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The present study is focused on obtaining the inviscid flow solution for a circular
cylinder traversing steadily across an unbounded uniform-shear flow. The work is
motivated by understanding the aerodynamics of bodies traversing across a shear
flow, as well as by developing an understanding of fundamental concepts that are
well understood for uniform free stream but not in the presence of shear. The
results show that, in general, the presence of shear makes it impossible to define
a unique approach-stream incidence angle α relative to the cylinder. However,
in the limit of, what we have termed ‘quasi-uniform’ flow, such an angle can
be defined. We show that in this limit, the flow is also quasi-steady, and the
static-cylinder solution can be used to solve for the moving-cylinder problem with
good accuracy. This ‘quasi-uniform and quasi-steady’ (QUS) condition is attained
when a single unsteadiness parameter U̇+o approaches zero. For small values of the
cylinder-to-free-stream velocity ratio Vr, U̇+o ≈ Keff Vr, where Keff is the effective
non-dimensional shear rate. Away from the QUS flow limit, the flow field and the
surface pressure distribution are significantly different between the moving and the
static cylinders. However, a surprising result is that regardless of whether QUS
conditions hold, the force acting on the moving cylinder in a Galilean frame of
reference is always the same as that on a static cylinder in uniform-shear free
stream but with non-dimensional shear rate and incidence angle equal to the moving
cylinder’s instantaneous Keff and tan−1(Vr), respectively.

Key words: general fluid mechanics

1. Introduction
The present study may be viewed as a stepping stone towards the two-dimensional

(2-D) inviscid flow solution for an airfoil translating steadily across a uniform-shear
approach flow; i.e. where the free stream velocity varies linearly with the cross-stream
coordinate. The overall motivation of the work is to understand the basic aerodynamics
of wings during aircraft landing in the presence of wind shear. Tsien (1943) provided
the first inviscid flow field and load calculation for a 2-D static Joukowsky airfoil
in the presence of uniform free stream shear. In his approach, Tsien first solved the

† Email address for correspondence: naguib@egr.msu.edu
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problem of a 2-D static circular cylinder in uniform-shear flow by superposing the
stream function of the inviscid approach stream onto a potential disturbance stream
function caused by the presence of the cylinder. Subsequently, he utilized conformal
mapping of the potential-disturbance solution to solve the static airfoil problem.

Tsien’s work was later extended to more general approach-stream velocity/shear
profiles by James (1951), Honda (1960) and Nishiyama & Hirano (1970), among
others. Corresponding work for an airfoil traversing across the approach stream could
not be found; leading to the present effort. Following Tsien’s approach, we first
consider the inviscid 2-D circular cylinder problem before turning our attention to
the flow around an airfoil. Since the circular cylinder flow is of general interest by
itself, and given that no similar analysis could be found in the literature, the present
paper is focused on the cylinder flow. Future work will extend the current results to
solve the Joukowsky airfoil problem.

The flow configuration of interest is depicted in figure 1(a). An unbounded stream
having uniform positive shear dU∞/dY = m flows over a circular cylinder having a
diameter d and moving with a constant velocity of magnitude Vo across the stream in
the negative direction. Following Tsien (1943), a velocity scale is defined as Uo, which
is the velocity of the approach stream at the coordinate of the cylinder’s centre Yo.
Because of the cylinder’s motion, both Yo and Uo are now time dependent; distinctly
different from Tsien’s problem. Two different coordinate systems are employed: X–Y,
a ‘laboratory frame’, and x–y, a moving frame attached to the cylinder. The approach
stream shear is characterized using the non-dimensional parameter (Tsien 1943),

K =
dU∞
dY

d
Uo
. (1.1)

The shear rate K is uniquely set by the non-dimensional coordinate Y∗o ≡ Yo/(d/2) of
the cylinder; specifically,

K =
md
Uo
=

md
mYo
=

2
Y∗o
. (1.2)

Equation (1.2) shows that for a static cylinder placed very far (Y∗o → ∞) from
the shear centre (Y∗o = 0 and U∞ = 0), K → 0 and hence the approach flow is
effectively uniform. As Y∗o approaches the shear centre (where U∞ = 0), K increases
monotonically, reaching an infinite value when Y∗o = 0. The infinite K magnitude is
an outcome of Uo = 0 at the centre of shear; the choice of the velocity scale Uo in
defining K is taken from Tsien (1943).

The objective of the present analysis is to obtain the inviscid flow field streamlines,
the surface pressure distribution and the force acting on the cylinder moving across the
shear stream. In addition, we address a fundamental question, with important practical
ramifications, regarding the connection between the static- and the moving-cylinder
flows. More specifically, for any object traversing steadily across a uniform free
stream, a Galilean transformation (GT) to the moving object’s frame of reference is
traditionally used to deduce the flow field and forces acting on the object from its
counterpart when the object is stationary. In the GT frame, the free stream approaches
at an effective velocity U∞,eff =U∞

√
1+ V2

r and incidence angle of tan−1(Vr); where
Vr is the ratio of the object to free stream velocity. In the same vein, we ask
the question of whether it remains possible to utilize a GT to connect static- and
moving-cylinder flows in the presence of uniform shear in the approach stream.
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Inviscid flow over circular cylinder traversing across uniform-shear stream 882 A21-3
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FIGURE 1. Schematic drawing, coordinate systems and definitions of the moving-cylinder
problem: (a) overall problem, (b) details of the coordinate systems fixed to the cylinder.
Points ∞, le and c represent the undisturbed approach stream, the cylinder’s leading edge,
and a generic point on the cylinder surface, respectively, on a path used to integrate
unsteady Bernoulli’s equation (2.18) in § 2.2.

2. Analysis and results
2.1. Flow field

Tsien (1943) gives the stream function ψ for a static cylinder in uniform-shear flow
as

ψ =Uo

[(
r−

d2

4r

)
sin θ +

K
2

(
r2

d
sin2 θ +

d3

32r2
cos 2θ

)]
, (2.1)

where, r and θ are polar coordinates (as depicted in figure 1b) and K is the non-
dimensional shear rate given by (1.1). Equation (2.1) is the solution of the equation,

∇
2ψ =ωz =−

dU∞
dY
=−m, (2.2)

where, ωz is the uniform out-of-plane vorticity in the approach stream, subject to the
boundary conditions of the cylinder surface being a streamline and the disturbance
produced by the cylinder decays to zero at infinity. Because (2.2) is linear, (2.1) is
arrived at by the superposition of two flow fields. The first is the classical potential
flow solution of uniform flow Uo over a cylinder, which is obtained by the addition
of the stream functions of a uniform velocity field and a source dipole (see figure 2a).
The second flow field is that of a ‘centred’ uniform-shear flow over the cylinder (the
term ‘centred’ indicates placement of the cylinder at the centre of shear; U∞ = 0).
Based on Tsien’s solution, it can be shown that the latter flow field is equivalent
to superposing the stream functions of the centred uniform-shear flow and a source
quadrupole (see figure 2b).

The corresponding velocity components are computed from (2.1) using

Ur =
1
r
∂ψ

∂θ
and Uθ =−

∂ψ

∂r
, (2.3a,b)

which leads to

Ur

Uo
=U∗r =

(
1−

1
r∗2

)
cos θ +

K
2

(
r∗ sin θ cos θ −

1
2r∗3

sin 2θ
)
, (2.4)
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Vo

Vo

Dipole streamlines
(c)

(b)

(a)

dU∞/dY = const.

Uo Uo

dU∞/dY = const. Quadrupole streamlines

Dipole streamlines

FIGURE 2. Superposition of elemental flows leading to: (a) streamwise uniform potential
flow around a circular cylinder, (b) ‘centred’ uniform-shear inviscid flow around a
circular cylinder (the term ‘centred’ indicates the cylinder is located on the shear centre,
where U∞ = 0) and (c) cross-stream uniform potential flow around a circular cylinder.
Superposition of the flows shown in (a) and (b) leads to the stationary cylinder solution
of Tsien (1943). Superposition of the flows shown in (a), (b) and (c) provides the solution
for the cylinder traversing steadily across unbounded uniform-shear flow in the GT frame
of reference.

Uθ

Uo
=U∗θ =−

(
1+

1
r∗2

)
sin θ −

K
2

(
r∗ sin2 θ −

1
2r∗3

cos 2θ
)
, (2.5)

where, an asterisk denotes non-dimensionalization of all length scales by the cylinder’s
radius d/2 and velocity scales by Uo.

To obtain the solution for the moving-cylinder problem, and following Tsien
(1943), we consider the moving cylinder to introduce a potential disturbance to the
shear flow (i.e. the only vortical fluid is that associated with the approach stream).
The resulting vorticity field is uniform, and hence (2.2) remains linear; i.e. we can
superpose different stream functions to obtain the overall solution. Viewing the flow
in the moving x–y frame via a GT, the flow may still be decomposed into the same
two components as in the static cylinder case (figures 2a and 2b), in addition to
a third flow component representing uniform cross-stream flow Vo relative to the
cylinder (figure 2c). This three-component representation may be compacted into two
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Inviscid flow over circular cylinder traversing across uniform-shear stream 882 A21-5

components: one representing uniform flow with effective velocity

Uo,eff =

√
U2

o + V2
o , (2.6)

over the cylinder at an effective angle of incidence

αU = tan−1

(
Vo

Uo

)
, (2.7)

as depicted in figure 3(a), and the other is centred uniform-shear flow (figure 3b). It
is important to note that as far as the overall approach stream is concerned, αU of
the uniform flow subcomponent represents simply a velocity ratio Vr = Vo/Uo, rather
than an actual incidence angle of the free stream. Specifically, once the shear profile
in figure 3(b) is added to the uniform flow in figure 3(a), it is difficult to define a
unique approach stream angle since U∞ varies in the cross-stream direction, and hence
the ratio Vo/U∞, which defines the local approach stream angle, also varies across
the stream. This variation, however, should become insignificant if the shear rate is
sufficiently weak; i.e. in the limit K→ 0. In this limiting flow regime, which we name
‘quasi-uniform’ (QU) flow, the fractional variation in the approach stream velocity over
a length comparable with the cylinder diameter is negligible, and an approach stream
incidence angle α may be specified with reasonable accuracy; i.e.

α ≈ αU. (2.8)

The ability to define an incidence angle for the approach stream is necessary for
connecting the moving- and the static-cylinder solutions in the same way the two
solutions are connected for uniform free stream. Another significant aspect for making
this connection is flow unsteadiness. For the moving cylinder, the velocity Uo of the
uniform approach flow is unsteady because of the movement of the cylinder across
the shear. This unsteadiness, which is absent in the case of the non-moving cylinder,
could lead to flow dynamics that cause the static- and the moving-cylinder (in the
GT frame of reference) solutions to be different, unless the dynamics are sufficiently
slow for the flow to be ‘quasi-steady’ (QS). Accordingly, one expects the problem of
moving cylinder in shear to asymptotically become similar to that of a static cylinder
in the combined limit of quasi-uniformity and quasi-steadiness. This limit is discussed
further in § 3.2.

Based on the above, the flow field of the moving cylinder in the GT frame (i.e.
in the frame of stationary cylinder) is obtained by superposing two elemental flow
fields around a circular cylinder, as depicted in figure 3: a uniform unsteady stream
with velocity magnitude Uo,eff (t)=

√
U2

o(t)+ V2
0 and uniform-flow angle of incidence

αU(t), and a steady centred uniform-shear flow, identical to that of the stationary
cylinder. The corresponding velocity field equations in the GT frame (i.e. relative
to the cylinder) are found by simply adapting (2.4) and (2.5) to changes in the
uniform-stream characteristics,

Ur

Uo,eff
=U∗r =

(
1−

1
r∗2

)
cos(θ − αU)+

Keff

2

(
r∗ sin θ cos θ −

1
2r∗3

sin 2θ
)
, (2.9)

Uθ

Uo,eff
=U∗θ =−

(
1+

1
r∗2

)
sin(θ − αU)−

Keff

2

(
r∗ sin2 θ −

1
2r∗3

cos 2θ
)
. (2.10)
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dU∞/dY = const.

åU

dU∞/dY = const. Quadrupole streamlines

Dipole streamlinesUo,eff

Uo,eff = (Uo
2 + Vo

2)0.5(a)

(b)

FIGURE 3. Superposition of elemental flows leading to: (a) uniform potential flow with
velocity Uo,eff and angle of incidence αU around a circular cylinder, and (b) centred
uniform-shear inviscid flow around a circular cylinder (the cylinder is located on the shear
centre, where U∞ = 0). Superposition of the flows shown in (a) and (b) provides the
solution for the cylinder traversing steadily across unbounded uniform-shear flow in the
GT frame of reference.

Equations (2.9) and (2.10) have the same form as (2.4) and (2.5), except for the
introduction of αU in the terms representing the potential uniform flow around the
cylinder, the change of the normalization velocity scale from Uo to Uo,eff , and the
change of K to Keff ,

Keff =
dU∞
dY

d
Uo,eff

=
md

Uo,eff
. (2.11)

The moving-cylinder effective non-dimensional shear rate is connected to that of the
stationary-cylinder as follows:

Keff =
dU∞
dY

d
Uo,eff

=
md
Uo

Uo

Uo,eff
=K cos(αU). (2.12)

Also, introducing

Keff ,max =
md
Vo
, (2.13)

the maximum value of Keff reached at the shear centre (where the effective reference
velocity has its lowest value Uo,eff = Vo), it can be shown that,

Keff =
2Keff ,max√(

Y∗o Keff ,max
)2
+ 4

, (2.14)
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Inviscid flow over circular cylinder traversing across uniform-shear stream 882 A21-7

tan(αU)=
2

Y∗o Keff ,max
. (2.15)

Equations (2.14) and (2.15) show that, for a particular value of Keff ,max (which is
a constant parameter for a given problem), Keff (t) and αU(t), the only parameters
required for obtaining the velocity field at any time instant, are ‘set’ by the
instantaneous position of the cylinder Y∗o . Equation (2.14) also shows that as the
cylinder moves from infinity towards the shear centre, Keff changes from zero to
Keff ,max. Concurrently, per (2.15), the angle of the uniform component of the approach
stream changes from zero to π/2 (i.e. the velocity ratio Vr changes from zero to
infinity). This variation in αU is consistent with the monotonic decrease in Uo from
an infinite value to zero, with Vo remaining constant.

Figures 4 and 5 display snapshots of the streamlines of the flow around the cylinder
in the GT reference frame, based on (2.9) and (2.10), as the cylinder traverses across
the approach shear flow from Y∗o = 10 to 0, for Keff ,max = 2. The plots in figure 4
provide a global view of the flow to depict the character of the approach undisturbed
stream at three time instants where the cylinder is located at Y∗o = 8, 4 and 0. A close-
up view of the streamlines in proximity of the cylinder (within the window delineated
by the broken line in figure 4) is given in figure 5 at the same locations, as well as
at Y∗o = 10, 6 and 2. For these plots, the thick black line highlights the stagnation
streamline, and the solid grey and broken black lines depict the streamlines with and
without the cylinder presence, respectively.

Figure 4 shows that, in the GT frame of reference, the approach stream originates
from the bottom half of the domain (x∗→∞, y∗ < 0) regardless of the position of
the cylinder. The undisturbed-flow streamlines are parabolic (which can be shown by
considering the stream function in the limit r∗→∞), making the approach stream
conditions fundamentally different from those for a stationary cylinder at the same
instantaneous Y∗o of the moving cylinder (see the streamlines far away from the
non-moving cylinder in figure 6). This shows that, generally speaking, the problem
of a moving cylinder in uniform-shear free stream cannot simply be addressed via a
rotation of the approach stream of the static cylinder. However, inspection of figure 5
shows that when the cylinder is sufficiently far from the shear centre (Y∗o = 8 and
10), undisturbed approach stream conditions with approximately parallel and straight
streamlines can be found to the left of the cylinder. Hence, one may define the
approach flow at a short distance upstream of the cylinder in the y∗ > 0 half-plane;
rather than based on tracking the approach stream to its origin in the y∗< 0 half-plane.
Under these conditions (large Y∗o ; and small Keff and αU), the static-cylinder results
may be usable in solving the moving-cylinder problem (this point is addressed more
generally in §§ 3.1 and 3.2). As Y∗o decreases (and Keff and αU increase), the approach
streamlines become more curved and the fore (left) stagnation point progressively
moves along the bottom surface away from the cylinder’s leading edge, eventually
switching to the rear side of the surface, as exemplified at the terminal location Y∗o =0.

2.2. Surface pressure and force
For 2-D unsteady incompressible inviscid flow, the pressure and the velocity fields are
connected through the unsteady Bernoulli equation. Following Milne-Thomson (1996,
p. 115, equation (2)), the equation may be written as follows:

p
ρ
+

1
2

Q2
+ gz−

∫
AP
∇

2ψ dψ +
∫

AP

∂Qs

∂t
ds= f (t), (2.16)
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FIGURE 4. Streamlines of the flow around a cylinder traversing across positive
uniform-shear approach flow in the GT frame of reference (Keff ,max= 2). Plots correspond
to cylinder locations of (a) Y∗o = 8, (b) 4 and (c) 0. The corresponding effective
non-dimensional shear rate and uniform-flow angle of incidence, as given by (2.14) and
(2.15), respectively, are indicated in parenthesis.

where, AP is a fixed arbitrary path within the flow field, p is pressure, Q is velocity
vector magnitude, gz is gravity force potential per unit mass, s is coordinate measured
along AP, Qs is the velocity component tangent to AP and f is an arbitrary function
of time. Equation (2.16) may be written as a definite integral between points 1 and 2
on curve AP as follows (ignoring gravity),

p2

ρ
−

p1

ρ
+

1
2
(Q2

2 −Q2
1)−

∫ 2

1
∇

2ψ dψ +
∫ 2

1

∂Qs

∂t
ds= 0. (2.17)

Normalizing (2.17) using d/2 and Uo,eff as length and velocity scales, respectively,
leads to (see appendix A),
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FIGURE 5. Streamlines in the GT reference frame of the flow around a cylinder traversing
across positive uniform-shear approach flow from Y∗o =10 to 0 in steps of −2 (Keff ,max=2).
Different subplots depict the flow at different instants of the cylinder motion, as given
by the cylinder cross-stream position on top of the plot. The corresponding effective non-
dimensional shear rate and uniform-flow angle of incidence, as given by (2.14) and (2.15),
respectively, are indicated in parenthesis. Broken lines show the streamlines if the cylinder
were absent, and the thick line depicts the stagnation streamline.

Cp =
p2 − p1
1
2ρU2

o,eff
= (Q∗21 −Q∗22 )+ 2

∫ 2

1
∇
∗2ψ∗ dψ∗ −

d
Uo,eff

∫ 2

1

∂Q∗s
∂t

ds∗

+Keff cos(αU) sin(αU)

∫ 2

1
Q∗s ds∗, (2.18)

where, Cp is a pressure coefficient. For steady flow, points 1 and 2 in (2.17) are
usually taken on a streamline (i.e. dψ = 0), which eliminates the integral terms in
the equation, simplifying its use. However, this approach is more complicated for the
moving cylinder in uniform-shear flow since the streamlines are unsteady, as seen in
figure 5. Therefore, to simplify the calculation, a fixed integration path, depicted in
figure 1(b), is utilized. This path consists of two different segments: (i) a straight line
coincident with the negative x axis connecting the pressure at a far upstream point ∞
to that at the cylinder’s leading edge le, and (ii) a circular-arc path coincident with
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FIGURE 6. Streamlines of the flow around a stationary cylinder in a positive
uniform-shear approach flow. Different subplots depict the flow for different values of the
non-dimensional shear rate K. The corresponding non-dimensional cross-stream location
of the cylinder, as given by (1.2), is also indicated. The thick line depicts the stagnation
streamline.

the cylinder’s surface, connecting le to an arbitrary point c on the cylinder’s surface.
This process leads to the overall surface pressure coefficient, given by,

Cpc(θ)=Cple +Cpc,le(θ), (2.19)

where, the first and second terms on the right-hand side of (2.19) are obtained by
applying (2.18) between points ∞ and le, and le and c, respectively. Dropping the
subscript c, with the understanding that Cp is only computed on the cylinder surface
in the present work, evaluating (2.18) for each of the two terms on the right-hand side
of (2.19), and adding the results leads to,

Cp(θ, t) =
p(θ, t)− p∞

1
2ρU2

o,eff (t)
= [1− 4 sin2(θ − αU(t))] + 2Keff (t)[

sin(αU(t)) cos(θ)− sin(θ − αU(t))
(

1
2 − cos(2θ)

)]
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+
K2

eff (t)

16
[1+ 4 cos(2θ)− 4 cos2(2θ)]. (2.20)

The form of equation (2.20) is checked in two different ways. First, by verifying
that the form simplifies to the correct form of the simpler cases of a static cylinder
in shear flow and in uniform flow (these details are provided in appendix B). Second,
by comparing the force acting on the moving cylinder in shear when computed using
(2.20), see below, with that obtained using a different approach (see § 3.2).

Given the parabolic streamlines of the approach flow, as revealed in figure 4, it
is not possible to define a unique direction of the approach stream relative to the
moving cylinder; i.e. in the GT frame of reference. In turn, this makes it infeasible
to define the directions of the lift and the drag components of the force acting on
the moving cylinder based on free stream direction. However, for the purpose of the
present discussion, we will define the lift and the drag in a time-invariant coordinate
system in the directions perpendicular and parallel, respectively, to the approach
stream in the laboratory frame of reference. With this in mind, the x (drag) and
y (lift) force coefficients are computed from integration of the pressure coefficient
around the cylinder as follows:

CD =Cx =
Fx

1
2ρU2

o,eff d
=−

1
2

∫ 2π

0

p− p∞
1
2ρU2

o,eff
cos(θ) dθ =−

1
2

∫ 2π

0
Cp cos(θ) dθ, (2.21)

CL =Cy =
Fy

1
2ρU2

o,eff d
=−

1
2

∫ 2π

0

p− p∞
1
2ρU2

o,eff
sin(θ) dθ =−

1
2

∫ 2π

0
Cp sin(θ) dθ. (2.22)

Substitution of (2.20) in (2.21) and (2.22), yields,

CD =Cx =−πKeff sin(αU), (2.23)
CL =Cy =πKeff cos(αU). (2.24)

Equations (2.23) and (2.24) are evaluated for the moving cylinder case considered
in figures 4 and 5 (Keff ,max = 2). The results are displayed in figure 7 versus the
cross-stream position of the cylinder, plotted as Y∗−1

o so that the increase of the
abscissa variable also indicates time increase. The figure contains two plots, one
showing the evolution of the force coefficients as the cylinder traverses across the
shear from infinity to zero. This plot is truncated at Y∗−1

o = 100 (Y∗o = 0.01), since the
force coefficients have practically reached an asymptotic state by then. The other plot
provides a magnified view of the time period over which most of the force variation
takes place.

As seen from figure 7, initially CL increases with time, reaching a maximum value
at Y∗o = 2/Keff ,max, which in this figure occurs one radius away (Y∗o = 1) from the
shear centre, before decaying towards zero as the cylinder approaches Y∗o = 0. The
presence of maximum lift coefficient is due to the competing effects of Keff and
αU. Specifically, as time progresses, Y∗o decreases, causing αU to increase (from 0◦
to 90◦; per equation (2.15)) with corresponding decrease in cos(αU) and CL (2.24).
This decrease is opposed by the monotonic increase in Keff from 0 to Keff ,max (2.14),
which increases CL. The nature of these variations may be understood more clearly
by considering the magnitude and angle of the overall force vector coefficient; given
by, respectively,

|CF| =

√
C2

D +C2
L =πKeff , (2.25)
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FIGURE 7. History of the x and y force coefficients for a moving cylinder in
uniform-shear flow (Keff ,max = 2). During the motion, the cylinder cross-stream location
Y∗o decreases from ∞ to 0, while the abscissa Y∗−1

o increases monotonically with time.
(a) Motion history truncated at Y∗o = 0.01, (b) a magnified view of the history in (a).
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FIGURE 8. History of the force coefficient magnitude (|CF|) and angle ( 6 CF) for a moving
cylinder in uniform-shear flow (Keff ,max = 2). During the motion, the cylinder cross-stream
location Y∗o decreases from ∞ to 0. The abscissa Y∗−1

o increases monotonically with time.
(a) Motion history truncated at Y∗o = 0.01, (b) a magnified view of the history in (a).

6 CF = tan−1

(
CL

CD

)
=

π

2
+ αU. (2.26)

Equations (2.25) and (2.26) are evaluated and plotted in figure 8. As seen from
the figure, and the equations, the magnitude of the force increases monotonically with
time due to the monotonic increase of |CF| with Keff . However, since the force angle is
initially aligned with the lift direction (6 CF=π/2), all of the force is directed towards
lift. As time progresses, the force vector rotates to eventually point in the negative
x direction at the end of the motion. Thus, though the force magnitude increases
with time, the fraction of the force producing lift becomes smaller and smaller with
increasing time. Initially, the force increase due to the rise in the non-dimensional
shear rate dominates, resulting in the initial rise in CL. Eventually, the turning of
the force vector becomes more important, resulting in the observed maximum CL in
figure 7. The turnaround point can be shown to happen at Y∗o =2/Keff ,max, which equals
unity in the particular example considered here, where Keff ,max = 2.

Unlike CL, the magnitude of CD increases monotonically from zero at the start
of the motion (Y∗o = ∞), to a finite value at the end of the motion (figure 7).
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FIGURE 9. Comparison between the streamlines around the moving cylinder (a) when
located at Y∗o = 1.732 (Keff ,max= 2) with those around a static cylinder, (b) having the same
approach stream’s non-dimensional shear rate and angle of incidence as the instantaneous
Keff and αU values for the moving cylinder. Broken lines show the streamlines if the
cylinder were absent, and the dark line depicts the stagnation streamline.

Remarkably, the drag coefficient has a negative sign throughout the motion, indicating
the development of thrust. Initially, this thrust is zero since Keff → 0 as Y∗o →∞,
corresponding to uniform flow. However, as time progresses and Keff increases, the
thrust becomes increasingly significant, reaching its maximum value at the end of the
motion, where Keff has its peak value, and hence |CF| is largest (2.25), and all of
the force is directed towards thrust (2.26). The physics underlying the observed force
behaviour is discussed in the following section.

3. Discussion
3.1. Physics of force generation

Though it may not be immediately evident, the force results, (2.25) and (2.26), are
rather surprising. Specifically, the magnitude and the direction of the force are exactly
the same as those acting on a static cylinder placed in uniform-shear approach flow
with angle of incidence α = αU and non-dimensional shear rate K = Keff . More
specifically, the results of Tsien (1943) show that such a cylinder exhibits no drag
(CD = 0), while experiencing a lift coefficient CL = πK. Taking into account the
approach stream’s angle of incidence and the non-dimensional shear rate based on
the total reference velocity magnitude (Uo,eff ), the static cylinder’s lift coefficient
is identical to CF in (2.25) and (2.26). This outcome is not expected since the
comparison of the streamlines for the moving cylinder, in a Galilean-transformed
frame of reference (figures 4 and 5), to the stationary-cylinder’s streamlines (figure 6)
demonstrates two flow fields that cannot be made the same by changing the angle
of incidence and the velocity magnitude of the static-cylinder’s approach stream. To
give a more specific example, the streamlines for the moving cylinder when Keff = 1
and αU = 30◦ are shown in figure 9(a), compared to those obtained from rotating the
static-cylinder’s flow field for K = 1 by an angle of incidence of 30◦ in figure 9(b).
While the force acting on the cylinder is the same for both cases, the flow fields are
significantly different.

The surface-pressure coefficient distributions corresponding to the two flow fields
in figure 9 are compared in figure 10. For the moving cylinder, the distribution is
obtained using (2.20), while for the static cylinder (B1) is used after replacing θ with
θ −αU to account for the incidence angle of the flow. In figure 10, two different plots
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FIGURE 10. Comparison of the surface Cp distributions of the moving- and static-cylinder
cases considered in figure 9. The distribution is plotted versus (a) x∗ and (b) y∗. Solid and
broken lines, respectively, depict the Cp distribution on (a) the upper and lower surface
and (b) downstream and upstream surface. The area encircled by the distributions, which
is filled for the moving cylinder case, equal to (a) Cy and (b) Cx, with the contribution to
the force coefficient from an encircled area is positive if the area is bounded by a broken
line on top and a solid one on bottom. The circle symbols indicate the location of the
front stagnation point.

of the Cp distributions are given: (a) one versus x∗ and (b) the other versus y∗. As
explained in the caption, the area encircled by the Cp distribution equals Cy and Cx,
for the left and right figures, respectively. Visual inspection of the encircled areas for
the moving- and static-cylinder cases confirms that Cy > 0 and Cx < 0; in agreement
with the results in figure 7 (where for the moving cylinder Cx =CD and Cy =CL).

Figure 10 shows that indeed, consistent with the different flow patterns in figure 9,
the surface pressure distribution is different for the moving and the static cylinder.
This difference manifests itself not only in different values of Cp at the same location
on the cylinder’s surface but also in the location of the front stagnation point.
Figure 10 also gives a visual clue for the reason why the different Cp distributions
yield the same Cx and Cy. In particular, notwithstanding the shape difference of the
two distributions, the net area encircled by the different distributions does not change.
This finding suggests that the mechanisms for force generation may not be the same
for the two cases. To gain a deeper insight into these mechanisms in the case of the
moving cylinder, the force calculation is revisited using an alternative approach.

For simplification, Cp is redefined using a reference pressure at the cylinder’s
leading edge le rather than the upstream undisturbed-flow pressure p∞. The reference
pressure value does not influence the computed force at a given time instant, but the
magnitude of Cp is different than that defined in (2.20), which is used throughout
the document for plotting the Cp distribution. With this understanding, Cp is used to
denote the pressure coefficient regardless of the reference pressure value. Applying
(2.18) on the surface of the cylinder with point 1 corresponding to le (see figure 1b),
point 2 is at a general azimuthal location θ , and denoting the terms associated with
the temporal derivative of the velocity (the last two integral terms on the right-hand
side of (2.18)) C

′

p,

Cp =
p(θ)− ple

1
2ρU2

o,eff
= [Q∗2le −Q∗2(θ)] +C

′

p, (3.1)
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Vo

Vo

Dipole streamlines(a)

(b)

dU∞/dY = const.

dU∞/dY = const.

Uo

Uo

Quadrupole streamlinesDipole streamlines

FIGURE 11. Superposition of elemental flows leading to: (a) uniform potential flow with
90◦ angle of incidence around a circular cylinder, and (b) uniform-shear inviscid flow
around a circular cylinder (the cylinder is located off the shear centre: Tsien’s (1943)
problem).

where the integral term involving the stream function vanishes since the cylinder
surface is a streamline. Recognizing that only the azimuthal component of velocity
Uθ is non-zero on the cylinder’s surface, (3.1) becomes,

Cp =
p(θ)− ple

1
2ρU2

o,eff
= [U∗2θ le −U∗2θ (θ)] +C

′

p. (3.2)

To proceed further, and differently from before, the flow is decomposed into two
flow problems around a stationary cylinder (in a Galilean frame): one that arises
from a streamwise (x) approach stream consisting of uniform flow Uo superposed
on uniform-shear (Tsien’s problem), and the other associated with a cross-stream
(y) uniform approach stream Vo. Though this way of decomposition (see figure 11)
is different from that followed so far (figure 3), the two decompositions clearly
correspond to the same overall velocity field. The new superposition leads to,

U∗θ =U∗Tθ +U∗Vθ , (3.3)

where subscripts T and V denote Tsien’s and the cross-stream uniform flow,
respectively. Substituting (3.3) in (3.2) and rearranging terms gives

Cp = [U∗2Tθ le −U∗2Tθ(θ)] + [U
∗2
Vθ le −U∗2Vθ(θ)] + 2 ∗ [U∗Tθ leU

∗

Vθ le −U∗TθU
∗

Vθ ] +C
′

p. (3.4)

As given by (3.2), Uo,eff is the velocity scale used for normalizing the pressure. To
connect the different terms in (3.4) to the Cp distribution of the ‘component problems’,
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the velocity scale should be changed to Uo for Tsien’s flow, and Vo for the cross-
stream uniform flow. This changes (3.4) to the following:

Cp =
U2

o

U2
o,eff

[(
UTθ le

Uo

)2

−

(
UTθ

Uo

)2
]
+

V2
o

U2
oeff

[(
UVθ le

Vo

)2

−

(
UVθ

Vo

)2
]

+ 2 ∗
Uo

Uo,eff

Vo

Uo,eff

[
UTθ le

Uo

UVθ le

Vo
−

UTθ

Uo

UVθ

Vo

]
+C

′

p. (3.5)

Recognizing that Uo/Uo,eff = cos(αU) and Vo/Uo,eff = sin(αU),

Cp = cos2(αU)CpT + sin2(αU)CpV + 2 cos(αU) sin(αU)CpTV +C
′

p, (3.6)

where, CpT , CpV and CpTV correspond to the respective quantities in square brackets
in (3.5). Physically, CpT and CpV are, respectively, the pressure coefficients for Tsien’s
flow and uniform flow over a cylinder at 90◦ incidence, both of which are known. On
the other hand, CpTV is an unknown pressure coefficient that involves terms from both
flow fields. Also recall that C

′

p represents terms due to the temporal derivative of the
flow field.

To obtain the force coefficients, (3.6) may be substituted in integrals (2.21) and
(2.22), respectively. Since it is well known that steady, inviscid uniform flow around
a circular cylinder does not result in any forces, the term involving CpV in (3.6) does
not contribute to Cx and Cy. Similarly, substituting CpTV in (2.21) and (2.22) results
in zero force coefficients. Thus, one may express Cx and Cy as follows:

Cx =−
1
2

[
cos2(αU)

∫ 2π

0
CpT cos(θ) dθ +

∫ 2π

0
C
′

p cos(θ) dθ
]
= cos2(αU)CxT +C

′

x, (3.7)

Cy =−
1
2

[
cos2(αU)

∫ 2π

0
CpT sin(θ) dθ +

∫ 2π

0
C
′

p sin(θ) dθ
]
= cos2(αU)CyT +C

′

y. (3.8)

That is, the force coefficients are due to the superposition of those arising from Tsien’s
flow and the temporal derivative of the velocity. Following Tsien (1943) we have,

CxT = 0, (3.9)
CyT =πK. (3.10)

On the other hand, to find the force coefficients C
′

x and C
′

y, it is recognized that
the only approach flow component contributing to the unsteady force is that due to
the uniform flow Uo(t). This is a classical problem in unsteady fluid dynamics, where
the flow unsteadiness results in the development of drag (Cx) but no lift. The drag
force is known to arise from, and to act in the direction of, fluid acceleration. The
specific form of the forces in this case is given by (e.g. see equation (2)–(33) in
Blevins (2001)),

Fx = 2ρπ

(
d
2

)2 dUo

dt
, (3.11)

Fy = 0, (3.12)

which lead to,

C′x =
Fx

1
2ρU2

o,eff d
=

πd(−mVo)

U2
o,eff

=−π

(
md

Uo,eff

)(
Vo

Uo,eff

)
=−πKeff sin(αU), (3.13)
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C′y = 0. (3.14)

Substituting (3.9), (3.10), (3.13) and (3.14) into (3.7) and (3.8),

Cx =−πKeff sin(αU), (3.15)

Cy =πK cos2(αU)=πKeff cos(αU). (3.16)

Equations (3.15) and (3.16) are precisely the same as (2.23) and (2.24), which are
derived from a relatively lengthy process in which the cylinder’s pressure distribution
is first obtained and then integrated around the cylinder to arrive at the net force.
As such, the present succinct approach provides an independent confirmation of the
earlier results. More importantly, however, the approach clarifies the physics of force
generation for the moving-cylinder problem. Specifically, it is now clear that the cross-
stream force component is generated via the presence of shear in the approach stream,
akin to how the same force component is generated on the static cylinder. However,
for the moving cylinder, the streamwise force component is generated purely via the
perceived fluid acceleration (dUo/dt) as the cylinder continuously traverses across a
stream of changing approach velocity. Since the cylinder moves in the direction of
decreasing Uo, the acceleration is negative and the net streamwise force acts in the
thrust direction (i.e. that opposing the approach stream). This mechanism of force
generation is completely different from the shear mechanism, responsible for Fx on
the static cylinder in angled approach stream (e.g. as depicted on the right part of
figure 9), yet both mechanisms lead to the same force coefficient! This agreement
is believed to be serendipitous and only represents the special case when the shear
in the approach flow is uniform and the cylinder is traversing across the stream at
constant velocity. Both of these features cause the fluid acceleration to be constant
and linearly proportional to m and Vo, in a similar way to the streamwise component
of the shear-generated force in the static cylinder case.

3.2. Limits of quasi-uniformity and quasi-steadiness
The previous section demonstrates that, in a Galilean frame of reference, the flow,
the surface pressure distribution, and the physical nature of the net force for the
moving cylinder across uniform shear are fundamentally different from that of the
static cylinder. However, the two flows should become the same in the QUS limit.
As discussed in connection with equations (2.6) and (2.7), QU holds when Keff → 0.
On the other hand, the QS limit may be expressed using the non-dimensional rate of
change of the reference velocity U̇+o ,

U̇+o ≡ 2
∣∣∣∣dUo

dt

∣∣∣∣ d/2
U2

o,eff
=

mVod
U2

o,eff
=Keff sin (αU) . (3.17)

In the limit U̇+o → 0, the flow should become quasi-steady. As Y∗o → ∞, both of
these parameters approach zero; thus, at sufficiently large Y∗o , one would expect the
flow to be both quasi-uniform and quasi-steady. An example of this situation is
shown in figure 12(a), where the streamlines for the moving cylinder in GT frame
(Y∗o = 8, Keff = 0.25, and αU = 7.13◦) are compared with those for the static cylinder
(b) when K= 0.25 and the approach stream is rotated by an incidence angle of 7.13◦.
The figure demonstrates that the streamlines are approximately similar, particularly in
the immediate vicinity of the cylinder, distinctly different from the case of Keff = 1
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* = 8 (Keff = 0.25; åU = 7.13°)(a) (b)
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K = 0.25; å = 7.13°

FIGURE 12. Comparison between the streamlines around the moving cylinder (a) when
located at Y∗o = 8 (Keff ,max = 2) with those around a static cylinder, (b) having the same
approach stream’s non-dimensional shear rate and angle of incidence as the instantaneous
Keff and αU for the moving cylinder. Broken lines show the streamlines if the cylinder
were absent.

-1.0 -0.5 0 0.5 1.0
x*

5(a)

0

-5

-10

-15

Cp

-1.0 -0.5 0 0.5 1.0
x*

5(b)

0

-5

-10

-15

Static (K = 0.25 and å = 7.13°)
Moving (Keff = 0.25 and åU = 7.13°)

Static (K = 2 and å = 90°)
Moving (Keff = 2 and åU = 90°)

FIGURE 13. Comparison of the surface Cp distributions of the moving- and static-cylinder
cases in the limit of (a) low and (b) high Keff and αU values. Solid and broken lines,
respectively, depict the Cp distribution on the upper and lower surface. At the shear centre
(b), the solid and broken lines are indistinguishable since the pressure distribution is
symmetric between the top and bottom surfaces.

and αU = 30◦ (figure 9). Moreover, considering the corresponding Cp distribution
(figure 13a), it is evident that both flows have practically identical surface pressure
distribution. This is to be contrasted, for example, with the case when both Keff
and αU reach their maximum values at shear centre (Y∗0 = 0), and both QU and QS
conditions are not expected to hold. The Cp profile for the latter case is shown in
figure 13(b), which demonstrates the drastic difference in the Cp distribution between
the two flows.

Since the force expressions for the moving and the static cylinders are serendipi-
tously identical regardless of the problem parameters, force cannot be used in
characterizing QUS limits. As an alternative, the difference in the Cp distribution
(1Cp) may be used to quantify the deviation from QUS flow conditions. Here, it is
important to emphasize the distinction between ‘quasi-steadiness’, ‘quasi-uniformity’
and ‘quasi-steadiness and quasi-uniformity’. Referring to figure 3, since only the
uniform flow is unsteady (with its magnitude and angle of incidence changing with
time), a QS version of this flow involves replacing the unsteady uniform flow with a
steady equivalent while maintaining the same centred-shear flow component. The Cp
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for this flow is obtained from that of the static cylinder (B 1) by replacing K with
Keff , and θ with θ − αU in the uniform-flow term only. Subtracting the resulting Cp
from that of the moving cylinder (2.20),

1Cp,QS =Cp −Cp,QS = 2Keff sin(αU) cos(θ)= 2U̇+o cos(θ). (3.18)

As reasoned using (3.17), (3.18) explicitly shows that as U̇+o → 0, the pressure
distribution becomes the same as that of the static cylinder; i.e. the flow becomes
quasi-steady.

In practice, the quasi-steady problem is not of direct interest by itself since
connecting the static- and the moving-cylinder flows is only useful if one rotates
the entire approach stream; i.e. both the uniform- and the shear-flow components.
However, as discussed in connection with equation (2.7), in the presence of shear,
it is not possible to define a unique angle of incidence of the approach stream,
except in the quasi-uniform flow limit. Thus, rotating the entire approach stream
by αU and replacing the uniform flow component with a steady equivalent, implies
both quasi-uniformity and quasi-steadiness. With this important proviso, Cp for QUS
conditions is obtained by replacing K with Keff and θ with θ − αU in all terms of
equation (B 1) of the static cylinder, and the result is subtracted from the complete
pressure distribution (2.20) to produce the following:

1Cp,QUS = Cp −Cp,QUS = 2Keff sin(αU) cos(θ)
+ 2Keff sin(θ − αU)[cos(2θ)− cos(2(θ − αU))]

+
1
4

K2
eff

{
[cos(2θ)− cos(2(θ − αU))]

−[cos2(2θ)− cos2(2(θ − αU))]
}
. (3.19)

The last equation can be rewritten as a Fourier series in θ , which after maintaining
the terms organization based on the exponent of Keff , yields,

1Cp,QUS = 2Keff sin(αU) cos(3θ − 2αU)

−
1
4

K2
eff [2 sin(αU) sin (2θ − αU)− sin(2αU) sin(4θ − 2αU)] . (3.20)

If the flow is quasi-uniform, Keff → 0 and the quadratic term in equation (3.20) may
then be neglected, leading to the following:

1Cp,QU = 2Keff sin(αU) cos(3θ − 2αU)= 2U̇+o cos(3θ − 2αU). (3.21)

It is interesting to see that the maximum deviation 1Cp,max between the moving
cylinder and the QS (3.18) and QU (3.21) cases is the same: 1Cp,max = 2U̇+o . This
demonstrates that when the flow is quasi-uniform, it is also quasi-steady, and vice
versa. In other words, though fundamentally, these two concepts describe different
physics (uniformity in space versus invariance with time), it is not possible to achieve
one of these conditions without the other in this flow problem. Accordingly, for an
object translating across a uniform shear zone, the only possible simplification is that
of a quasi-uniform and quasi-steady flow.

The maximum of equation (3.19) is plotted versus U̇+o for two different values of
Keff ,max in figure 14. It is helpful to note that for a given Keff ,max, the parameters Keff

and U̇+o change from zero to Keff ,max as the cylinder translates from +∞ to Y∗o = 0
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0.05
U�o

+
0.10
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FIGURE 14. Maximum deviation in the surface-pressure-coefficient distribution of the
moving cylinder from that arising under quasi-uniform and quasi-steady flow conditions.

(see (2.14), (2.15) and (3.17)). Thus, the curve corresponding to Keff ,max = 0.1 is only
plotted up to U̇+o = 0.1 in figure 14. As seen from the figure, the maximum deviation
from the QUS approximation increases monotonically with the shear rate Keff ,max for
the same U̇+o ; i.e. the deviation is not a function of U̇+o only. However, as 1Cp,max→

0, the results in figure 14 converge towards the quasi-uniform (or quasi-steady) flow
behaviour where 1Cp,max= 2U̇+o . Using this equation, and assuming, for example, that
1Cp,max of 0.05 is a sufficiently negligible deviation, then U̇+o should be less than
0.025 for QUS to be a reasonable approximation of the flow. Moreover, if the cylinder
velocity is sufficiently small, then sin(αU)≈Vr, leading to a corresponding QUS flow
criterion expressed directly in terms of the effective shear rate and the velocity ratio:
Keff Vr < 0.025. This value, though based on an arbitrary threshold, helps to give a
physical sense of the order of magnitude of U̇+o over which quasi-uniformity and quasi-
steadiness is a reasonable approximation.

4. Conclusions
In this paper, we find the inviscid solution of the flow around a circular cylinder

traversing at constant velocity across an infinitely wide, uniform-shear free stream. The
solution is obtained in a Galilean frame of reference, fixed to the translating cylinder.
With this transformation, the approach stream becomes unsteady, exhibiting a change
in the stream’s reference velocity at the cross-stream location of the cylinder’s centre.

The results show that, far from the cylinder, the undisturbed approach flow has
parabolic streamlines, which makes it impossible to define an angle of incidence for
the free stream; as commonly done when a cylinder traverses across uniform flow.
As the cylinder traverses from infinity, on the high-speed side, towards the shear
centre (where the free stream velocity is zero), the magnitude of the force acting
on the cylinder increases monotonically. The corresponding force direction changes
from being normal to the approach stream (in the lift direction) to being against the
stream (in the thrust direction). These variations cause a non-monotonic change in
lift, with a maximum observed during the motion history, while the thrust increases
monotonically during the cylinder’s motion. The lift force is found to be generated
by a shearing mechanism, exactly similar to that on a static cylinder in uniform-shear
flow (Tsien 1943). In contrast, the thrust is produced by the perceived deceleration
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of the free stream relative to the cylinder, as the latter traverses in a direction of
decreasing free stream velocity.

An effort is made to connect the moving-cylinder solution to the static-cylinder
counterpart. This is motivated by the equivalent problem in uniform free stream, where
the moving-cylinder solution can be obtained directly from the static-cylinder case
with a simple change in the magnitude and incidence angle of the free stream velocity.
To connect the moving and the static cylinder problems, a new terminology of ‘quasi-
uniform’ flow is introduced. This idea, which describes the flow state in the limit
of weak shear, is the spatial equivalent of the temporal concept of QS flow. It is
found that, in the present flow problem, quasi-uniformity and quasi-steadiness are not
independent; i.e. when the flow is QU it is also QS and vice versa. In the limit
of this QUS flow condition, a physically meaningful free stream incidence angle α
could be defined for the moving cylinder, and the effect of flow unsteadiness is solely
determined by a single parameter (U̇+o ) characterizing the non-dimensional rate of
change of the approach stream velocity as the cylinder traverses across the shear flow.
As U̇+o → 0, the flow is QUS, and the moving-cylinder problem approaches that of
a static cylinder in uniform-shear flow with a shear rate equal to the instantaneous
non-dimensional shear rate Keff of the moving cylinder, and an angle of incidence
determined from tan−1(Vr); where Vr is the instantaneous cylinder-to-reference velocity
ratio. For small Vr, U̇+o is approximately equal to Keff Vr.

A surprising result is that, notwithstanding the differences between the static- and
moving-cylinder problems, the force magnitude and direction is found to be the
same in both cases, when the static-cylinder’s non-dimensional shear rate is set to
Keff , and the approach-stream’s angle of incidence is set to tan−1(Vr). This finding
holds regardless of the values of Keff and Vr. The force equality is achieved despite
differences in the surface pressure distribution since the change in the latter occurs
without change in its integrated effect around the cylinder. Further analysis shows that
the streamwise component of the force acting on the moving cylinder has a different
physical nature than that acting on the static cylinder. Specifically, this component is
produced via an inertia mechanism for the former, in contrast to a shearing effect for
the latter. It is shown that the inertia mechanism for the specific situation considered,
where the shear is uniform and the cylinder’s velocity is constant, produces a similar
force-component magnitude. It is hypothesized that this result is serendipitous, and
will likely not hold for more general free stream shear profiles and/or cylinder motion.
Moreover, in real flow problems, where viscous effects are present, the difference
in surface pressure distribution would lead to different boundary layer development
history and separation characteristics, which should lead to force inequality.

Beyond addressing a fundamental flow problem; i.e. a circular cylinder traversing
across uniform shear region, the present study lays the theoretical framework for
analysing moving objects in shear flows. Future effort will extend the present work
to an airfoil moving across uniform shear.
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Appendix A.
Starting with making (2.17) non-dimensional,
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Cp =
p2 − p1
1
2ρU2

o,eff
=

1
1
2 U2

o,eff
(Q2

1 −Q2
2)+

1
1
2 U2

o,eff

∫ 2

1

[
Uo,eff (d/2)
(d/2)2

∇
∗2ψ∗

][
Uo,eff

(
d
2

)
dψ∗

]
−

1
1
2 U2

o,eff

∫ 2

1

∂Qs

∂t
ds= 0, (A 1)

which simplifies to

Cp =
p2 − p1
1
2ρU2

o,eff
= (Q∗21 −Q∗22 )+ 2

∫ 2

1
∇
∗2ψ∗ dψ∗ −

1
1
2 U2

o,eff

∫ 2

1

∂Qs

∂t
ds. (A 2)

Considering the integrand in the third term on the right-hand side by itself

∂Qs

∂t
=
∂(Uo,eff Q∗s )

∂t
=Uo,eff

∂Q∗s
∂t
+Q∗s

dUo,eff

dt
=Uo,eff

∂Q∗s
∂t
+Q∗s

d
dt

(√
U2

o + V2
o

)
, (A 3)

∂Qs

∂t
=Uo,eff

∂Q∗s
∂t
+Q∗s

1
2
(U2

o + V2
o )
−1/22Uo

dUo

dt
. (A 4)

Using dUo/dt=−mVo, leads to

∂Qs

∂t
=Uo,eff

∂Q∗s
∂t
−Q∗s

Uo

(U2
o + V2

o )
1/2

mVo. (A 5)

Using Vo/(U2
o + V2

o )
1/2
= Vo/Uo,eff = sin(αU),

∂Qs

∂t
=Uo,eff

∂Q∗s
∂t
−mUo sin(αU)Q∗s . (A 6)

Substituting (A 6) in (A 2) and normalizing s using d/2,

Cp =
p2 − p1
1
2ρU2

o,eff
= (Q∗21 −Q∗22 )+ 2

∫ 2

1
∇
∗2ψ∗dψ∗ −

1
1
2 U2

o,eff∫ 2

1

(
Uo,eff

∂Q∗s
∂t
−mUo sin(αU)Q∗s

)(
d
2

ds∗
)
, (A 7)

which, upon recognizing that Keff =md/Uo,eff , and Uo/Ueff = cos(αU), leads to the form
of (2.18),

Cp =
p2 − p1
1
2ρU2

o,eff
= (Q∗21 −Q∗22 )+ 2

∫ 2

1
∇
∗2ψ∗ dψ∗ −

d
Uo,eff

∫ 2

1

∂Q∗s
∂t

ds∗

+Keff cos(αU) sin(αU)

∫ 2

1
Q∗s ds∗. (A 8)

Appendix B.

One useful check on the form of equation (2.20) is to simplify it to the form for the
static cylinder in shear. This result has not been derived elsewhere, including in Tsien
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(1943), who obtained the lift force on the cylinder using a control volume approach,
rather than using the surface pressure distribution. To get the pressure coefficient for
the static cylinder, let αU→ 0 (i.e. Vo= 0), Uo,eff→Uo and Keff→K in (2.20), leading
to,

Cp(θ) =
p(θ)− p∞

1
2ρU2

o

= [1− 4 sin2(θ)] − 2K sin(θ)
[

1
2
− cos(2θ)

]
+

K2

16
[1+ 4 cos(2θ)− 4 cos2(2θ)]. (B 1)

The analytical form (B 1), which also correctly reduces to the well known uniform-
approach-flow form in the limit K→ 0, may be verified by re-deriving (B 1) using
the usual approach of choosing points 1 and 2 in (2.18) along a streamline for Tsien’s
steady problem. In this case, the stagnation streamline is selected for evaluating (2.18)
with point 1 far upstream along the streamline (denoted as s∞), and point 2 is on
the surface of the cylinder. The combination of a streamline integration path and flow
steadiness eliminates the integral terms in (2.18), yielding the simple form,

Cp(θ)=
p(θ)− p∞

1
2ρU2

o

=
(
U∗2s∞ −U∗2θ

)
, (B 2)

where, U∗s∞ is the approach stream velocity on the stagnation streamline far upstream
of the cylinder (i.e. x∗1→−∞ ) and U∗θ is the azimuthal slip velocity on the cylinder
surface.

To obtain U∗s∞, we consider the asymptotic cross-stream coordinate y∗s∞ of the
upper stagnation streamline far upstream from the cylinder. As seen in figure 6, this
coordinate increases in the positive direction with increasing K. To find y∗s∞, the
stagnation streamline stream function magnitude is found by evaluating (2.1) on the
cylinder surface. Once this value is known, (2.1) is evaluated in the limit r∗→∞,
yielding,

y∗s∞ =−
2
K

(
1−

√
1+

K2

8

)
. (B 3)

Substitution of (B 3) in the approach stream linear velocity profile, gives the approach
velocity on the stagnation streamline,

U∗s∞ =

√
1+

K2

8
. (B 4)

Also, using (2.5) with r∗ = 1 to obtain U∗θ on the cylinder’s surface,

U∗2θ =
[

2 sin(θ)+
K
2

(
sin2(θ)−

1
2

cos(2θ)
)]2

. (B 5)

Substituting (B 4) and (B 5) in (B 2) gives the same form as (B 1).
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