼 = 0◦ becomes substantially flatter and 𝐶𝐷
at 𝛼 = 0◦ increases from 0.6 to 0.8. Unlike 𝐶𝐿, when 𝑅𝑒𝑑 decreases
to 1100 there is not a reversal in the qualitative behavior of 𝐶𝐷. All
the geometries maintain a slope in 𝐶𝐷 that is approximately zero or
positive over the 𝛼 range. The 𝜖𝑜∕𝑑 = 5% and 𝜖𝑜∕𝑑 = 10% 𝐶𝐷 curves
are equivalent within the uncertainty and are flatter than the smooth
case near 𝛼 = 0◦.

The normal force coefficient, 𝐶𝑦, is computed from 𝐶𝐷 and 𝐶𝐿
according to Eq. (1). The variation in 𝐶𝑦 with 𝛼 for the entire Reynolds
number range is shown in Fig. 5 for each geometry. The solid lines
in these plots are curve fits computed using either a cubic spline or a
sliding cubic fit to smooth scatter in the data, where the latter case is
typically used for 𝑅𝑒𝑑 < 5000. Comparing the results at 𝑅𝑒𝑑 = 1100
and 10,000 to Fig. 4, it can be observed that 𝐶𝑦 follows a trend quite
similar to −𝐶𝐿. Examining first the results for the smooth geometry
in Fig. 5a, the slope in 𝐶𝑦 is negative at small angles-of-attack for all
𝑅𝑒𝑑 . This slope becomes increasingly negative as 𝑅𝑒𝑑 increases from
1100 to 5000, after which it begins to decrease in magnitude while
remaining negative. Recall from the introduction that a body is unstable
with respect to galloping when 𝜕𝐶𝑦∕𝜕𝛼 is positive. As 𝑅𝑒𝑑 increases
above 1100, a minimum in 𝐶𝑦 begins to emerge near 𝛼 ≈ 3◦, with
the value of this minimum reaching peak magnitude at 𝑅𝑒𝑑 = 5000
– 7500 before decreasing at 𝑅𝑒𝑑 = 10,000. The double peak behavior
that was observed in 𝐶𝐿 for 𝑅𝑒𝑑 = 10,000 remains present in 𝐶𝑦 as
double minima at approximately 3◦ and 6◦. For 𝑅𝑒𝑑 ≥ 5000, 𝐶𝑦 shows
very little variation with 𝑅𝑒𝑑 at angles-of-attack above approximately
10◦.

Fig. 5b shows the 𝐶𝑦 results for the 𝜖𝑜∕𝑑 = 5% geometry. The
addition of this surface topology leads to an initially positive slope
in 𝐶𝑦 at 𝑅𝑒𝑑 = 1100, and therefore a geometry that is unstable
in the transverse galloping mode. As 𝛼 increases, 𝐶𝑦 reaches a peak
after which the slope becomes approximately constant and negative. A
transition occurs between 𝑅𝑒𝑑 = 1100 and 2500, as 𝜕𝐶𝑦∕𝜕𝛼 at 𝛼 = 0◦

becomes negative, indicating stability. For 𝑅𝑒𝑑 ≥ 2500, the shape in 𝐶𝑦
is similar to that of the smooth geometry, however the magnitude of the
𝐶𝑦 minimum is reduced. The effect of 𝑅𝑒𝑑 on this minimum magnitude
is less than what is seen for the smooth case. A double minima behavior
in 𝐶 , as was observed for the smooth case at 𝑅𝑒 = 10,000, occurs for
𝑦 𝑑
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Fig. 4. Lift and drag coefficient variation with angle-of-attack for the smooth and topology models with 𝜖𝑜∕𝑑 = 5% and 𝜖𝑜∕𝑑 = 10% (𝜆𝑠∕𝑑 = 0.61). For 𝑅𝑒𝑑 = 10,000, error bars are
ess than the marker size.
Fig. 5. Reynolds number effect on 𝐶𝑦 versus 𝛼. Solid lines are curve fits to the data. Error bars are less than the marker size for 𝑅𝑒𝑑 ≥ 2500. (○) 𝑅𝑒𝑑 = 1100, (□) 2500, (◊) 5000,
(▽) 7500, (⊳) 10,000.
he 𝜖𝑜∕𝑑 = 5% geometry for 𝑅𝑒𝑑 ≥ 7500, with the second minimum
occurring at a larger 𝛼 relative to the smooth case.
5

The effect of the largest topology amplitude 𝜖𝑜∕𝑑 = 10% on 𝐶𝑦 is
shown in Fig. 5c. For 𝑅𝑒 ≤ 2500, the shape of 𝐶 is similar to that of
𝑑 𝑦
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Fig. 6. Effect of the topology amplitude for 𝜆𝑠∕𝑑 = 0.61 on the galloping criterion at
𝛼 = 0◦ with comparison to the smooth geometry.

𝑅𝑒𝑑 = 1100 for 𝜖𝑜∕𝑑 = 5%, although the magnitude of the maximum
is decreased and it occurs at a slightly larger 𝛼. However, for 𝑅𝑒𝑑 ≥
5000, 𝐶𝑦 is distinctly different from both the smooth and 𝜖𝑜∕𝑑 = 5%
cases. At 𝑅𝑒𝑑 = 5000, a minimum in 𝐶𝑦 is still observed, but 𝐶𝑦 is
substantially flatter at angles-of-attack near the minimum. Increasing
𝑅𝑒𝑑 from 5000 to 10,000 results in a disappearance of this minimum,
and a transition to 𝐶𝑦 that is constantly decreasing with increasing 𝛼
t 𝑅𝑒𝑑 = 10,000. Unlike the other two geometries, 𝜖𝑜∕𝑑 = 10% shows a
oticeable Reynolds number effect on 𝐶𝑦 at large angle-of-attack, where

the magnitude of 𝐶𝑦 increases monotonically with increasing 𝑅𝑒𝑑 .
Fig. 6 shows the effect of 𝜖𝑜∕𝑑 on the galloping criterion evaluated

t 𝛼 = 0◦, 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0, over the entire Reynolds number range. The
erivative 𝜕𝐶𝑦∕𝜕𝛼 is evaluated from the curve fits of 𝐶𝑦(𝛼) described

previously. The uncertainty in 𝜕𝐶𝑦∕𝜕𝛼 is computed using a Monte Carlo
method with 5 × 103 random samples, as described in the Appendix.
For the smooth cylinder, 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 < 0 and thus this geometry
is stable with respect to galloping over 1100 ≤ 𝑅𝑒𝑑 ≤ 10,000. As
𝑅𝑒𝑑 decreases from 10,000 to 5000, 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 becomes increasingly
negative, however a dramatic increase occurs when 𝑅𝑒𝑑 decreases to
2500. Although the value of 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 remains negative, it becomes
substantially closer to the instability threshold for 𝑅𝑒𝑑 ≤ 2500 com-
pared with higher Reynolds number. The addition of the 𝜖𝑜∕𝑑 = 5%
topology generally causes 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 to increase relative to the smooth
case, indicating that this topology is generally destabilizing. This is
particularly true at 𝑅𝑒𝑑 = 1100, where 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 > 0 and the geometry
is unstable. For 𝑅𝑒𝑑 ≥ 5000, 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 increases relative to the smooth
ase but does not become positive. Increasing 𝜖𝑜∕𝑑 to 10% generally

has the same effect as 𝜖𝑜∕𝑑 = 5%, except the larger amplitude makes
the magnitude of 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 smaller. As a result, the increase in 𝜖𝑜∕𝑑
becomes destabilizing for 𝑅𝑒𝑑 ≥ 5000, since it causes the derivative to
move closer to the instability threshold. On the other hand, for 𝑅𝑒𝑑 =
1100, while the larger amplitude also makes the cylinder unstable, the
decrease in the derivative magnitude makes the cylinder less prone
to vibration since a larger critical reduced velocity would be required
for the onset of oscillation. For all cases, the qualitatively different
behavior between 𝑅𝑒𝑑 = 1100 and 𝑅𝑒𝑑 ≥ 5000 is indicative of a
transitional 𝑅𝑒𝑑 range that seems to encompass 𝑅𝑒𝑑 = 2500. This may
explain the lack of systematic trends for measurements at this Reynolds
number. This includes the large change in 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 at 𝑅𝑒𝑑 = 2500
and a behavior of the derivative with 𝜖𝑜∕𝑑 that is different from the
low (𝑅𝑒𝑑 = 1100) and high (𝑅𝑒𝑑 ≥ 5000) Reynolds number cases.

The previous discussion regarding galloping stability was based on
the value of 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0, where 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 > 0 indicates a body that
would gallop from rest. In this case, if the reduced velocity is higher
than the critical value, any small disturbance that causes an initial
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motion of the body will lead to oscillations that increase in time until
non-linearities in the structure and/or fluid force drive the system
toward a stable limit cycle of oscillations (Barrero-Gil et al., 2009).
However, for cases where 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 < 0, the body may still be prone
to galloping in a hard oscillation mode. This can occur if there are
ranges of 𝛼 away from 0◦ where 𝜕𝐶𝑦∕𝜕𝛼 > 0. Unlike ‘‘soft’’ oscillators,
a hard oscillator requires a large initial disturbance to reach the basin
of attraction of the limit cycle (Novak, 1972). The results in Fig. 5
demonstrate for all three geometries, regions of 𝜕𝐶𝑦∕𝜕𝛼 > 0 exist for
Reynolds numbers where 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 < 0. The hard galloping behavior
of each geometry is considered by examining 𝜕𝐶𝑦∕𝜕𝛼 as a function of 𝛼,
as shown in Fig. 7. Results are shown at 𝑅𝑒𝑑 = 5000 and 10,000, since
each geometry is stable to galloping from rest, i.e., at 𝛼 = 0◦, over this
Reynolds numbers range (Fig. 6).

At 𝑅𝑒𝑑 = 5000, 𝜕𝐶𝑦∕𝜕𝛼 for the smooth geometry is initially negative
but becomes positive for 𝛼 between approximately 3◦ and 7◦. The
angle where 𝜕𝐶𝑦∕𝜕𝛼 first becomes positive (i.e., 3◦ for the smooth
case) will be referred to as the galloping angle. The presence of the
surface topology with 𝜖𝑜∕𝑑 = 5% results in a reduction in the galloping
angle to approximately 2◦. Therefore, the 𝜖𝑜∕𝑑 = 5% topology at
𝑅𝑒𝑑 = 5000 makes the geometry more susceptible to hard galloping, as
a smaller galloping angle corresponds to a smaller initial disturbance
being capable to initiate oscillation. Increasing 𝜖𝑜∕𝑑 to 10% results in
an increase in the galloping angle relative to the smooth case, and also
much smaller positive 𝜕𝐶𝑦∕𝜕𝛼 magnitude. It is interesting to note that
for 𝛼 > 8◦, surface topology has no effect on the slope of 𝐶𝑦 as all three
cases essentially collapse.

The effect of topology on 𝜕𝐶𝑦∕𝜕𝛼 at 𝑅𝑒𝑑 = 10,000 is shown in
Fig. 7b. Unlike at 𝑅𝑒𝑑 = 5000, the addition of surface topology does
not make the body more susceptible to hard galloping relative to the
smooth case. The 𝜖𝑜∕𝑑 = 5% topology has essentially the same galloping
angle of ∼3◦ as the smooth case. The large amplitude topology, 𝜖𝑜∕𝑑 =
10%, at 𝑅𝑒𝑑 = 10,000 is an interesting case as it is completely stable
over the investigated 𝛼 range and is not susceptible to hard galloping.
This is contrary to the destabilizing effect that increasing 𝜖𝑜∕𝑑 to 10%
has on soft galloping. Although not shown for brevity, this was also
the case for the 𝜖𝑜∕𝑑 = 10% geometry at 𝑅𝑒𝑑 = 7500. A consistent
trend over 5000 ≤ 𝑅𝑒𝑑 ≤ 10,000 is that the addition of surface topology
leads to a decrease in the peak positive value of 𝜕𝐶𝑦∕𝜕𝛼 relative to the
smooth case (or the elimination of positive 𝜕𝐶𝑦∕𝜕𝛼 altogether). For a
given elastically mounted body, a decrease in the magnitude of positive
𝜕𝐶𝑦∕𝜕𝛼 is associated with a decrease in the amplitude of oscillation
and an increase in the critical reduced velocity required for galloping
to occur (Blevins, 2001). The results at 𝑅𝑒𝑑 = 10,000 also show that
unlike 𝑅𝑒𝑑 = 5000, there are two ranges of 𝛼 where the slope of 𝐶𝑦
is positive for 𝜖𝑜∕𝑑 < 10%. This is associated with the double peak
behavior observed in Fig. 5 for certain 𝑅𝑒𝑑 .

3.2. Topology wavelength

The effect of topology wavelength is considered by comparing the
𝐶𝑦 behavior of the 𝜆𝑠∕𝑑 = 0.61 and 𝜆𝑠∕𝑑 = 0.31 cylinders, which have
the same amplitude of 𝜖𝑜∕𝑑 = 5%. The normal force coefficient variation
with angle-of-attack for these two geometries is shown in Fig. 8, where
the solid and dashed lines represent 𝜆𝑠∕𝑑 = 0.61 and 𝜆𝑠∕𝑑 = 0.31,
respectively. The results are presented in two different plots with
different Reynolds number ranges to highlight the observation that in
the regime 𝑅𝑒𝑑 ≤ 5000, there is almost no effect in changing topology
wavelength on 𝐶𝑦. This is particularly true for the slope of 𝐶𝑦 at
𝛼 = 0◦, which is equivalent within experimental uncertainties. Some
effect of topology wavelength is observed for 𝑅𝑒𝑑 = 5000 where the
local maximum in 𝐶𝑦 decreases in magnitude and shifts to a larger
angle-of-attack with decreasing wavelength. For the larger Reynolds
number range (𝑅𝑒𝑑 > 5000), the force characteristics are influenced by
𝜆𝑠, however the influence does not alter 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 considerably. The
𝐶𝑦 slope at 𝛼 = 0◦ increases slightly with decreasing 𝜆𝑠 but remains
strongly negative and therefore stable. A consistent feature in this
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Fig. 7. Normal-force coefficient derivative variation with angle-of-attack for the smooth cylinder, and topology cylinders with 𝜆𝑠∕𝑑 = 0.61.
Fig. 8. Effect of topology wavelength on the normal force coefficient variation with angle-of-attack for 𝜖𝑜∕𝑑 = 5%. Solid and dashed lines indicate 𝜆𝑠∕𝑑 = 0.61 and 𝜆𝑠∕𝑑 = 0.31,
respectively.
Reynolds number range is the decrease in the local 𝐶𝑦 minimum with
decreasing wavelength, and an associated shift in this minimum to a
larger 𝛼 (e.g., from 𝛼 = 3◦ to 𝛼 ≈ 7◦ at 𝑅𝑒𝑑 = 10,000). This implies an
increase in the angle at which the model could become prone to hard
galloping. In general, however, over the ranges of 𝜖𝑜 and 𝜆𝑠 investigated
in this study, changing topology amplitude is found to have a more
pronounced influence on altering the cylinder’s force characteristics
than changing topology wavelength.

4. Discussion

The literature review in Section 1 shows that for sharp-cornered
rectangles, stability to galloping (specifically whether 𝐶𝑦 decreases or
increases with 𝛼) primarily depends on whether the separating shear
layer on the bottom side of the cylinder reattaches, and if the resulting
separation bubble shrinks with increasing angle of attack. For cylinders
that are unstable to galloping, the shear layer on the top side of the
cylinder remains separated with increasing 𝛼, and hence boundary layer
reattachment on the top does not play a role in galloping stability. The
present cylinder models, however, have a baseline geometry with fully-
round corners (𝑟∕𝑑 = 0.5), and while there is very little information on
this geometry in literature, from what is available, we reason that the
𝐶𝑦 − 𝛼 characteristics, and hence the galloping stability, of the present
geometry is controlled by the behavior of the shear layer on the top
side of the cylinder. The following discussion clarifies the bases for this
hypothesis.

To appreciate the fundamental effect that corner rounding can have
on galloping instability, consider the study of Carassale et al. (2014).
In their study of square cylinders with sharp corner, 𝑟∕𝑑 = 0.067 and
𝑟∕𝑑 = 0.133, Carassale et al. (2014) showed that, in a freestream
with 5% turbulence intensity, the largest corner radius causes the
separating shear layer on top of the cylinder to have a significant
influence on the lift coefficient variation with angle of attack (𝐶 ≈
7

𝐿

−𝐶𝑦 at small values of 𝛼), above a certain critical Reynolds number
(𝑅𝑒𝑑 ≈ 105). Specifically, at supercritical conditions, the 𝐶𝐿 − 𝛼 slope
becomes positive, indicating stability to galloping, and 𝐶𝐿 increases
to a maximum before decaying with further increase in 𝛼. Similar
supercritical behavior was not observed for the sharp- and smaller-
corner-radius cylinders. The flip in the sign of 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 between
subcritical and supercritical conditions was found to be connected
to the shear layers ability to reattach on the sides of the cylinder
at 𝛼 = 0◦ for supercritical conditions and the largest corner radius.
The reattachment occurs notwithstanding the very short afterbody of
the 𝑐∕𝑑 = 1 geometry. As 𝛼 increases, the separation bubble on the
bottom side shrinks in size, leading to increased pressure on the bottom,
and hence increasing 𝐶𝐿. Simultaneously, the separation bubble on
the top side remains closed, exerting suction pressure that increases
in magnitude with 𝛼 on the upper front corner and the top surface.
This contributes further to the increase of 𝐶𝐿 with 𝛼, which leads to
galloping stability. Beyond a certain angle of attack, the bubble on
the top side starts to lengthen significantly with increasing 𝛼, and the
corner pressure starts to increase. This corresponds to the maximum
𝐶𝐿 and the subsequent decay of 𝐶𝐿 with 𝛼. Eventually, with additional
increase in 𝛼, an open separation forms on the top side and the flow
becomes similar to that at subcritical conditions. At this point, the
𝐶𝐿 − 𝛼 curves for sub and supercritical conditions collapse.

The work of Carassale et al. (2014) highlights the fact that corner
rounding can make boundary layer separation and reattachment on the
top side of the cylinder significant to galloping stability of rectangular
sections. In the present study, the baseline geometry has a fully-round
corner (i.e., a semi-circular leading edge), which is much more of an
‘‘aerodynamic’’ shape than that of the cylinder with the largest corner
radius used by Carassale et al. (2014). With such significant rounding,
it is not known if the boundary layer would separate over the corner,
as is the case for the sharp and small-radius corners. Kalan et al.
(2020) recently examined the boundary layer characteristics over the



International Journal of Heat and Fluid Flow 86 (2020) 108721M.A. Feero et al.
top surface of the present study’s smooth and 5%-topology cylinder
geometry at 𝑅𝑒𝑑 = 2500 in a water tunnel. Using measurements at 𝛼 =
0◦, 2◦, and 5◦, they found separation to start some distance downstream
of the corner, on the flat side of the smooth-surface cylinder. This
judgment was made based on identifying the boundary of the reversed-
flow region; although the study did not have sufficient resolution to
accurately determine the precise location of separation. Kalan et al.
(2021) observed the same behavior on the top side of the cylinder
at a lower Reynolds number of 1100. In addition, they found that no
separation takes place on the bottom side of the smooth cylinder for the
same 𝛼 values examined in Kalan et al. (2020) for 𝑅𝑒𝑑 = 1100 and 2500.
With the absence of leading-edge (LE) separation, and the flow staying
attached on the cylinders bottom surface, the smooth cylinder behaves
more like a lifting body, albeit an inefficient one. This is the likely
reason why this geometry remains stable to galloping in the Reynolds
number range of concern, 𝑅𝑒𝑑 = 1000 – 10,000, as seen in Fig. 5a.

For the case with topology, Kalan et al. (2021) conducted measure-
ments in two different spanwise planes: one aligned with a topology
peak at the leading edge, and the other with a topology valley. The
authors found only a thin, localized separation bubble on the bottom
side of these cylinders. This suggests that even in the presence of topol-
ogy, boundary layer separation and reattachment on the bottom surface
is likely insignificant to the galloping stability of the cylinders. This
leaves the change in separation and reattachment behavior on the top
surface of the cylinder as the probable cause for the cylinders becoming
unstable to galloping when the Reynolds number is sufficiently low
(Fig. 5).

The data in Kalan et al. (2020) show that while separation occurs
downstream of the corner on the top surface when a topology valley
is present at the leading edge, the presence of a peak at the leading
edge causes the shear layer to separate somewhere along the corner
region. In other words, the biggest influence of the topology seems
to be in promoting LE separation on the top surface when a topology
peak is at the LE. At the higher 𝑅𝑒𝑑 of 2500, the shear layer seems to
reattach on the side of the cylinder at 𝛼 = 0◦ and 2◦, but the separation
bubble is open at 𝛼 = 5◦ (Kalan et al., 2020). This behavior of a
leading edge separated shear layer that reattaches on the upper cylinder
side, becomes longer with increasing angle of attack, and eventually
detaches from the surface is similar to the supercritical behavior seen
in Carassale et al. (2014), which leads to stability to galloping. This
apparent transition to what Carassale et al. call supercritical state at
a significantly lower Reynolds number might be linked to the milder
curvature of the corner (𝑟∕𝑑 = 0.5 versus 0.133 for Carassale et al.),
and the longer afterbody (𝑐∕𝑑 = 2.5 versus 1) of the present study.

As the Reynolds number decreases from 2500 to 1100, Kalan et al.
(2021) found that, in the spanwise plane where a topology peak is at
the leading edge, while separation still occurs somewhere along the
corner, there is no evidence of reattachment on the top side of the
cylinder. The absence of reattachment is akin to the flow behavior of
the sharp- and small-radius-corner cylinders in Carassale et al. (2014),
which was associated with instability to galloping. It is important to
note that in using Kalan et al.’s (2020, 2021) measurements in a water
tunnel to interpret the present measurements in a wind tunnel, we
primarily make use of trends in Reynolds number variation, rather than
assuming the same force characteristics of the same model geometry at
the same Reynolds number. Such similarity would require matching of
other parameters with important influence on the problem, including
the freestream turbulence intensity, the model’s aspect ratio, and the
tunnel blockage, which are not matched between the two studies.

The above discussion leads to the hypothesis that the destabilizing
effect of topology is driven by earlier separation around the front top
corner of the model at cross sections where the topology causes the
surface to protrude further into the flow relative to the baseline smooth
geometry. For a sufficiently high Reynolds number (𝑅𝑒𝑑 ≥ 2500 for
𝜖𝑜∕𝑑 = 5%, and 𝑅𝑒𝑑 ≥ 5000 𝜖𝑜∕𝑑 = 10%), the separated shear layer
8

is able to reattach on the side of the cylinder over a certain range
of 𝛼, leading to stability to galloping. At lower Reynolds number, the
separation remains open and the geometry is unstable to galloping.
While at other cross sections along the span (where a topology valley
is present at the LE) separation occurs downstream of the corner, it
appears that on average the earlier separation has a stronger influence.
To understand why this is the case, and if indeed the hypothesis is
correct, it is necessary to conduct more boundary layer measurements
at several Reynolds numbers, along with force measurements. These
studies are underway.

Another interesting effect in Fig. 5 is the weakening, and even
disappearance at 𝑅𝑒𝑑 = 10,000, of the local minimum in the 𝐶𝑦 − 𝛼
as the topology amplitude is increased from 5% to 10%. This effect
is favorable from the perspective of hard galloping (in fact leading to
complete stability to hard galloping at 𝑅𝑒𝑑 = 10,000 when 𝜖𝑜∕𝑑 = 10%;
Fig. 7). This behavior is reminiscent of observations of 𝐶𝐿 − 𝛼 (recall
𝐶𝐿 ≈ −𝐶𝑦) for airfoils with sinusoidally-shaped leading edge. Such
airfoils are typically studied to understand the aerodynamic benefits
of tubercles, which are protuberances that are found on the flippers
of humpback whales. Most of the studies on this topic pertain to high
Reynolds numbers with the lowest Reynolds number data found in
Hansen et al. (2011), considering a NACA 0021 airfoil at Reynolds
number based on chord of 120,000. These results are consistent with
the literature in showing that the abrupt drop in the maximum lift
coefficient past stall is replaced by a much smoother stall peak in the
presence of the protuberances and a smaller maximum lift coefficient.
Increasing the amplitude of the protuberances leads to the stall becom-
ing less prominent. Moreover, Hansen et al. (2011) also investigated
the effect of changing the wavelength of the protuberances. The results
show that decreasing the wavelength leads to increasing the maximum
lift and the stall angle.

The effect of the amplitude of the leading-edge protuberances on
the stall peak of the NACA 0021 airfoil is qualitatively consistent with
the results in Fig. 5b and c, for 𝑅𝑒𝑑 ≥ 5000, which according to
the conjectures developed earlier in this section, exhibit supercritical
conditions, and hence behave as a lifting body. Similarly, the results in
Fig. 8 do show delayed stall angle and a larger maximum lift coefficient
(recall 𝐶𝐿 ≈ −𝐶𝑦) with decreasing topology wavelength for 𝑅𝑒𝑑 = 7500
and 10,000. These observations suggest that the present surface topol-
ogy may, in large part, behave as airfoil leading-edge protuberances
if the Reynolds number is sufficiently high. Present understanding of
the effect of protuberances on airfoil performance is that they generate
streamwise vortices, which lead to desirable enhancement in the airfoils
stall characteristics (see Hansen et al., 2011 and references therein)
while not influencing the lift behavior at small angles of attack. One
would expect the effectiveness of such vortex-generators to depend on
the size of the vortices relative the boundary layer thickness, and hence
Reynolds number. From the perspective of the present investigation,
if indeed the surface topology leads to streamwise vortex generation
at the leading edge, the effect is relevant to the higher Reynolds
number range, where the cylinders are stable to soft, but unstable to
hard galloping. The latter is connected directly with the presence and
prominence of the ‘‘stall’’ peak.

Given that the motivating application of the present study is in air,
this work has focused on understanding the stability to galloping from
the perspective of quasi-steady conditions. This perspective is based on
the expected much lower frequency of galloping oscillation compared
to that of vortex shedding. While this is the established knowledge
in literature, we do recognize that within the unique geometry and
Reynolds number range of the present work, other time scales, aside
from that of vortex shedding, may arise and cause the invalidity of
quasi-steadiness. More specifically, time scales associated with separa-
tion and reattachment behavior that are different from those at higher
Reynolds numbers might lead to such invalidity. A separate study,
which is outside the scope of the present investigation, is presently

being planned to investigate the limits of quasi-steadiness.
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Fig. 9. Example 𝜕𝐶𝑦∕𝜕𝛼 variation with 𝛼 and uncertainty indicated with error bars.
The shaded region indicates the range of 𝜕𝐶𝑦∕𝜕𝛼 for 𝑁 = 5000.

5. Conclusions

The effect of surface topology amplitude and wavelength on the
galloping instability of a rectangular cylinder with side ratio 𝑐∕𝑑 =
2.5 and corner radius 𝑟∕𝑑 = 0.5 was investigated experimentally for
Reynolds numbers 𝑅𝑒𝑑 = 1100 – 10,000. Two topology amplitudes were
tested, 𝜖𝑜∕𝑑 = 5% and 10%, at a constant 𝜆𝑠∕𝑑 = 0.61. Similarly, two
wavelengths along the perimeter (𝑠-direction) were tested, 𝜆𝑠∕𝑑 = 0.61
and 0.31, with constant 𝜖𝑜∕𝑑 = 5%. For all cylinders with topology, the
spanwise-to-perimeter wavelength ratio was held fixed at 𝜆𝑧∕𝜆𝑠 = 1.5.

The smooth geometry showed a lift curve with positive slope near
angle-of-attack 𝛼 = 0◦ over the entire 𝑅𝑒𝑑 range, while the added
topology led to a shift from positive to negative slope with decreasing
𝑅𝑒𝑑 . The topology was found to increase drag at 𝛼 = 0◦ relative to
the smooth case, with the increase being constant at 𝑅𝑒𝑑 = 1100 and
monotonically increasing with 𝜖𝑜∕𝑑 at 𝑅𝑒𝑑 = 10,000.

The smooth geometry was found to be stable to galloping over the
investigated Reynolds number range, as indicated by 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 <
0 (where 𝐶𝑦 is the force coefficient in the galloping direction). In
general, the results showed that the addition of surface topology had a
destabilizing effect and caused an increase in 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0. This increase
lead to instability (𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 > 0) for each topology geometry at
𝑅𝑒𝑑 = 1100. In addition to the stability criterion for galloping from rest,
𝜕𝐶𝑦∕𝜕𝛼|𝛼=0, the hard galloping behavior was also investigated. With the
exception of the 𝜖𝑜∕𝑑 = 10% geometry at high Reynolds number, all of
the geometries showed susceptibility to hard galloping in cases where
they were stable to galloping from a small disturbance. Increasing
𝜖𝑜∕𝑑 was found to decrease or eliminate the susceptibility to hard
galloping. This feature along with a smaller magnitude of 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0
renders the 10% more preferable to the 5% topology amplitude from
the perspective of susceptibility to galloping, irrespective of the initi-
ating disturbance level. The 𝑠-direction wavelength, 𝜆𝑠, was found to
have a comparatively smaller effect than amplitude on the galloping
behavior of the cylinder. Varying 𝜆𝑠 had no effect on 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 for
𝑅𝑒𝑑 ≤ 5000, and only a slight decrease in 𝜕𝐶𝑦∕𝜕𝛼|𝛼=0 occurred for
𝑅𝑒𝑑 > 5000 with decreasing 𝜆𝑠. For the latter Reynolds number range,
decreasing the wavelength also led to an increase in the disturbance
level (instantaneous 𝛼) required to initiate hard galloping.

Analysis of the results leads to the hypothesis that the effect of
the surface topology on galloping stability of rectangular cylinders is
primarily driven by the topological features along the leading edge
(LE). The details of the topology along the sides and in the wake are
of secondary importance. Of particular importance is the role of the
9

leading-edge topology in causing early separation on the top surface
of the cylinder when a topology peak is present at the LE, and the
possibility of the topology acting as streamwise vortex generators, to
delay and flatten the stall peak for geometry that is stable to soft
galloping, and hence acting as a lifting body. The former effect is most
significant to soft galloping and the latter to hard oscillation. Additional
studies incorporating both force and boundary layer measurements are
needed to assess the validity of these ideas.
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Appendix. 𝝏𝑪𝒚∕𝝏𝜶 Uncertainty

The uncertainty in 𝐶𝑦 is a function of the uncertainties in the
parameters from which it is computed; that is, 𝑒𝐶𝑦

= 𝑓 (𝑒𝐹𝐷 , 𝑒𝐹𝐿 , 𝑒𝑈∞
, 𝑒𝛼).

Two primary sources of uncertainty are considered for each of these
quantities: sensor accuracy and statistical convergence of the mean
(based on the number of independent samples). For 𝐹𝐷 and 𝐹𝐿, an
additional uncertainty that accounts for the asymmetry of the force
behavior is also considered. Since the cylinders have cross sections that
are symmetric, 𝐹𝐷 and 𝐹𝐿 should be symmetric and anti-symmetric
about 𝛼 = 0◦, respectively. The symmetry uncertainty is computed as,
for example, |𝐹𝐿(𝛼)| − |𝐹𝐿(−𝛼)| over −5◦ ≤ 𝛼 ≤ 5◦. The uncertainty
in 𝐶𝑦 is computed using the typical Taylor series error propagation
methodology applied to Eq. (1).

A different approach employing Monte Carlo simulations is used to
compute the uncertainty for 𝜕𝐶𝑦∕𝜕𝛼, which is computed from a curve fit
of 𝐶𝑦(𝛼). The curve fitting is accomplished using two different methods
(as described in Section 3.1) based on the amount of data scatter. Using
the Monte Carlo approach, a random sequence 𝐶𝑦 = (𝐶𝑦𝑖,… , 𝐶𝑦𝑁 ) is
computed, viz.

𝐶𝑦𝑖 = 𝐶𝑦 +
𝑒𝐶𝑦

2
𝑟𝑖, (4)

where 𝑟 is a random number drawn from the standard normal distribu-
tion and 𝑁 is the number of replications. A curve fit of 𝐶𝑦𝑖(𝛼) is applied
for each replication, differentiated to obtain 𝜕𝐶𝑦∕𝜕𝛼, and finally the
uncertainty in 𝜕𝐶𝑦∕𝜕𝛼 at the 95% confidence interval is computed as:

𝑒 𝜕𝐶𝑦 = 2𝜎 𝜕𝐶𝑦
, (5)
𝜕𝛼 𝜕𝛼
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where 𝜎 is the standard deviation. The result of a typical Monte Carlo
imulation to determine the uncertainty in 𝜕𝐶𝑦∕𝜕𝛼 is shown in Fig. 9.

The shaded region indicates the range of 𝜕𝐶𝑦∕𝜕𝛼 due to both the
uncertainty in 𝐶𝑦 and the numerical differentiation technique, and the
error bars on the plot markers are obtained from Eq. (5).
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